
Evaluating Optimizations for a High-Level Language
Leonardo Kaplan
lkaplan@inf.puc-rio.br

PUC-Rio
Brazil

Roberto Ierusalimschy
roberto@inf.puc-rio.br

PUC-Rio
Brazil

ABSTRACT
Pallene aims to be a system language counterpart for Lua, with
similar syntax but ahead-of-time compilation. It also has optional
typing and stricter semantics, allowing it to emit C code with un-
boxed values, which enable several optimizations in the C compiler.
Assuming that, the current Pallene compiler does not implement
most classic optimizations. However, the C compiler cannot per-
form all the expected optimizations due to the difference in the
level of abstraction between Pallene and C. In this work, we studied
several scenarios where the C compiler couldn’t perform those
expected optimizations trying to understand why and implemented
them in the Pallene compiler, which has higher-level understand-
ing of the language. Among the implemented optimizations are
function inlining and scalar replacement of aggregates, achieving
results that bring evidence that higher level optimizations cannot
be done in the lower level compiler.

CCS CONCEPTS
• Software and its engineering→ Dynamic compilers.
ACM Reference Format:
Leonardo Kaplan and Roberto Ierusalimschy. 2021. Evaluating Optimiza-
tions for a High-Level Language. In 25th Brazilian Symposium on Program-
ming Languages (SBLP’21), September 27-October 1, 2021, Joinville, Brazil.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3475061.
3475088

1 INTRODUCTION
Dynamic languages provide flexibility and simplicity in exchange
for less compile-time information, leading to slower run times.
While we can reduce the performance impact of using dynamic
languages with scripting, JITs or optional typing [9], neither solu-
tion is perfect: Scripting may require extensive rewrites and the
API may introduce overhead. JITs’ implementations are usually
complex and non-portable and with unpredictable performance
killers. Optional typing doesn’t have a tradition of being used for
optimization.

This problemwas explored in the context of PHP[1] and Java[13],
with approaches similar to the ones described in this work.

Addressing this problem in the Lua context, the Pallene program-
ming language [8] appears as an alternative. Characterized as a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBLP’21, September 27-October 1, 2021, Joinville, Brazil
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9062-0/21/09. . . $15.00
https://doi.org/10.1145/3475061.3475088

companion language for Lua, it combines the scripting approach
with optional typing to create a language that acts as a system
language while sharing the run-time with its dynamic counter-
part. The type system provides run-time checks for data coming
from Lua to Pallene and static checks on the other direction. The
shared run-time in the place of an API significantly reduces the
data communication overhead.

The Pallene compiler generates C code from Pallene code. A con-
ventional C compiler then compiles the C code into a library, which
can then be loaded by the Lua interpreter. The loaded code interacts
directly with the Lua world, without the need of the standard Lua
API.

Pallene can generate efficient C code because of its type sys-
tem. Pallene’s type system gives the compiler enough information
to represent values unboxed, so we can emit more efficient code.
Moreover, Pallene uses run-time checks to determine whether a
value coming from Lua is well-typed (in respect to its annotations)
or whether it is a run-time error. Besides that, Pallene also forbids
almost all of Lua’s dynamic behaviors, such as monkey patching,
polymorphic functions, and metamethods. These guarantees en-
ables the generation of code specialized for its types.

Because the Pallene compiler generates C, it doesn’t need to im-
plement classic compiler optimizations. Conventional C compilers
usually implement a wide range of optimizations that can or cannot
be applied depending on code to be compiled. With unboxed values
and with the before-mentioned stricter semantics, the code emitted
by Pallene usually can take for granted the already implemented
optimizations in the C compiler.

While delegating all optimizations to the lower level compiler
would be the ideal case, it isn’t always possible: Pallene and C
operate at different levels of abstraction, and as a result, simple
Pallene operations end up appearing to C as unpredictable side-
effects.

The difference of abstraction level makes some optimizations
impossible or at least makes their implementation impractical. An
example is to fold constants while trying to account for Lua’s emer-
gency garbage collector’s behavior: The collector acts when mem-
ory allocation fails, doing a full collection cycle to then retry the
failed allocation. For Pallene, these emergency calls are invisible,
while for C, each can be seen as a complete state change.

In this work, we will analyze possible opportunities for optimiza-
tions in the Pallene compiler. These opportunities will be extracted
from our study on the current state of the compilation pipeline
(from Pallene code to C and then object code). We will then pro-
pose some optimizations, describe their implementations and their
results. Achieving significant results is an evidence that there are
optimizations that should be done at the Pallene compiler. We be-
lieve that this result can be generalized for systems that compile
from a higher level language to a lower level.

https://doi.org/10.1145/3475061.3475088
https://doi.org/10.1145/3475061.3475088
https://doi.org/10.1145/3475061.3475088

SBLP’21, September 27-October 1, 2021, Joinville, Brazil Leonardo Kaplan and Roberto Ierusalimschy

2 THE DESIGN OF PALLENE
The main goal of Pallene is to be seamlessly interoperable with Lua
while being predictably efficient with a simple, portable implemen-
tation.

Pallene is a statically typed subset of Lua. It guarantees that in
removing the type annotations, one always end up with a valid
Lua program with the same semantics. We can see an example of
the type annotations on Listing 1 and 2. All parameters and return
values must be explicitly typed, but the type annotations for local
variables with constant values can be omitted, as we see in line 3
of the mentioned code.

Pallene is a compiled ahead-of-time system language. A system
language is the counterpart of the application language in a script-
ing system. While the application language is built for flexibility
and ease of use, the system language is designed to achieve greater
performance. The system language usually achieves greater perfor-
mance than the application language by operating in a lower level
of abstraction than its counterpart.

Other system languages need to use the Lua-C API to interact
with Lua, while Pallene can directly manipulate Lua’s values. The
API exists to provide some guarantees about invariants of Lua’s
data structures, but the Pallene compiler has all the necessary in-
formation on Lua’s internal data structures, so it can manipulate
them directly and safely, effectively using Lua’s runtime. In fact,
Pallene creates all of its data structures inside Lua’s runtime, which
allows them to be tracked by Lua’s garbage collector.

The Pallene compiler emits C code. The emitted code uses the
same implementation tradition that Lua uses, aiming to be as
portable as Lua. The C code can be compiled to a module with
any conventional C compiler. After a Pallene module is compiled,
it can be required and used in Lua as a regular C module. The
code that the Pallene compiler emits, being C, can take for granted
several optimizations that most modern C compilers implement.
One effect of this is that the Pallene compiler itself doesn’t need to
implement traditional optimizations.

1 function foo (N : integer) : integer

2 l o ca l a : integer = 10
3 l o ca l b = 20
4 return N + a + b
5 end

Listing 1: Example of a Pallene program that receives an in-
teger, add it to constants and returns the result

1 function foo (N)
2 l o ca l a = 10
3 l o ca l b = 20
4 return N + a + b
5 end

Listing 2: Example of a Lua program that receives an integer,
add it to constants and returns the result

3 OPTIMIZATIONS DURING C COMPILATION
Because Pallene’s design leaves most of the optimizations for the
lower level compiler, our work on optimizing the Pallene compiler
starts with defining a baseline of what a C compiler can or cannot
optimize. One way of doing this is to compile samples of C code to
assembly and check which optimizations were performed.

In this study, we used the GCC compiler, version 9.3.0. We used
the O2 optimization mode to generate an assembly with commen-
taries.

We aggregated some Pallene code samples and examined the
assembly of each. We compiled each sample to C using the Pallene
compiler and then to assembly using the C compiler. In Listing 3
we can examine an example of Pallene code that does some basic
arithmetic and assignment.

1 function f () : i n t e g e r
2 l o ca l x = 43
3 l o ca l y = 71
4 l o ca l z = x
5 return z + y
6 end

Listing 3: An example of sum of constants and assignments
in Pallene

When we compile Listing 3 to C, the code remains mostly equal,
as expected. The C compiler, on the other hand, transforms the
function call into a single constant, 114. This optimization, called
constant folding [11] or constant propagation [14], substitutes vari-
ables with their values, when the values can be known in compile
time. The C compiler can perform this optimization on normal C
integers [5]. Because of that, it can also optimize Pallene’s local
integers, which are emitted as simple unboxed C integers.

The C compiler can fold heap values as well. In Listing 4, we
changed the local variable x to be an array, modifying lines 2 and
4 accordingly. The C compiler still can fold the whole function
call into a constant. Even with the array being created in Lua’s
runtime, it is still visible to the C compiler as a conventional array.
Since the first value of the array doesn’t change, it can perform
the scalar replacement of aggregates optimization [10] (controlled
by the flags fipa−sra and ftree −sra, for local and interprocedural
scopes, respectively). This optimization transforms components
of an aggregate (an array, for instance) into scalar variables (local
integers, in this case), effectively making the programs in Listings
3 and 4 the same.

1 function f () : i n t e g e r
2 l o ca l x : {integer} = {43}
3 l o ca l y = 71
4 l o ca l z = x[1]
5 return z + y
6 end

Listing 4: Sum of heap constants in Pallene

Evaluating Optimizations for a High-Level Language SBLP’21, September 27-October 1, 2021, Joinville, Brazil

1 function f () : i n t e g e r
2 l o ca l x : { i n t e g e r } = { 4 3 }
3 l o ca l y = 71
4 local s = ’a’..’b’
5 l o ca l z = x [1]
6 return z + y
7 end

Listing 5: Sum of heap constants in Pallene with string con-
catenation

Although the C compiler can fold both stack and heap values,
there are still cases in which it can’t fold properly. By inserting a
string concatenation after line 3 in the code 4 (resulting in Listing 5),
we can disable the before-mentioned optimization. To the Pallene
user, this code shouldn’t have any interference with the rest of
the function, still it makes his code slower. The existence of code
patterns that surprisingly worsen performance goes against the
design goal of Pallene of having predictable efficiency.

The transference of control to Lua disabled the optimization.
String concatenation in Pallene is one of the built-in functions that
transfer the control to Lua. At the C compiler level, this transference
of control makes some of the tracked information to be invalidated.
In particular, it loses the guarantee that the array hasn’t changed.
We as Pallene users can know that because of the semantics of the
concatenation operator, which doesn’t have any side-effect that
could change the array, but this knowledge is too abstract for the
C compiler.

The particular problem described for Listing 5 can be solved
using the scalar replacement of aggregates (SRA) optimization [2]
at the Pallene compiler. The optimization aims to substitute ar-
rays accesses for their respective values when possible, possibly
eliminating the whole array if its uses were all replaced. We could
replace the x[1] for its value, 43, making it possible to eliminate its
creation. This makes the runtime of the program to be similar with
the one described in Listing 3.

It is easy do determine the scalar equivalent of the index because
the array creation was in context. When the array is received as a
parameter, it becomes significantly harder to infer its values. One
form of having both the array creation and its uses in the same
context is by inlining the function calls. At the same time, this
strategy only works when the functions are all written in Pallene
(not in Lua), in special the function that creates the array. This
kind of situation, in which inlining enables other optimizations
became a motivation for the implementation of function inline at
the higher level compiler. At the same time, the optimization itself
can be useful for providing inlining where the lower level compiler
can’t detect its possibility.

If we examine the generated C code for Listing 5, we will find
several function calls that weren’t present in the Pallene program.
They perform checks that are simply invisible for the higher ab-
straction level. In particular, there is the array normalization check,
that verifies if a given array has a given size. Since checking for an
index gives us the guarantee that the array has at least the index
size, we can propose an optimization (array renormalization): We

can detect the upper-bound of these sizes to be checked, reducing
the total amount of checks, only checking for the upper bounds.

In order to evaluate these three proposed optimizations, SRA,
function inline and the reduction in array normalization checks, we
compiled the Pallene code of some benchmarks to C and applied
the optimizations by hand in each one, as the compiler would omit
them. Verifying that they had significant impact, we proceeded to
their proper implementation.

The array renormalization and the SRA optimizations require
context information to be performed. Both need escape analysis[3],
while SRA also needs some alias analysis to track the aggregates’
fields and renormalize needs range analysis to determine the upper
bounds for each array size-check. We opted to gather this informa-
tion with the use of abstract interpretation.

Abstract Interpretation is a form of gathering information of the
code. The information that can be gathered usually revolves around
the range of possible values that each variable may have in each
point of the program. In particular, we can analyse whether this
range of values can be known or whether this range has only one
possible value. This information can then be used to produce reports
(such as warnings or errors) and to allow compiler transformations,
as in our case.

We could obtain precise information of the variables’ possible
values by interpreting the code concretely. The problem with this
approach is that it is not computable, this follows from Rice’s theo-
rem [12]. At the same time, with abstract interpretation[4], we can
be sure that the interpretation will converge. It can provide this
guarantee by giving less precise information on the result. We can
do that by admitting a wider range of possibilities for a result.

It is important to note that our implementation of abstract in-
terpretation always follows the same order when traversing the
program representation, for example, in a if statement, it always
checks the condition, then the if branch and lastly the else branch.
This order is particularly useful for identifying each program point.
This indexing allow us to represent the states of the program tree
as an array. Throughout our discussion of the algorithms’ imple-
mentation, we will be using this order to describe some of our
procedures.

4 EVALUATING THE IMPLEMENTATIONS
To measure the impact of each optimization, we made a set of
benchmarks based on the ones used in other works involving Pal-
lene [6][8][7]. We described each briefly. All benchmarks receive
parameters. We adjusted these parameters to make sure that the
run time would take significant time. This way, we reduce the noise
on the final result. We used one second of run time as a minimum,
but some benchmarks would take several seconds to run even with
the smallest inputs.

We measured the running time of these benchmarks on a laptop
computer with a 1.60 GHz Intel Core i5-10210 processor and 8
GB of RAM, running Ubuntu Linux 20.04. The interpreters and
compilers used were: 5.3.3 for the reference Lua interpreter and
2.1.0-beta3 for LuaJIT. The C compiler used was GCC 9.3, using the
O2 optimization mode. Each benchmark was run 10 times using the
perf program. We used perf not only to account for the standard
deviation but also to make sure that no performance counters were

SBLP’21, September 27-October 1, 2021, Joinville, Brazil Leonardo Kaplan and Roberto Ierusalimschy

abnormal. The results are presented with average time for each
benchmark. We calculate gain with the difference between average
runtime divided by the control time.

The selected benchmarks were the following:
(1) binarytrees: it receives a positive integer 𝑁 and builds a

binary tree of height 𝑁 , forming 2(𝑁+1) − 1 nodes (using ar-
rays). Then, a second loop recreates and rechecks recursively
the tree, for sequential heights, up to 𝑁 .

(2) record-binarytrees: it is similar to the binarytrees bench-
mark, but represent the tree nodes as records with two fields,
instead of arrays.

(3) binsearch: it performs a simple binary search in a sequential
array with the size passed as a parameter.

(4) centroid: it creates 𝑁 points and finds the centroid between
them.

(5) record-centroid: it is similar to the centroid benchmark.
However each body is represented with a record with two
fields (representing its two-dimensional position) instead of
using an array with two slots.

(6) conway: simulates the Conway’s game of life in a 40 by 80
grid, for a given number of steps.

(7) fannkuch-redux: given a positive integer 𝑁 , it builds a
sequential array of 1 to 𝑁 . Then, for each of the 𝑁 ! permu-
tions, it does a procedure in which the elements of the vector
are swapped in position until the first position contains the
number 1.

(8) fasta: it calculates the similarity between strings represent-
ing DNA sequences.

(9) mandelbrot: it generates the mandelbrot set of a given in-
teger, 𝑁 , outputing an image in the netpbm format.

(10) objmandelbrot: it is similar to the mandelbrot benchmark
but uses arrays instead of pairs of integers.

(11) record-objmandelbrot: it computes the same as the obj-
mandelbrot benchmark but represents the points as a record
with two fields, instead of an array.

(12) matmul: it multiplies a 𝑁 × 𝑁 matrix with itself a number
of times.

(13) nbody: it computes the solution to the n-body problem. The
problem consists of finding the trajectories of astronomical
bodies with enough gravity between them to alter the routes.
It simulates five bodies for a given number of steps.

(14) record-nbody: it similar to nbody, but uses records insteads
of arrays to represent the positions and velocities.

(15) queen: computes the solution to the N-queens problem, in
which we try to place the maximum number of chess queens
safely in a 𝑁 × 𝑁 board, with 𝑁 being a given input.

(16) sieve: it computes the sieve of Eratosthenes for a given pos-
itive integer 𝑁 , calculating all the prime numbers up to 𝑁 .

(17) spectralnorm: it calculates the spectral norm of a 𝑁 × 𝑁

square matrix for a given 𝑁 .

5 IMPLEMENTATION AND RESULTS
5.1 Function Inlining
Function inlining is the process of copying a function body in its
calls, adjusting its variables, control flow and side-effects accord-
ingly. The most direct effect of this optimization is to reduce the

overhead of calling a function. It also simplifies the call graph, which
helps the C compiler to optimize the code further on, specially in
the cases that it can’t determine whether a Pallene function can
be inlined. A very interesting result of this optimization is that the
transformed code can have significant more optimization opportu-
nities than that the code before having its function calls inlined.

It is important to keep in mind that we cannot delete the original
functions, even if all of their calls were inlined. Pallene functions
should be available for Lua to call.

This optimization can be useful in two directions: from the point
of view of the caller function and from the point of view of the
callee function. From the point of view of the caller, function calls
can hinder possible optimizations, so removing them can help the
optimizer. On the other side, from the point of view of the callee,
many optimizations could be performed with more knowledge
of its parameters. When we substitute the call for the body, we
can possibly make this information available to the pasted body.
Note that this doesn’t optimize the function itself, but can provide
optimizations for its inlined body.

A drawback of this optimization is that it increases the size of
the resulting C code, since it basically duplicates code. This could
introduce overheads associated with instruction fetching. However,
we have verified that in many cases, C modules with and without
the function inline optimization applied would produce assemblies
with similar sizes. This is an evidence that this overhead doesn’t
bring much impact.

Our algorithm has two main steps: forming a call graph of the
functions of a module and substituting calls with the corresponding
function bodies. Even though we talked about abstract interpreta-
tion earlier, our implementation for this optimization does not use
it.

In the first step, we build an acyclic call graph. The call graph is a
potentially cyclic graph in which the nodes are functions and edges
are function calls. We detect the cycles using a simple depth-first
search, and whenwe find a cycle, we break it by order of appearance
in the module. That is, if a function A is declared before B and they
both call each other, there will be a dependency from B to A, but
not on the other way around. The resulting graph is then acyclic.

We then start to inline the calls from the sinks to the sources.
Inside a node from a call graph (a function body), we select the
calls to be inlined in the order of appearance. One last considera-
tion is when the function call appears inside a more complicated
expression. This isn’t really an issue, because of the internal rep-
resentation of the language, which already extracts calls inside
expressions into local variables.

For recursive functions, we just inline the first level of recursion.
The subsequent calls are left as function calls and marked as non-
inlinable.

A considerable part of the algorithm is on adjusting the inner
variables, parameters and returns to not conflict with the caller
function.

Another situation to consider is when a return command is
present inside a loop, and more specifically, a nested loop. If a re-
turn value is found in the code, we simply replace the values it is
returning for the appropriate local variables. This is simple, even
considering the multiple returns that Lua and Pallene implement.

Evaluating Optimizations for a High-Level Language SBLP’21, September 27-October 1, 2021, Joinville, Brazil

Benchmark Control
run time
avg. (sec)

Number
of calls
inlined

Difference
in run time
(%)

binarytrees 3.63 6 18.18
recordbinarytrees 4.86 6 12.14
binsearch 4.82 1 2.07
centroid 1.51 0 0
recordcentroid 2.20 0 0
conway 4.80 6 12.08
fannkuchredux 4.82 0 0
fasta 2.87 3 9.06
mandelbrot 7.77 0 0
matmul 9.67 0 0
nbody 3.35 1 4.18
recordnbody 8.30 1 4.10
objmandelbrot 9.83 6 6.00
recordobjmandelbrot 14.09 6 6.03
queen 2.30 3 9.13
sieve 28.94 0 0
spectralnorm 27.19 4 8.02

Table 1: Performance gains of performing the function-
inlining optimization

When the return is found inside a loop, we must add a break com-
mand, in order to maintain the same semantics for control flow.
However, break just breaks the first enclosing loop. If there are
nested loops, we would have to add control variables and condi-
tions to properly make this transformation. Another option was to
introduce goto to the language, breaking its control flow structure
and making other transformations harder or even impossible. We
then opted on implementing a simple version of named scopes,
referencing each scope with a name and breaking the flow to a
given reference. Given these labels, it is easier to transform these
situations. This was implemented using annotations on the inter-
nal representation. These annotations are introduced, used and
removed inside the function-inline module, making them invisible
to the rest of the compiler.

After all possible function calls of a module are finished be-
ing inlined, a last step of normalization for the whole module is
performed, specially to guarantee that all variables identifiers are
pointing to their corresponding information (name, type and debug
information) in the function’s variable information array.

For most cases, the optimization wasn’t applied or hadn’t signifi-
cant results (less than 5%). But for the binarytrees, record-binarytrees
and conway, it showed results between 12% and 18%. In these cases,
the inlined function were called repeatedly (exponentially to the
input) and the inlined function body were quite small, with a few
expressions. Fasta, queen and spectralnorm yielded results close to
10%. In these cases, the inlined functions were also small and called
repeatedly, but linearly. We can see all results on Table 1.

5.2 Scalar replacement of arrays
Handling memory is one of the most costly operations in Pallene:
Not only the path to the RAM takes more time than the path to
processor’s caches, it can’t be easily optimized by the C compiler.

Since the main purpose of Pallene is to serve as a system coun-
terpart to Lua, we can assume that using arrays (or records) to
handle groups of data is a common pattern. The optimization is
to replace an N-sized array with N simple variables whenever it is
possible. Another way of seeing it is to replace the array accesses
for its respective values. This could enable some aggressive C-level
optimizations. It is recommended that this optimization is done
after function inlining, as described beforehand.

Given a Pallenemodule, we run the optimization in each function,
by definition order. If the optimization can be safely applied, we
can transform the code. The algorithm for a given function has 3
main steps:

(1) Firstly, for each array access, make sure that it can be trans-
formed into a known value. We gather this information
by abstractly interpreting the function with the abstract
domain {constant , localvar , undefined, unknown}, with
undefined meaning that no information could be determined
(for example, whether the arraywas a parameter) and unknown
meaning that the value could have multiple possible values
and we can’t determine which it would have at a said point.
The localvar value indicates that the position value was
assigned from a local variable. The abstract interpretation
yields an array of states, one for each node of the command
tree. Each state is formed by a mapping between variable
names to their abstract values.

(2) Then, for each array access, make sure that the value hasn’t
escaped since the last known value. We also gather this infor-
mation with abstract interpretation, using a simple boolean
abstract domain, indicating that it has or hasn’t possibly
escaped. Similarly to the last step, it yields an array of states,
each state containing a map of the variables to the boolean
value corresponding whether it has escaped (defaults to false,
hasn’t escaped). We consider function calls and returns as
escape points. We implemented this step alongside with the
last one, so that the code is only interpreted once, but they
are independent steps.

(3) For each array access, we check whether it has a known con-
stant or local variable value and whether it hasn’t possibly
escaped. If both are true, we create the corresponding local
variables and replace the array access.

(4) After all the replacing has been done, we check whether all
of the array’s accesses were transformed and whether the
array hasn’t possibly escaped (in this context, escaping is
more concernedwith other functions using it thanmodifying
it). If both are true, we can eliminate the array creation and
associated calls.

The main limitation in our implementation is that it only deals
with arrays for now, but it should be simple to adapt it to also
work with records. The escape analysis will stop any optimization
if there is a function call between the last write and posterior reads.
With a previous function inlining pass this limitation is mitigated.
It only handles cases in which it has access to the array creation. It
doesn’t treat arrays that came as arguments or upvalues, but with
a function inlining pass, this is also mitigated (at least with arrays
created in Pallene).

SBLP’21, September 27-October 1, 2021, Joinville, Brazil Leonardo Kaplan and Roberto Ierusalimschy

Benchmark Control
run time
avg. (sec)

Number
of array
accesses
replaced

Difference
in run time
(%)

binarytrees 2.98 3 5.34
recordbinarytrees 4.28 0 0
binsearch 4.72 0 0
centroid 1.51 3 19.64
recordcentroid 2.20 0 0
conway 4.22 3 13.46
fannkuchredux 4.82 0 0
fasta 2.61 0 0
mandelbrot 7.77 0 0
matmul 9.67 1 15.10
nbody 3.22 21 12.46
recordnbody 7.97 0 0
objmandelbrot 9.24 5 55.41
recordobjmandelbrot 13.24 0 0
queen 2.09 0 0
sieve 28.94 0 13.51
spectralnorm 25.01 2 36.43

Table 2: Performance gains of performing the scalar replace-
ment of aggregates optimization

We applied the optimization on programs with function inline
already performed. The results discussed follow this and consider
the function inline results as the control. We opted to benchmark
this optimization on the result of the function inline because it
enables many opportunities for optimizations. Also, this is the
behavior that the compiler would execute.

This optimization has shown results in the range of 15% to 30%
of reduction in total run-time, as we can see in Table 2.

It is interesting to note that the number of times that the optimiza-
tion was performed did not directly correlate with the performance
gains. This happens because the substitutions could be inside a loop
or in frequently called functions. We can also see that the bench-
marks that instantiate memory frequently for short uses (matmul,
nbody and objmandelbrot) had the most impact, as expected from
this optimization.

An interesting note of this optimization is how the results dif-
fered from the hand-optimized version to the implementation ver-
sion. When we hand-optimized the code by modifying the emitted
C, we would find results comparable to LuaJIT. For example, mat-
mul would face a 55% reduction in run-time. When we implemented
the algorithm, we found that in many cases the information that
we thought that could be calculated in compile-time wasn’t actu-
ally available, or at least our implementation couldn’t handle such
cases. An example of this is matmul, in which our optimizer only
performed in 1 out of the 10 "possible" cases. LuaJIT can optimize
these cases since it does its analysis in runtime, calculating the
traces alongside the interpretation.

5.3 Renormalize
Lua implements its tables with two parts: an array part for integer
indexes and a hash part for other key types. The array part can

be internally resized if necessary. Since Pallene shares its data
structures with Lua, Pallene must implement this mutation as well.

When accessing an array in Pallene, it is important to be sure
that the accessed index is properly allocated. If it isn’t, then the
array is grown to fit it. Growing an array to a large size can be a
quite costly operation, but more importantly, it can disable some
C-level optimizations, since the C compiler can’t guess when the
growth will be performed.

We aim to reduce its occurrences by unifying, hoisting or deleting
renormalize calls: We can unify two renormalize calls to the same
array by only calling the renormalize to the larger index between
the two; We can hoist a renormalize out of a loop if the accessed
index is constant or is the loop variable (or the loop limit); We
can delete a renormalize call if we know for sure that the array is
already normalized, for example after its creation.

Of course, it isn’t always safe to perform these optimizations.
If there was a write or an escape (function call, in this context)
between two renormalizes (or the same if it is inside a loop), we
mark the case as unsafe and ignore it.

Before starting implementing the algorithm, it was necessary
to decouple the renormalize operation from the array operations.
Arrays had commands relative to creating them, setting their values
and accessing their values. The renormalize operation was only
emitted at the last step of the compilation process, whenever the
array would be used. To the compiler, this operation was basically
non-existent. In order to be able to modify the emission of renormal-
izes, we introduced a new command in the internal representation,
NormalizeArr(arr , idx), and made the appropriate modifications
when parsing the abstract syntax tree and when emitting the final
C code.

Our algorithm then is straightforward: we collect the information
for every NormalizeArr in the internal representation and apply the
transformations if it matches one of the appropriate transformation
cases.

(1) Firstly, for each NormalizeArr command, we calculate the
possible range that the indexes (the second parameter) can
have for each array (the first parameter). We do that with the
use of an abstract interpretation using the abstract domain
of integer ranges. While it is usual to represent each range as
two integer values, the upper and the lower bound, we only
need to find the maximum between values. For this reason,
our abstract domain was the set of { unknown, undefined,
localvar, upperbound}, with unknown meaning that a single
upper bound couldn’t be determined and undefined meaning
that no information on the position could be retrieved. The
localvar abstract value means that the upper bound for a
given index is equivalent to the value of a local variable.
This is particularly useful for hoisting, for example when
the array is indexed with the for-loop variable. For each
program point, the state is defined as a mapping between
arrays to its possible indexes and a mapping between these
indexes and their respective abstract values. The state also
has information on the range of values of each local variable
that is an integer.

(2) Then, also using abstract interpretation, we calculate which
arrays have possibly escaped throughout the function body.

Evaluating Optimizations for a High-Level Language SBLP’21, September 27-October 1, 2021, Joinville, Brazil

Possibilities of escape in this context are function calls (that
could use the array as an upvalue) and returns.

(3) Finally, for each NormalizeArr we see if one of the following
rules apply and transform it accordingly:

(a) If the upper-bound of a NormalizeArr index can be deter-
mined, there was a previous NormalizeArr with a greater
upper-bound and there wasn’t any escape between them,
it is safe to remove it.

(b) If the upper-bound of a NormalizeArr index can be deter-
mined, there was a previous NormalizeArr with a smaller
upper-bound and there wasn’t any escape between them,
it is safe to replace the latter for the former and deleting
the smallest in the process.

(c) If the upper-bound of a NormalizeArr index can be deter-
mined inside a loop (and the value didn’t escape in any
path of the loop), we can safely hoist it. In the case of the
for loop, if the index can’t be deemed constant, but its
value is a variable, we can verify if it is the loop variable
or the loop limit. In either cases we can safely hoist it re-
placing the index with the loop limit (even if it is another
variable). This step works properly for nested fors.

As with scalar replacement of aggregates, we present the results
over the benchmarks with function inline already applied.

We can see in Table 3 that we achieved results ranging from
5% to 23%. In particular, the benchmarks that heavily use arrays
(and arrays of arrays), such as conway or nbody were particularly
benefited from this optimization. Note the second and third column
of the table. We counted first the unifications and then the hoistings.
For example, if a for loop had 4 calls inside it and they all got unified
into a single one and then hoisted, we would count 3 unifications
(since it left one call) and 1 hoisting. At the same time, if there was
a call inside nested loops and it was the case in which it was hoisted
from both loops subsequently, we would only count as 2 hoistings,
even though that the effect could be quadratic.

6 CONCLUSION
Pallene is a language created to be the system language counterpart
for scripting using Lua as the application language. Pallene is a
typed subset of Lua, making it convenient for the usual Lua pro-
grammer. The semantics of Pallene guarantees that every Pallene
source code without its type annotations is semantically equivalent
to the resulting Lua code. The Pallene compiler emits C that once
compiled to a library can be required from Lua as any other C
module.

Pallene can achieve better performance by emitting C code spe-
cialized for the type declarations. Pallene uses its type annotations
to emit a C code with unboxed values, which can be more easily
tracked by the C compiler in comparison with boxed values that
dynamic languages commonly use. Pallene is a subset of Lua be-
cause it doesn’t accept the some of the dynamic behaviors present
in Lua, such as meta-programming features. By guaranteeing the
absence of these behaviors, the Pallene compiler can emit C code
with a simpler control-flow graph.

The resulting C has unboxed local variables and a simple control
flow graph. These characteristics, associated with the knowledge of

Benchmark Control
run
time
avg.
(sec)

Number
of calls
uni-
fied

Number
of
calls
hoisted

Difference
in run
time
(%)

binarytrees 2.98 5 0 5.23
recordbinarytrees 4.28 1 0 0.91
binsearch 4.72 0 1 4.88
centroid 1.51 3 1 8.87
recordcentroid 2.20 0 0 0
conway 4.22 16 22 23.34
fannkuchredux 4.82 10 6 15.18
fasta 2.61 5 3 17.27
mandelbrot 7.77 0 0 0
matmul 9.67 3 6 8.22
nbody 3.22 60 6 20.19
recordnbody 7.97 0 3 6.94
objmandelbrot 9.24 10 0 7.4
recordobjmandelbrot 13.24 0 0 0
queen 2.09 0 3 6.9
sieve 28.94 0 5 8.98
spectralnorm 25.01 1 6 7.8

Table 3: Performance gains of performing the removal of
renormalizes optimization

Lua’s internal data structures allow the C compiler to generate effi-
cient library modules. The access to Lua’s internal data structures
allows Pallene to interact safely with the Lua context without the
need of using the C API, which usually introduces heavy overhead.
The C compiler can apply its optimizations more comfortably with
a source code that has a simpler control flow graph and values that
can be tracked at the C level of abstraction. It would be signifi-
cantly harder to do that with boxed values and the dynamic and
unpredictable behavior that dynamic languages usually implement.

The Pallene compiler doesn’t need to implement some optimiza-
tions because it can take for granted the optimizations already
implemented by the C compiler. But, as we have discussed, it is not
always the case that these optimizations can be performed in the
C compiler. As Pallene works at a higher abstraction level than C,
some of the semantics of Pallene isn’t available for the C compiler
to consider when optimizing the code. This lack of information can
manifest in situations where an operation that has no side-effects
for Pallene is seen by C as a function with unpredictable side effects.

In this work we argue that there are cases in which these op-
timizations that can’t be performed by the C compiler can be im-
plemented in the Pallene compiler. To support this argument, we
found some opportunities of these optimizations, evaluate their
possible performance impact by implementing them by hand and
once validated, we implemented them in the Pallene compiler.

We found the possible optimizations by selecting several samples
of Pallene code to examine the emitted C of each sample and their
respective assemblies.

We described two of the opportunities of optimization: Replac-
ing arrays for their scalar components, which can’t be properly
delegated to the C compiler and removing unnecessary calls that

SBLP’21, September 27-October 1, 2021, Joinville, Brazil Leonardo Kaplan and Roberto Ierusalimschy

Benchmark Control
run
time
avg.
(sec)

Run time
avg. with op-
timizations
(sec)

Difference
in run
time (%)

binarytrees 3.63 3.49 3.90
recordbinarytrees 4.86 3.11 36.01
binsearch 4.82 4.63 3.86
centroid 1.51 1.15 23.53
recordcentroid 2.20 1.55 29.76
conway 4.80 2.43 49.41
fannkuchredux 4.82 2.72 43.55
fasta 2.87 2.43 15.19
mandelbrot 7.77 7.55 2.85
matmul 9.67 3.76 61.16
nbody 3.35 1.28 61.85
recordnbody 8.30 4.77 42.58
objmandelbrot 9.83 3.67 62.62
recordobjmandelbrot 14.09 10.25 27.28
queen 2.30 2.11 8.17
sieve 28.94 13.38 53.78
spectralnorm 27.19 12.14 55.37

Table 4: Performance gains of performing all the optimiza-
tions

exist only in C but are invisible to the Pallene user, such as array’s
renormalizations.

For each opportunity, we proposed a compiler change and demon-
strated its possible gains by reproducing its effects by hand in the
emitted C code. Once we checked the effectiveness of each trans-
formation, we implemented the optimizations in the compiler.

We firstly implemented function inlining, since it could enable
other optimizations at both Pallene and C level. Parameters doesn’t
have asmuch information as local variables, especially when talking
about range analysis, one of the techniques that would be most
used by the other optimizations. On the other hand, a function
call can disable several optimizations; by writing over upvalues, it
could change the caller’s local state. Moreover, inlining function
calls could give the C compiler more context to enable more of
its optimizations. In fact, with only the inliner, we have seen a
reduction of run time between 9% to 18% .

We then implemented scalar replacement of aggregates. It changes
an array for its components, in the form of local variables. Imple-
menting this optimization in the Pallene compiler cover the cases
that the C compiler couldn’t optimize. In the cases where the C
compiler could fold aggregates it would still create, use and perform
the associated runtime verifications, even without using its values,
but with this optimization, these operations aren’t emitted. Some
of the benchmarks benefited from this optimization, with run time
reductions varying between 13% to 55%.

The next optimization implemented was the reductions in renor-
malize calls. A certain property of the renormalize function allows
us to eliminate some of the calls given the presence of others, based

on its arguments. By collecting information on the range of the
arguments, we could reduce the number of calls, reducing the run
time of the benchmarks within 5% to 23%.

In order to evaluate all the optimization jointly, we applied the
optimizations in the following order: Firstly we applied function
inlining, since it would enable several cases for the other optimiza-
tions; Then we applied scalar replacement of aggregates. During
SRA, we assumed that every array access is properly protected,
since the renormalize reduction would remove unecessary guards
to improve performance, it could disable some cases of scalar re-
placement; Thenwe applied the renormalize reduction optimization.
We can see these results for all the optimizations applied in Table 4.

In this work we have argued that compilers that translate a
higher-abstraction level language into C can’t exempt themselves
of implementing optimizations. While the C compiler can optimize
several situations, the difference of abstraction level can impede
some of the optimizations. Using the information available only
at the level of Pallene, we implemented optimizations in the Pal-
lene compiler that would be impossible to be performed by the C
compiler. We have shown that the compiler modifications yielded
significant results, which indicates that the principle of produc-
ing more specialized code based on the higher level context can
generate useful optimizations.

REFERENCES
[1] Paul Biggar, Edsko de Vries, and David Gregg. 2009. A Practical Solution for

Scripting Language Compilers. In Proceedings of the 2009 ACM Symposium on
Applied Computing (Honolulu, Hawaii) (SAC ’09). Association for Computing
Machinery, New York, NY, USA, 1916–1923. https://doi.org/10.1145/
1529282.1529709

[2] Steve Carr and Ken Kennedy. 1994. Scalar replacement in the presence of condi-
tional control flow. Software: Practice and Experience 24, 1 (1994), 51–77.

[3] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C Sreedhar, and
Sam Midkiff. 1999. Escape analysis for Java. Acm Sigplan Notices 34, 10 (1999),
1–19.

[4] P. Cousot and R. Cousot. 1977. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM Press, New York, NY, Los Angeles,
California, 238–252.

[5] GCC. 2021. Options That Control Optimization. https://gcc.gnu.org/
onlinedocs/gcc/Optimize-Options.html

[6] Hugo Musso Gualandi. 2020. The Pallene Programming Language. Ph.D. Disserta-
tion. Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio).

[7] Hugo Musso Gualandi and Roberto Ierusalimschy. 2018. Pallene: a statically
typed companion language for lua. In Proceedings of the XXII Brazilian Symposium
on Programming Languages, SBLP 2018, Sao Carlos, Brazil, September 20-21, 2018,
Carlos Camarão and Martin Sulzmann (Eds.). ACM, 19–26. https://doi.
org/10.1145/3264637.3264640

[8] Hugo Musso Gualandi and Roberto Ierusalimschy. 2020. Pallene: A companion
language for Lua. Science of Computer Programming (2020), 102393.

[9] Roberto Ierusalimschy. 2008. Lua performance tips. Last update: Wed Apr 27 09:
04: 45 BST 2016 (build 83) (2008), 15.

[10] Martin Jambor. 2010. The new intraprocedural Scalar Replacement of Aggregates.
GCC Summit (2010).

[11] Steven S.Muchnick. 1998. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[12] H. G. Rice. 1953. Classes of Recursively Enumerable Sets and Their Decision
Problems. Trans. Amer. Math. Soc. 74, 2 (1953), 358–366. http://www.jstor.
org/stable/1990888

[13] Lukas Stadler, Thomas Würthinger, and H. Mössenböck. 2014. Partial Escape
Analysis and Scalar Replacement for Java. In CGO ’14.

[14] Mark Wegman and Kenneth Zadeck. 1985. Constant Propagation with Condi-
tional Branches. 291–299. https://doi.org/10.1145/318593.318659

https://doi.org/10.1145/1529282.1529709
https://doi.org/10.1145/1529282.1529709
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://doi.org/10.1145/3264637.3264640
https://doi.org/10.1145/3264637.3264640
http://www.jstor.org/stable/1990888
http://www.jstor.org/stable/1990888
https://doi.org/10.1145/318593.318659

	Abstract
	1 Introduction
	2 The design of Pallene
	3 Optimizations during C compilation
	4 Evaluating the implementations
	5 Implementation and results
	5.1 Function Inlining
	5.2 Scalar replacement of arrays
	5.3 Renormalize

	6 Conclusion
	References

