
First-Class Functions in an Imperative World

Roberto Ierusalimschy

(PUC-Rio, Brazil

roberto@inf.puc-rio.br)

Abstract: First-class functions are a hallmark of functional languages, but they are
a useful concept in imperative languages, too. Even ANSI C offers a restricted form of
first-class functions (in the form of pointers to functions), and several more recent im-
perative languages, such as Python 3, Go, Lua, and Swift, offer first-class, anonymous
functions with lexical scoping.

In most imperative languages, however, first-class functions are an advanced feature
used by seasoned programmers. Lua, by contrast, uses first-class functions as a build-
ing block of the language. Lua programmers regularly benefit from diverse properties
of its functions for routine constructions such as exception handling, module defini-
tions, object-oriented programming, and iterators. Moreover, first-class functions play
a central role in the API between Lua and C.

In this paper, we present some aspects of Lua that were designed with first-class func-
tions in mind, in particular its module system, exception handling, iterators, facilities
for object-oriented programming, and the API between C and Lua. We also discuss
how those different aspects of Lua use different properties of first-class functions to
achieve two important goals in the design of Lua, namely small size and embeddability
(its easiness of interfacing with other languages).

Key Words: Lua, scripting languages, functional languages

Category: D.3.3, D.1.1

1 Introduction

A key feature of a functional language is the presence of functions as first-class

values and anonymous functions with lexical scoping. First-class functions are

a hallmark of functional languages, but they are a useful concept in imperative

languages, too.1 Many imperative functions may be more generic if coded as

higher-order functions. For instance, even in C the standard sort function (qsort)

is a higher-order function, with its comparison function given as an argument in

the form of a function pointer. Callback functions are another example of the

usefulness of first-class functions in imperative languages. Moreover, imperative

languages that support first-class functions allow programmers to borrow useful

programming techniques from the functional world. Nonetheless, even in imper-

ative languages with proper support for first-class functions, such as Go, Swift,

or Javascript, you can work reasonably well without ever resorting to features

like anonymous functions or lexical scoping.

1 Here I am using the term “first-class function” loosely. Later I will define more precise
terms.



Lua [Ierusalimschy et al., 1996, Ierusalimschy, 2016] is a imperative scripting

language widely used in the game industry, in embedded systems, and as a con-

figuration language in general2. (This paper was formatted with LuaTEX, the

successor of pdfTEX that uses Lua as an embedded scripting language.) Lua

is known for its tables [Sebesta, 2009], which are associative arrays where both

keys and values can have any type; we seldom emphasize the role of first-class

functions in the language. However, Lua uses first-class functions extensively. Its

standard library contains several higher-order functions: sort takes a compar-

ison function; gsub, which does pattern matching and replacement on strings,

can receive a replacement function that receives the original text matching the

pattern and returns its replacement.

However, in Lua, more than a powerful mechanism for programmers, first-

class functions are an empowering mechanism for the language itself. Several

other mechanisms in the language are built on top of first-class functions. In

particular, several important applications of tables are based on their ability to

have functions as fields (e.g., modules and classes). Moreover, first-class functions

are a key ingredient in keeping the language small and embeddable.

In this paper, we describe how Lua supports first-class functions and discuss

how they allow and empower other Lua features, including modules, object-

oriented facilities, exception handling, and the Lua-C API. Section 2 classifies

the main properties of first-class functions in programming languages and dis-

cusses how Lua supports these properties. Section 3 shows how different mech-

anisms in Lua benefit from different properties of first-class functions. Section 4

discusses the use of first-class functions in the Lua-C API, which is a particularly

important aspect of Lua. Finally, Section 5 draws some conclusions.

2 First-Class Functions

First-class functions, also known as closures, anonymous functions, or simply

lambdas, means different things to different people. So, first, we will try to dis-

till its main properties. Functions in functional languages have four important

properties:

– Functions are first-class values. They are values with the same rights of

other values: they can be passed as parameters, returned as results, be part

of structured data, etc.

– Functions can be nested, that is, we can define functions inside other func-

tions.

2 https://en.wikipedia.org/wiki/Category:Lua-scripted_video_games
https://en.wikipedia.org/wiki/Lua_(programming_language)#Applications



– There is some syntax for anonymous functions (also called function literals).

We can create a function inside any expression, right in the place where we

need it.

– Functions respect lexical scoping. Nested functions have full access to vari-

ables defined in enclosing functions, even when the function escapes its en-

closing function (that it, it remains accessible after the end of the enclosing

invocation).

All these properties were present in the lambda calculus, and they are present

in virtually any functional language. Nevertheless, and despite the close inter-

action among them, these properties are somewhat independent. For instance,

C offers functions as first-class values (in the form of pointer to functions), but

does not have nested functions and, therefore, no anonymous functions nor lexi-

cal scoping [ISO C, 2000]. The original Lisp had first-class anonymous functions,

but lacked lexical scoping [McCarthy, 1960]. Pascal has nesting and lexical scop-

ing, but does not have syntax for anonymous functions and function values are

not first class. (They can be passed as arguments, but cannot be returned nor

assigned, to avoid escapes.) Modula-2 has both functions as first-class values

and lexical scoping, but not together: only non-nested procedures are first-class

values [Wirth, 1985]. Python 3 have both functions as first-class values and lex-

ical scoping, but only a restricted form of anonymous functions. (The body of

a lambda expression must be a single expression; it cannot be generic Python

code [Python, 2015].)

Imperative languages have one more important property connected to lexical

scoping. When a function is created in a functional language, it can capture either

the values of its external variables or the variables themselves; since all variables

are immutable, the resulting semantics is the same. For imperative languages,

the semantics change. A few imperative languages capture values. (An example

is Java, which disguises the problem by restricting that local variables used

in lambda expressions must be final/immutable [Gosling et al., 2015].) Several

others, following the lead from Scheme, capture the variables themselves (e.g.,

Lua, Swift, and Go), so that an update made by a function is seen by all functions

sharing that variable.

When the language captures variables, it is easy to capture values, as the

next Lua fragment illustrates:

-- assume ’x’ is a variable visible here

do

-- make an immutable private copy of ’x’,

-- only visible inside this block

local x = x



-- the next function will form a closure with

-- this immutable copy

function foo (y) return x + y end

end

However, when the language captures values, there is no direct way to cap-

ture variables. The option is to box the variable inside a structure and share

its immutable reference, as we do with mutable data in Standard ML. For a

mostly-functional language like Standard ML, these occasional boxings seem

unproblematic, but for a mostly-imperative language like Lua, they can be quite

cumbersome.

Moreover, when a language captures variables, we can enclose any piece of

code inside an anonymous function with little change. (We only have to worry

with statements that invoke escape continuations, such as break and return.)

When the language captures only values, any assignment inside the block being

enclosed becomes a problem.

Lua went through several stages until it reached its current support for func-

tions [Ierusalimschy et al., 2007]. Since its first version, released in 1993, func-

tions in Lua have been first-class values. However, these older versions did not

support anonymous functions (function literals) nor nested functions, and there-

fore static scoping was not an issue. In 1998, Lua 3.1 introduced support for

anonymous functions. The usual syntax for defining a function in Lua is like

this:

function add (x, y)

return x + y

end

Since version 3.1, this syntax is only sugar for the next fragment:

add = function (x, y)

return x + y

end

That is, the code creates an anonymous function and assigns it to the global

variable add. Therefore, all functions in Lua are anonymous, like in Scheme.

A “name” for a function is actually the name for a variable that holds that

function.

However, Lua 3.1 still did not support proper lexical scoping (with access

to variables, not their values). Instead, Lua introduced the concept of upvalues,

which allowed nested functions to access the values of external variables, but not

the variables themselves. An upvalue represents the value of an external variable

frozen when the closure is created, as illustrated in the next example:



local x = 10

function foo () return %x end

x = 20

print(foo()) --> 10

In these older versions of Lua, an upvalue was accessed with an explicit operator,

a prefixed percent sign (as the %x in the example). Its purpose was to remind

the programmer that the code is not accessing the variable itself, but a (possibly

outdated) copy of its value.

For several patterns (e.g., pure functions), upvalues are all we need. However,

in an imperative language like Lua, where assignment is the norm, upvalues can

become cumbersome. In 2003, Lua 5.0 introduced full lexical scoping, using a

novel implementation technique [Ierusalimschy et al., 2005]. (That implementa-

tion is also safe for space.)

Currently, any lambda expression can be directly translated to Lua3, which

evaluates the expression using a strict semantics (“call-by-value”). As an exam-

ple, consider the next definition for a factorial function, using the Z fixed-point

combinator:

let Z = λf.(λx.f(λv.((x x)v)))(λx.f(λv.((x x)v)))

F = λf.λn. if n = 0 then 1 else n× f(n− 1) in

(Z F ) 5

Listing 1 shows how we can write the same code in Lua. Despite the verbosity,

the Lua code is a direct translation of the lambda-calculus definition.

3 Functions in Lua

Many mechanisms in Lua take advantage of first-class functions, as outlined

before. More than a powerful mechanism, first-class functions are an empowering

mechanism in Lua. Several other mechanisms become better (or even possible)

with the presence of first-class functions in the language. In this section we will

cover some of these mechanisms, emphasizing how they benefit from each specific

property supported by functions.

3.1 Eval

Since Lisp, most dynamic languages present an eval function, which allows execu-

tion of dynamically-created code inside the environment of the calling program.

In fact, we may consider eval as a defining feature of a dynamic language.

Of course, any Turing-complete language can execute dynamically-created

code, but not always in the same environment of the original program. As a

simple example, consider the next fragment:

3 Given that Lua is dynamically typed, it can fully represent the untyped lambda
calculus.



local Z = function (f)

return

(function (x) return f (function (v) return x(x)(v) end) end)

(function (x) return f (function (v) return x(x)(v) end) end)

end

-- an example: the factorial function

local F = function (f)

return function (n)

if n == 0 then return 1

else return n * f(n - 1)

end

end

end

print(Z(F)(5)) --> 120

Listing 1: The Z Fixed-Point Combinator in Lua

x = 1

-- ’s’ contains the string "y = x + 10"

eval(s)

print(y) --> 11

Note how the code in s both accessed and defined entities in the environment of

the calling program.

Being a dynamic language, Lua also offered eval functions in its early ver-

sions, called dostring (to evaluate the contents of a string) and dofile (to evaluate

the contents of a file). However, later we changed that to a “compile” primi-

tive, called load. The function load is a higher-order function, which receives a

text (or a function that returns the text piecemeal) and returns an anonymous

function equivalent to the given arbitrary text. Of course, eval and load are

equivalent—given one of them, it is easy to implement the other:

function eval (code)

-- compiles source ’code’ and executes the result

return load(code)()

end



function load (code)

-- creates an anonymous function with the given body

return eval("return function () " .. code .. " end")

end

(The infix two-dot operator ‘..’ denotes string concatenation in Lua.) However,

we consider that load is a somewhat better primitive, because it clearly separates

the transformation from data into code embedded in the running program (which

refines the reflective essence of a dynamic language) from the actual execution

of the resulting code (which is a regular function call). In particular, unlike eval,

load is a pure and total function.

An important property of load is that it compiles any chunk of code as the

body of an anonymous function, with all functions defined by the chunk nested

inside it. Therefore, a chunk can declare local variables, which are equivalent to

static variables in C: they are visible only inside the chunk, they are visible to

all functions inside the chunk, and they preserve their values between successive

calls to these functions.

3.2 Modules

Modules in Lua are just tables (associative arrays) populated with functions.

When we write math.log(x), Lua sees the code as math["log"](x), that is, a

call to the function at index "log" from the table at variable math.

Because both modules themselves and their functions are first-class values in

the language, several facilities come for free. For instance, it is trivial to rename

modules and functions, by assigning them to local variables:

local m = require "math"

local s = m.sin

print(s(0), m.cos(0)) --> 0.0 1.0

For the implementation of modules, the key property of functions is that they

are first-class values. However, lexical scoping is very handy, as they allow the

declaration of private functions and values (not exported by the module). We

simply define them as local variables in the main function creating the module.

3.3 Exception handling

Lua offers exception handling through two functions, pcall (Protected call) and

error. The function pcall receives a function as an argument and runs that func-

tion in protected mode, so that any error that occurs during the execution of that



function is contained by pcall. In languages like Java or JavaScript, exception

handling goes like this:

try {

<block/throw>

}

catch (err) {

<exception code>

}

In Lua, we could write an equivalent code like this:

local ok, err = pcall(function ()

<block/error>

end)

if not ok then

<exception code>

end

Note the idiomatic indentation: it plays down the role of the anonymous function,

emphasizing instead the whole construction, with pcall and the block of code.

The function error throws an error, finishing the last active pcall invocation. It

has a single argument, an error value. In case of errors, pcall returns false (to

signal the error) plus this error value as a second result. Therefore, in the last

fragment the exception code can access this error value through the variable err.

The function pcall per se only needs first-class values, as it is a higher-order

function.4 However, as the previous code fragment illustrates, pcall is much more

convenient when the language supports anonymous functions with lexical scop-

ing, because we can write the code being protected just like regular code. Not

by chance, pcall appeared in Lua in the same release that brought anonymous

functions.

3.4 Iterators

Several languages nowadays, such as Java and Swift, offer iterators based on OO

facilities. In Lua, they are based on impure first-class functions.

4 In fact, the argument to pcall never escapes. So, strictly, it does not need first-class
values: restricted function values, like in Pascal, would be enough here.



The use of iterators is straightforward. For instance, the following fragment

prints all lines of a file:

for l in io.lines(filename) do

print(l)

end

Similarly, the next one prints all words from a string s:

for w in string.gmatch(s, %w+) do

print(w)

end

(The pattern ‘%w+’ describes a word as one or more alphanumeric characters.)

In Lua, an iterator is an (impure) function that, each time it is called, returns

a “next” element of the iteration (or nil, to signal the end of the iteration). What

we write in the for construction is usually a call to a factory function that returns

the iterator function. As a simple example, the next factory creates iterators for

numeric ranges:

function fromTo (n, m)

return function ()

if n > m then

return nil -- signal end of iteration

else

n = n + 1

return n - 1

end

end

end

The function fromTo is the factory function. When called, it returns an anony-

mous function as the iterator. It can be used like here:

for x in fromTo(10, 12) do

print(x) -- will print 10, 11, and 12

end

Note that, as this example illustrates, lexical scoping is the key feature that

allows the iterator to keep its state between steps. The example also shows

how important it is for an iterator to update external variables (instead of only

accessing their values), so that each call can advance the iteration. Note also

that an iterator function always escapes its original scope (the factory function).

Again not by chance, the for construction was introduced in the same Lua

version that introduced full lexical scoping (version 5.0).



3.5 Object-oriented programming

Lua adopts a “Do-It-Yourself” style of object-oriented (OO) programming. The

language does not offer OO features directly; instead, it tries to offer mechanisms

that allow us to implement the OO features that we need. Clearly, first-class

functions is a key ingredient toward that goal.

In Lua, an object is a table (what else?): fields containing functions represent

the object’s methods; other fields represent its instance variables.5 To allow

methods to access these instance variables, we need a self (or this) argument.

Lua provides this argument through a simple syntactic sugar. We can declare a

method using the colon notation, as the next fragment illustrates:

function obj:add (p)

self.x = self.x + p

end

Lua translates this fragment into the following code:

obj.add = function (self, p)

self.x = self.x + p

end

That is, a method is a regular function whose first parameter is self. Similarly,

there is a colon notation for calling methods. When we write obj:add(12),

Lua translates it to obj.add(obj, 12), thus passing the receiver as the first

parameter to the method.

Here, the main property from functions is being first-class values. Nesting,

anonymous functions, and lexical scoping are of little direct use. Nevertheless,

lexical scoping is useful for other OO mechanisms, like class attributes.

The separation between method selection (usually a regular table operation)

and method invocation (a regular function call) also allows other useful features,

such as the ability to call overridden methods, such as calls to super. It also

simplifies the C API; because the API already has functions for table operations

and for function calls, it can call Lua methods without any extra support.

4 The Lua-C API

A key feature of Lua is its API with C and other languages: the design of the en-

tire language has taken the API into consideration [Ierusalimschy et al., 2011].

5 An object in Lua does not have to actually contain all its methods as fields, because
it can (and usually does) inherit fields from another table. If a table A inherits from
B, and we compute A[k] where k is not present in A, the expression results in B[k].
Note that inheritance in Lua concerns only table accesses and it is orthogonal to
what we are discussing here.



This API has been designed both for extending and for embedding Lua. Extend-

ing Lua means adding to Lua functions and types written in another language

(typically C or C++), so that Lua code can use these functions and types as if

they were native. Embedding Lua means allowing a program written in another

language to call functions written in Lua for specific tasks. In both scenarios,

first-class functions play an important role. Let us see first embedding, or how

to call a Lua function from C.

All data exchange between Lua and C goes through a stack of Lua values.

This stack has two purposes. The first one is to solve the mismatch between the

dynamic typing in Lua and the static typing in C: all projections and injections

between C values and Lua values go through the stack. The second purpose is

to control garbage collection: C have direct access only to values in the stack,

which cannot be collected while there.

As an example, consider the Lua fragment r = f(x, y), where x, y, and r

can have any type. How to code an equivalent operation in C? Assuming that

all variables are global, the following code does the job:

lua_getglobal(L, "f"); /* push function */

lua_getglobal(L, "x"); /* push 1st argument */

lua_getglobal(L, "y"); /* push 2nd argument */

lua_call(L, 2, 1); /* call function with 2 arguments */

lua_setglobal(L, "r"); /* pop the result into global ’r’ */

(The first argument to all functions in the API, L in this example, is a reference

to the Lua state being manipulated, which contains the stack.) Note how we

retrieve the function f with the same function that we use for the other values.

As another example, to do the call f(1, "x") and get the result in a C integer

variable, we can use the following code:

lua_getglobal(L, "f"); /* push function */

lua_pushinteger(L, 1); /* push 1st argument */

lua_pushstring(L, "x"); /* push 2nd argument */

lua_call(L, 2, 1); /* call function with 2 arguments */

int r = lua_tointeger(L, -1);

Injection functions (such as lua_pushinteger and lua_pushstring) always

push the new Lua value on the top of the stack; projection functions (such

as lua_tointeger) can access any value in the stack, using an index. (In the

example, -1 means “first value from the top”. A positive 1 would mean “first

value from the bottom”.)

Given the way functions are used in Lua, we can use lua_call to call any-

thing. To call functions in modules, we only need to retrieve the function from

the module table, using standard table operations. We can trivially call iterators



inside loops in C code. To call methods, we retrieve the method (again using

standard table operations) and add the receiver as a first argument in the call.

For error handling, we call the function with lua_pcall, which is the equiva-

lent to pcall in the C API. First-class functions make this mechanism orthogonal

to how we access the function to be called: we can use lua_pcall with functions

in modules, methods, etc.

When extending Lua, the main point is how to to make functions written

in C (or other languages) available to Lua scripts. Any C function must follow a

certain protocol to work with Lua. First, it must have the following prototype:

typedef int (*lua_CFunction) (lua_State *L);

The sole parameter L is the state (and the stack) where the function should

operate. When the function starts, its stack contains the call arguments. To

return, the function pushes on the stack the values to be returned and returns (in

C) the number of such values.6 As an example, the following function implements

the sine function for Lua:7

int sin_lua (lua_State *L) {

double x = lua_tonumber(L, 1);

lua_pushnumber(L, sin(x));

return 1;

}

The call to lua_tonumber projects the first argument into a double, the call to

lua_pushnumber pushes the sine of that double into the stack, and the return

signals to Lua that the stack has one result.

The API offers one single primitive to inject C functions into a Lua value,

lua_pushcfunction. It takes a pointer to the C function and creates a first-class

value in Lua that represents that function. Everything else is done with regular

value-manipulation primitives. For instance, to register our previous function

sin_lua into the Lua global variable sin, we can use the following code:

lua_pushcfunction(L, sin_lua);

lua_setglobal(L, "sin");

As functions are first-class values, we can use the regular lua_setglobal to

assign it into a global variable.

To create a module composed of C functions, we create a table and add to it

the C functions that compose the module. Except for lua_pushcfunction, all

we need are regular table-manipulation functions.

6 Functions in Lua can return multiple values.
7 The real implementation is more complex than that due to error handling.



int inner_add (lua_State *L) {

double x = lua_tonumber(L, lua_upvalueindex(1));

double y = lua_tonumber(L, 1);

lua_pushnumber(L, x + y);

return 1;

}

int add (lua_State *L) {

double x = lua_tonumber(L, 1);

lua_pushnumber(L, x);

lua_pushcclosure(L, &inner_add, 1);

return 1;

}

Listing 2: An example of a C closure

4.1 C closures

Of course, C functions cannot benefit from nesting or lexical scoping, but the

Lua-C API offers an approximation, that we call C closures. When we register

a C function into Lua, we can associate to it one or more arbitrary Lua values,

which we call its upvalues. Whenever the C function is called from Lua, it can

access its upvalues.

To illustrate the use of upvalues, consider the following curried add function:

function add (x)

return function (y)

return x + y

end

end

Listing 2 shows how we can implement an equivalent function in C. In that code,

the function add implements its homonymous function in the Lua code, while

the function inner_add implements the nested anonymous function in the Lua

code.

In the function add, the call to lua_pushcclosure injects the C function as

a Lua function into the stack. This function is similar to lua_pushcfunction,

but it associates a number of values (only one, in the example) on the top of the

stack to the function being created, forming a C closure.8 Whenever Lua calls a

8 In fact, lua pushcfunction is a macro that calls lua pushcclosure with zero upvalues.



C closure, it makes those upvalues accessible to the C code.

In the function inner_add, lua_upvalueindex does the main trick. This

macro retrieves from the Lua state the n-th upvalue (the first and only one, in

the example) associated with the running function. The function then gets its

first (and only) argument in the variable y and pushes (to return) the sum of its

upvalue with its argument.

A C function can freely modify its own upvalues, but it cannot share those

updates with other functions. When we need to share mutable data among sev-

eral C functions, we have to box the data inside a table and set the table as an

upvalue for all the functions involved.

5 Final Remarks

In 1960, Lisp [McCarthy, 1960] introduced first-class functions in programming

languages. Few years later, the SECD machine used closures to implement lexical

scoping efficiently [Landin, 1964]. Scheme brought lexical scoping into a Lisp-

like language, showing to programmers the flexibility of the mix [Steele, 1976,

Steele and Sussman, 1976, Steele, 1977]. David Turner paved the way to modern

functional languages introducing case analysis by pattern matching, emphasiz-

ing lazy evaluation, and, more importantly, revolutionizing the evaluation of lazy

languages with the use of combinators [Turner, 1975, Turner, 1979].

Imperative languages followed a more bumpy path. Only in the last few years

first-class functions become more mainstream in those languages: Java, arguably

the most used programming language nowadays, took almost 20 years to sup-

port anonymous functions, with Java 8 [Gosling et al., 2015]; even then, lambda

functions in Java cannot access external mutable variables. Rust 1.0, released in

2015, also imposes restrictions on its first-class functions. (“Closures” in Rust ei-

ther can access external mutable variables or can escape, not both [Rust, 2016].)

Several imperative languages now support first-class, anonymous functions

with lexical scoping (e.g., Javascript, Swift, Python 3, Go). Nevertheless, to our

knowledge, only Lua has first-class functions so ingrained in its design. Every

code written in Lua is compiled as an anonymous function; modules, iterators,

and objects in the language are based on first-class functions; exception handling

is offered through a higher-order function. So, programmers gain from first-class

functions in Lua from day one, even unknowingly.

References

[Gosling et al., 2015] Gosling, J., Joy, B., Steele, G., Bracha, G., and Buckley, A.
(2015). The Java Language Specification: Java SE 8 Edition. Oracle.

[Ierusalimschy, 2016] Ierusalimschy, R. (2016). Programming in Lua. Lua.org, Rio de
Janeiro, Brazil, fourth edition.



[Ierusalimschy et al., 1996] Ierusalimschy, R., de Figueiredo, L. H., and Celes, W.
(1996). Lua—an extensible extension language. Software: Practice and Experience,
26(6):635–652.

[Ierusalimschy et al., 2005] Ierusalimschy, R., de Figueiredo, L. H., and Celes, W.
(2005). The implementation of Lua 5.0. Journal of Universal Computer Science,
11(7):1159–1176. (SBLP 2005).

[Ierusalimschy et al., 2007] Ierusalimschy, R., de Figueiredo, L. H., and Celes, W.
(2007). The evolution of Lua. In Third ACM SIGPLAN Conference on History
of Programming Languages, pages 2.1–2.26, San Diego, CA.

[Ierusalimschy et al., 2011] Ierusalimschy, R., de Figueiredo, L. H., and Celes, W.
(2011). Passing a language through the eye of a needle. Communications of the
ACM, 54(7):38–43.

[ISO C, 2000] ISO C (2000). International Standard: Programming languages C. ISO.
ISO/IEC 9899:1999(E).

[Landin, 1964] Landin, P. B. (1964). The mechanical evaluation of expressions. The
Computer Journal, 6(4):308–320.

[McCarthy, 1960] McCarthy, J. (1960). Recursive functions of symbolic expres-
sions and their computation by machine, part I. Communications of the ACM,
3(4):184–195.

[Python, 2015] Python (2015). The Python Language Reference. The Python Software
Foundation, 3.5 edition.

[Rust, 2016] Rust (2016). The Rust programming language. https://www.
rust-lang.org/en-US/documentation.html.

[Sebesta, 2009] Sebesta, R. (2009). Interview: Roberto Ierusalimschy — Lua. In Con-
cepts of Programming Languages, pages 280–281. Addison-Wesley, ninth edition.

[Steele, 1976] Steele, G. L. (1976). Lambda: The ultimate declarative. Technical Re-
port AI Memo No. 379, MIT, Cambridge, MA, USA.

[Steele, 1977] Steele, G. L. (1977). Debunking the “expensive procedure call” myth,
or procedure call implementations considered harmful, or LAMBDA, the ultimate
GOTO. Technical Report AI Memo No. 443, MIT, Cambridge, MA, USA.

[Steele and Sussman, 1976] Steele, G. L. and Sussman, G. J. (1976). Lambda: The
ultimate imperative. Technical Report AI Memo No. 353, MIT, Cambridge, MA,
USA.

[Turner, 1975] Turner, D. A. (1975). SASL language manual. Technical Report
CS/75/1, St. Andrews University.

[Turner, 1979] Turner, D. A. (1979). A new implementation technique for applicative
languages. Software: Practice and Experience, 9(1):31–49.

[Wirth, 1985] Wirth, N. (1985). Programming in Modula-2. Springer-Verlag, third
edition.


