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ABSTRACT
Dynamically-typed programming languages are often implemented
using interpreters, which offer several advantages in terms of porta-
bility and flexibility of the implementation. However, as a language
matures and its programs get bigger, programmers may seek com-
pilers, to avoid the interpretation overhead.

In this study, we present LuaAOT, a simple ahead-of-time com-
piler for Lua. The compiler is derived from the Lua interpreter and
it exemplifies an old idea of using partial evaluation to produce a
compiler based on an existing interpreter. Our contribution is to
apply this idea to a well-established programming language. We
show that with a quite modest effort it is possible to implement an
efficient compiler that covers the entirety of Lua, including corou-
tines and tail calls. The whole implementation required less than
500 lines of new code. For this effort, we reduced the running time
of our benchmarks from 20% to 60%.

CCS CONCEPTS
• Software and its engineering → Interpreters; Just-in-time
compilers.

KEYWORDS
dynamic languages, interpreters, partial evaluation, compilers, just-
in-time compilers

1 INTRODUCTION
Dynamic programming languages are popular for many applica-
tions, including scripting. They are often implemented using an
interpreter, which makes it easier to load code fragments at run-
time and enables a fast test-change-recompile development loop.
However, interpreters are often slower than a compiler, due to the
interpretation overhead.

The conventional wisdom is that the most efficient implemen-
tations for dynamic languages are just-in-time compilers, which
can take advantage of run-time information to perform speculative
optimizations. Ahead-of-time compilers have a steeper hill to climb,
because they must rely on clever static analysis or type inference
to inform their optimizations. Nevertheless, in this paper we show
that a very simple compiler, focused exclusively on reducing the
interpretation overhead, can deliver respectable improvements for
a modest implementation effort. We also argue that such a simple
compiler can provide useful insight about the performance of the
interpreter that it is based on.

Our motivation for this paper was our previous work on Lua
compilers, in particular the Pallene language [10]. Pallene is super-
ficially similar to a typed dialect of Lua, where the type information
allows the compiler to perform significant optimizations to the code.
Because the type information is not speculative, Pallene’s compiler
can work ahead of time and be much simpler than a JIT compiler.

However, a relevant question is how much of this improvement is
due to the types and how much of it is due to just using a compiler
instead of an interpreter. To help answer this question, we devel-
oped LuaAOT, a simple ahead-of-time compiler for Lua which does
not perform any type-based optimizations.

The inspiration for the architecture of LuaAOT is an old idea
of producing a compiler from an existing interpreter by unrolling
and specializing the core interpreter loop [7, 15]. Our contribution
is to show that this idea can be successfully applied to an estab-
lished language. Using less than 500 lines of new code, our compiler
implements the entirety of Lua, including coroutines and tail calls.

One thing that contributes to the simplicity of LuaAOT is that
we can delegate a significant part of the work to a C compiler. We
can rely on the C compiler to perform several optimizations, includ-
ing constant propagation and dead code elimination. This allows
us to remove much of the interpreter overhead while still emit-
ting straightforward code that is mostly copied from the existing
interpreter.

Before going on, we should emphasize that LuaAOT catches
the low-hanging-fruits of compiler optimizations for dynamic lan-
guages. Its performance is not competitive with a reasonable JIT
compiler. Its selling point is that it achieves a decent performance
boost for a surprisingly low cost.

The next section has a brief discussion about partial evaluation of
virtual machines. Section 3 describes our take on that idea, LuaAOT.
Next, we evaluate our artifact in Section 4. Finally, we discuss
related work in Section 5 and draw some conclusions in Section 6.

2 VIRTUAL MACHINES AND PARTIAL
EVALUATION

One of the most popular ways to implement an interpreter for a
dynamically typed programming language is via a virtual machine.
The virtual machine defines an intermediate language of portable
instructions, also called bytecodes. This approach is illustrated in
Figure 1, which shows a small Lua function and the corresponding
portable instructions for the Lua virtual machine. (To ease the
presentation, we represented these instructions using records. The
actual Lua interpreter encodes the instruction components as bit-
fields of a 32-bit integer [11].)

Figure 2 shows a typical inner loop of a virtual machine. It exe-
cutes the portable instructions, one by one, like a conventional CPU.
The interpreter maintains a stack, which is where the local variables
are stored. The program counter points to the current instruction
and guides the control flow. Data operations, such as loadi and
add, manipulate the values in the stack. Control-flow operations,
such as jump, modify the program counter. In this example, DoAdd
is a macro that does the actual work, including checking the types
of the arguments.

The virtual machine in our example is register-based, similarly
to the Lua virtual machine [11]. The defining characteristic of a
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function foo(a, b, c)
local d = 17
while true

a = b + c
b = b + d

end
end

Instruction foo[] = {
{ LOADI, 3, 17 },
{ ADD, 0, 1, 2 },
{ ADD, 1, 1, 3 },
{ JUMP, 1 }

};

Figure 1: A Lua function and its bytecode.

void execute(Instruction prog[], Value stack[])
{

int pc = 0;
while (1) {

Instruction instr = prog[pc++];
switch (instr.tag) {

case LOADI: {
int dst = instr.arg1;
int val = instr.arg2;
stack[dst] = IntValue(val);
break;

}
case ADD: {

int dst = instr.arg1;
int src1 = instr.arg2;
int src2 = instr.arg3;
stack[dst] = DoAdd(stack[src1],

stack[src2]);
break;

}
case JUMP: {

pc = instr.arg1;
break;

}
}

}
}

Figure 2: A virtual machine / interpreter.

register-based virtual machine is that the data-manipulation in-
structions can read from and write to any position in the stack. The
other common way to design a virtual machine is in a stack-based
discipline, where the data manipulation instructions always push
values to the top of the stack and pop results from its top. Our ex-
amples feature a register-based virtual machine but the technique
we describe should also apply to stack-based virtual machines.

void execute_foo(Value stack[])
{

L0: {
Instruction instr = { LOADI, 3, 17 };
int dst = instr.arg1;
int val = instr.arg2;
stack[dst] = IntValue(val);

}
L1: {

Instruction instr = { ADD, 0, 1, 2 };
int dst = instr.arg1;
int src1 = instr.arg2;
int src2 = instr.arg3;
stack[dst] = DoAdd(stack[src1], stack[src2]);

}
L2: {

Instruction instr = { ADD, 1, 1, 3 };
int dst = instr.arg1;
int src1 = instr.arg2;
int src2 = instr.arg3;
stack[dst] = DoAdd(stack[src1], stack[src2]);

}
L3: {

// JUMP
goto L1;

}
}

Figure 3: Specializing the interpreter to a particular func-
tion.

In this paper we are interested in the interpretation overhead
that is associated with decoding and dispatching virtual-machine
instructions. The decoding overhead comes from fetching the next
virtual instruction from memory and computing the values of its
parameters; in the example, those would be the tag and arg fields.
The dispatch overhead happens as the interpreter transfers the con-
trol to the appropriate instruction handler. The most basic form is a
while-switch loop, but some interpreters might use more advanced
dispatch techniques such as “threaded code” [6]. The Lua 5.4 inter-
preter can be configured to use either a portable while-switch loop
or a dispatch table using the computed-goto GCC extension.

To minimize the decoding and dispatching overheads, LuaAOT
produces a modified version of the inner interpreter loop that is
specialized to run a given function. Figure 3 provides an example
of this idea. The instructions become compile-time constants and
the jumps become goto statements. The execute_foo function can
be seen as a partial evaluation of the execute function, where the
prog argument is fixed to be the foo array from Figure 1. This
method to produce a compiler from an interpreter is sometimes
called a Futamura Projection [7].

This simple compilation strategy does not optimize all the things
that an advanced Lua compiler can try to optimize. For example,
there is no attempt to store Lua variables in CPU registers. Similarly
to the Lua interpreter, LuaAOT stores all local variables in the Lua
stack. However, the simple compilation strategy does provide an
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idea of what can be achieved by optimizing the low-hanging fruit.
In particular, it can tell us about the interpretation overhead of the
original interpreter. Since the bytecode instructions are compile-
time constants, the C compiler can use constant propagation to
remove most of the operations for decoding the instructions. Sim-
ilarly, because the Lua jumps are converted to C gotos, we avoid
indirect jumps and dispatch tables. The control flow graph also is
exposed to the C compiler, possibly allowing further optimizations.

3 THE LuaAOT COMPILER
In this section we describe how we built the LuaAOT compiler and
which challenges we encountered in the process. The compiler is
free software and the source code is publicly available [9].

The core of the compiler is the luaot executable, which takes
Lua source code as input and produces the corresponding C code
as output. This C code then may be compiled into a Lua extension
module, using the same procedure for compiling any Lua extension
module written in C. The resulting module may then be loaded
by a custom Lua interpreter, which we modified to be able to run
compiled functions. It is also possible to produce a standalone
executable by bundling the compiled code with a copy of the Lua
interpreter. However, compiling entire programs is not typical; we
usually compile only the critical parts of the program.

3.1 The Interpreter
The Lua interpreter plays a central role in our system, which com-
prises of both a compiler and a slightly modified interpreter. There
are multiple reasons for this. The first is that programs can contain
both compiled and non-compiled sections and the interpreter is
necessary to run the non-compiled parts. Moreover, the compiled
code also requires the interpreter: because we partially evaluate the
inner interpreter loop, the compiled code calls several subroutines
from the interpreter. Furthermore, the interpreter code base also
houses the Lua runtime and garbage collector, which are used by
both the compiled and the non-compiled code.

The custom interpreter has very small changes, compared to
the original Lua interpreter. The first modification was to add an
additional field to the data structure that represents Lua functions.
This field refers to the compiled code for that function, if there is
one. The C extension modules that we generate include initializa-
tion code that associates the Lua functions with their compiled C
implementation.

After this, we told the interpreter how to use these compiled func-
tions. At the start of the execute subroutine, just before the inner
loop, the interpreter checks whether the function has a compiled
version; if so, it transfers the control to that compiled code.

The next change we made is related to the public interface that is
exposed to C extension modules. Our partial-evaluation generates
code that calls many internal functions from the Lua interpreter,
which in normal circumstances are not exposed to extension mod-
ules. To allow our generated code to use these internal functions,
we modified the interpreter to make all those internal names public.

Finally, we proceeded to implement the code generator, examin-
ing the bytecodes one by one. Most had their code directly pasted
into the compiler; some required modifications to the generated
code, but there was one case that also required modifications to

the interpreter: the bytecodes for function calls (call, tailcall,
and return). The Lua 5.4 interpreter has an optimization where
Lua-to-Lua calls reuse the same execution frame for the execute
function. Like a conventional CPU, the Lua interpreter implements
these function calls by updating the prog argument and the pro-
gram counter, so that the same interpreter loop naturally runs the
called function. Unfortunately, this implementation is incompatible
with our compiled code, where each execute function is special-
ized to a particular Lua function. Our solution was to disable this
optimization. We believe that with additional work it might have
been possible to keep it. However, disabling it was certainly simpler.

We should stress that this change did not harm the tail-recursive
functions, which are guaranteed to use O(1) stack space. In the
generated C code for the tailcall instruction, the crucial function
call appears in a tail position, so that a good C compiler can perform
the required tail-call optimization.

As important as the changes we made are the many things we
did not need to modify. Other than adding a single field to the
function objects, we made no other changes to the internal Lua
data types. We also did not modify the Lua runtime system, the
garbage collector, or the Lua standard library.

3.2 The Code Generator
The code generator receives a Lua module and converts it to C. To
do this it calls the Lua bytecode compiler and then it converts the
bytecode to C. For each function in the module, the code genera-
tor produces an appropriate function header and then it iterates
over the function’s bytecode, outputting a block of C code for each
instruction. For the most part, these blocks of C code are copied ver-
batim from the original Lua interpreter. However, we had to adapt a
few bytecodes. The main categories were bytecodes that modify the
program counter, bytecodes using C gotos, and bytecodes related
to function calls.

In the original interpreter, jumps are implemented by assigning
to the interpreter variable representing the program counter. In
our compiler, we replaced each of these jumps by a C goto. This
required making the appropriate changes to the generated code
for the jump instruction, as well as to the instructions that imple-
ment for-loops. We also had to change the instructions for binary
operations, because of how Lua implements operator overloading.
Every binary operation is followed by a special instruction (mmbin),
which handles overloading. When the operands have the expected
types (e.g., numbers for the add operation), the binary operation
just increments the program counter to skip this next instruction.
This means that all binary operations contain an implicit jump,
which our compiler must also replace by a goto.

The next category of instructions we had to adapt were the ones
that use goto statements in their original implementation. One
example is the forcall instruction, which is always followed by
a forloop. As an optimization, the Lua interpreter uses a goto to
jump straight to the handler for the forloop, bypassing the usual
dispatch logic. Since our compiler is already removing the run-time
instruction dispatching, we simply removed this optimization from
our generated code.

The instructions for function calls also had the issue of gotos in
the original implementation, as we discussed in the previous section.
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However, in this case we had to apply the same changes both to
the interpreter and to the generated code, so that uncompiled Lua
functions could properly call the compiled ones.

3.3 Alternative Compilation Without Gotos
A fragile aspect of LuaAOT is the optimization of replacing Lua
jumps by C gotos. While the implementation of the Lua interpreter
gave us the opportunity to use gotos without too much trouble,
doing this to a different interpreter might have been more difficult.
For example, the Lua interpreter is written in C, which is a language
with gotos. Had it been written in a different language, it might
have been harder to use gotos in the partial evaluation process.
Another important aspect is that Lua’s core interpreter loop is all
in a single function. Had it been broken into smaller subroutines, it
might have been more difficult to use gotos because one subroutine
would not be able to goto another.

Therefore, we developed an alternative design that implements
jumps using a trampoline pattern instead of gotos. As we can see in
Figure 4, this trampoline-based implementation also uses a switch-
case. However, it dispatches based on the program counter instead
of based on the instruction tag. For instructions that don’t jump,
the handler falls through to the handler for the next instruction. For
the instructions that do modify the program counter, the handler
ends with a break statement, which bounces back to the start of
the trampoline.

In terms of implementation effort the trampoline approach is
even simpler than the goto-based one. Most of the manual modi-
fications that we described in Section 3.2 involved replacing Lua
jumps with C gotos. In the trampoline implementation, the vast
majority of those sections can be copy-pasted without any changes
at all. The obvious downside of trampolines is that they maintain
some of the dispatch-related overhead from the interpreter. We will
evaluate this overhead in Section 4.

3.4 Coroutines
Lua’s coroutines [4, 5] are a powerful control-flow mechanism,
useful for asynchronous programming. They operate in a similar
space to features such as generators or delimited continuations.
Lua implements coroutines by maintaining a separate call stack for
each coroutine. When a coroutine yields, the interpreter saves the
current program counter and exits from the interpreter loop (via
a longjmp). When the coroutine is resumed, the interpreter must
continue the execution loop from where it left.

To make our compiler compatible with coroutines, we had to
teach it how to restart the execution from the point where the
coroutine was interrupted. To do this, we need to jump to the
appropriate location in the code, according to the saved value of
the program counter. Figure 5 illustrates how we do this. At the
start of the function, we insert a switch-case that jumps to the
location indicated by the saved program counter. The rest of the
compiled function, including the jump labels, is the same as the
version without coroutine support, shown in Figure 3. The switch
case is used only once, at the start of the function. After this, all
the other jumps happen as previously described, with gotos.

void execute_foo(Value stack[])
{

int pc = 0;
while (1) {

switch (pc) {
case 0: {

Instruction instr = { LOADI, 3, 17 };
int dst = instr.arg1;
int val = instr.arg2;
stack[dst] = IntValue(val);
// fallthrough

}
case 1: {

Instruction instr = { ADD, 0, 1, 2 };
int dst = instr.arg1;
int src1 = instr.arg2;
int src2 = instr.arg3;
stack[dst] = DoAdd(stack[src1],

stack[src2]);
// fallthrough

}
case 2: {

Instruction instr = { ADD, 1, 1, 3 };
int dst = instr.arg1;
int src1 = instr.arg2;
int src2 = instr.arg3;
stack[dst] = DoAdd(stack[src1],

stack[src2]);
// fallthrough

}
case 3: {

Instruction instr = { JUMP, 1 };
pc = instr.arg1;
break;

}
}

}
}

Figure 4: Compilation without gotos, using a trampoline.

void execute_foo(Coroutine *f, Value stack[])
{

switch (f->savedpc) {
case 0: goto L0;
case 1: goto L1;
case 2: goto L2;
case 3: goto L3;

}
L0: { /* ... */ } // LOAD
L1: { /* ... */ } // ADD
L2: { /* ... */ } // ADD
L3: { /* ... */ } // JUMP

}

Figure 5: Support for Lua coroutines.
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In the alternative trampoline-based compiler, supporting corou-
tines is even simpler. The trampoline already includes the switch-
case that the coroutines need. The only difference is the initial value
of the program counter. Instead of always starting from zero (the
first instruction), it should start from the value that the coroutine
saved.

4 EVALUATION
To evaluate LuaAOT, we studied its performance and we measured
the complexity of its implementation. We also made a qualitative
analysis of what are the requirements that an interpreter must fulfill
to allow a compiler in the style of LuaAOT.

The source code for the benchmarks and the related scripts are
available online, in the same repository as the compiler [9].

4.1 Performance
To evaluate the performance of LuaAOT, we compared the running
time of the compiled programs with the running time of the inter-
preter. To provide a baseline, we also compared the results with
LuaJIT [16], an advanced just-in-time compiler for Lua.

The benchmarks we used come from the Computer Language
Benchmarks Game [8]. We excluded three benchmarks from the
list: pydigits, regex-redux, and reverse-complement. The first two
require external libraries that are not part of the Lua standard
library. The latter is bottlenecked by the string library, which is
implemented in C, therefore making it unsuitable for evaluating
the performance of the interpreter.

We carried out the measurements on a laptop with an Intel
i5-7200U CPU, running Fedora Linux 33. We used Lua version 5.4.3
and LuaJIT version 2.1.0-beta3. For the C compiler we used GCC ver-
sion 10.3.1, with the -O2 optimization level. For each benchmark we
picked an input size large enough to ensure that the fastest imple-
mentation took at least one second to run. We ran each benchmark
20 times. The results are summarized in Table 1, which displays
the average running time as well as the encountered variation. The
error intervals refer to the difference between the average and the
maximum or the minimum time, whichever was greater. Figure 6
displays the same running times but normalized by the average
time of the Lua interpreter.

In all benchmarks, LuaAOT was faster than the Lua interpreter.
The reduction in running time ranged from approximately 20%, in
the K-Nucleotide benchmark, to approximately 60%, in the Mandel-
brot benchmark. The speed of the trampoline version of LuaAOT
fell between the speed of Lua and the speed of the default version
of LuaAOT (using gotos). In all cases, LuaJIT was the fastest.

We were curious whether the better performance of LuaAOT
compared to Lua was because it ran less CPU instructions or be-
cause it could run more instructions per second. To answer this
question, we reran the benchmarks using Linux’s perf tool, which
can measure the number of CPU instructions and CPU cycles used
by each program. The results are listed in Table 2. They suggest that,
at least for this CPU model, the largest factor behind the improved
speeds is a reduction in the number of CPU instructions. It appears
that the instruction-per-cycle statistic is actually slightly worse for
LuaAOT. For most benchmarks the reduction in instruction count is
larger than the reduction in time (CPU cycles). We hypothesize that

the biggest speedup comes from the compiler removing some of
the instructions responsible for bytecode decoding and dispatching.
As most of these instructions are cheap (e.g., shifts and masks for
decoding), the reduction in the number of instructions is larger
than the reduction in cycles, therefore reducing the instructions
per cycle.

In theory, removing the bytecode dispatching (and the associated
branches) has the potential to improve performance by avoiding
costly branch mispredictions. However, in our benchmarks this
was not a big factor, because the CPU already did a good job of
predicting the branches in the interpreted version. In almost all
benchmarks, the branch miss rates for both Lua and LuaAOT were
under 1%; the sole exception is the the N-Body benchmark for Lua,
with a branch miss rate of 1.2%. With these low rates of branch miss,
we don’t think it is meaningful to compare the absolute numbers.
It is also hard to tell whether the compilation is helping the branch-
miss rates.

One trade-off of LuaAOT compared to the interpreter is that the
generated binaries are larger than the corresponding bytecode. To
evaluate this aspect of the compiler we measured the sizes of the
bytecode-compiled and AOT-compiled version of each benchmark.
The results are listed in Table 3. The sizes of the compiled code
were much larger than the sizes of the bytecodes, albeit not so large
that it becomes prohibitive. Nevertheless, programmers may want
to consider not compiling the parts of the program that are not
performance-sensitive.

4.2 Complexity of the implementation
One of the selling points of the partial-evaluation strategy that
we used is its extreme simplicity. To measure this, we counted the
lines of code of our code generator, as a proxy for implementation
complexity.

We built the code generator by hand, using generous amounts
of copy-pasting of code from the Lua interpreter loop and from
the Lua bytecode compiler. We believe that, if desired, it should
be possible to automate a large portion of this work. That would
expedite the process of updating LuaAOT to new versions of the
Lua interpreter.

Because we copied some subroutines from the Lua bytecode
compiler, we chose to write the code generator in C. Out of the total
of 1600 lines of code in the generator, 450 lines can be attributed to
those subroutines from the bytecode compiler, which are responsi-
ble for traversing and printing bytecodes. Code templates derived
from the core interpreter loop account for over half of the code
generator, about 850 lines. The rest of the code, which we wrote
from scratch, fits in less than 500 lines. It consists of miscellaneous
things such as comments, command-line option handling, and the
initialization routines for the generated extension modules.

For comparison, the reference Lua interpreter contains 28 thou-
sand lines of C code [12] and the LuaJIT just-in-time compiler has
80 thousand lines of C and 35 thousand lines of platform-specific
assembly language [16]. Another thing that we can point out is that
while LuaAOT required us to be familiar with the internals of the
Lua interpreter, the final product did not require complex analysis
algorithms or optimization passes.
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Benchmark Lua Trampoline LuaAOT LuaJIT

Binary Trees 3.51 ± 0.03 2.77 ± 0.37 2.68 ± 0.10 1.46 ± 0.15
Fannkuch 44.31 ± 0.13 33.45 ± 0.17 21.92 ± 0.17 7.10 ± 0.02
Fasta 5.05 ± 0.08 4.21 ± 0.28 3.84 ± 0.36 1.08 ± 0.01
K-Nucleotide 4.14 ± 0.14 3.70 ± 0.10 3.44 ± 0.12 1.18 ± 0.09
Mandelbrot 16.27 ± 0.08 16.41 ± 0.22 6.17 ± 0.31 1.78 ± 0.00
N-Body 18.23 ± 1.85 16.13 ± 0.86 12.14 ± 0.49 1.13 ± 0.02
Spectral Norm 39.86 ± 0.27 27.02 ± 0.12 19.00 ± 0.78 1.27 ± 0.01

Table 1: Running times, in seconds.
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Figure 6: Normalized running times.

Benchmark Instrs (%) Time (%)

Binary Trees 77.9 76.4
Fannkuch 44.0 49.6
Fasta 69.4 78.8
K-Nucleotide 75.6 83.7
Mandelbrot 32.5 37.9
N-Body 59.7 64.5
Spectral Norm 47.4 47.4

Table 2: CPU instruction count for LuaAOT, relative to Lua.

4.3 Applicability of the technique
While the work we have presented is specific to the reference Lua
interpreter, we think that the technique is simple enough to be
applicable to other dynamic language interpreters. In this section,
we discuss what were the aspects of Lua that our interpreter relied
on, and what conditions are necessary to apply this to another
interpreter. Of course, the performance improvements will depend
on the specifics of the interpreter, in particular what percentage of
time is attributable to the core interpreter loop.

The first important thing is that our technique would not work
as easily for AST-based interpreters. While it is also possible to
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Benchmark Bytecode (KB) AOT (KB)

Empty File 0.07 160
Mandelbrot 0.9 282
Fannkuch 1.1 302
Binary Trees 1.4 298
Spectral Norm 1.5 317
K-Nucleotide 2.2 368
Fasta 3.1 533
N-Body 3.2 619

Table 3: Size of compiled modules.

use partial evaluation for an AST-based interpreter, it is more com-
plicated than for a bytecode-based one because of the frequent
presence of recursion in the main interpreter loop.

Since our technique is based on partial evaluation, the language
used to implement the original interpreter is important. C, which
is a popular language for writing interpreters, worked well for
several reasons: the presence of a goto statement, the availability
of optimizing compilers, and the existence of preprocessor macros.

When we compile jump instructions in the bytecode, we want
a similar jump operation in our target language. In C we can use
goto statements for this purpose, provided that the control flow in
the original interpreter is all inside a single interpreter function. If
the target language does not have goto statements, it is harder to
compile the unstructured jumps in the bytecode.

Using C as the target language allowed us to take advantage
of several optimizations from the C compiler, including constant
propagation for the bytecode instructions. This gives to the partial
evaluator the luxury of emitting code that is almost identical to
the code used by the original interpreter. This would be harder to
do if, for example, the original interpreter were implemented in
hand-written assembly language. In that case we would likely have
to implement the constant propagation ourselves.

Albeit not a fundamental requirement, the C preprocessor was
a convenient feature. The LuaAOT code generator is essentially a
text-based code transformer and in that context it helps to have
a text-based macro system built into the target language. Unlike
inline functions, macros can jump to other parts of the program
and assign directly to local variables.

5 RELATEDWORK
Although our work is inspired by partial evaluation, it is not a
partial evaluation system. There is a rich literature on these par-
tial evaluation systems and their application to interpreters [1, 13].
However, one difference between our work and these partial evalu-
ation systems is that they usually require that the input interpreter
must be in some specific format that the partial evaluator can work
with. LuaAOT is a case study in doing this partial evaluation in an
ad-hoc manner, on an existing interpreter.

A relevant example of partial evaluation for interpreters is the
Truffle framework [18, 19]. Truffle allows a language implementer to
create an efficient just-in-time compiler based on an AST interpreter.
The implementer can write the AST interpreter and provide hints
that tell Trufflewhich run-time type information should be collected

and where to use the partial evaluation. As we just mentioned, one
important difference compared to our work is that Truffle requires
that the interpreter be written in Java, using the Truffle framework.

Another area we touch is the study of interpretation overhead.
One way that this has been studied is by profiling the interpreter
while it is running, to measure how much of the execution time can
be assigned to bytecode decoding and dispatching [14]. However,
if the motivation for the question is to compare the performance of
an interpreter with a compiler, it is useful to measure the result of a
compiler, which in addition to removing the decoding and dispatch-
ing, would also perform optimizations that are natural to implement
in a compiler. One such compiler is Barany’s pylibjit [2]. Barany
implemented a just-in-time compiler for Python using the GNU
LibJIT [17] library. Similarly to LuaAOT, his compiler also works
at the bytecode level, converting each Python bytecode instruction
into a machine code sequence. Barany measured the effect of en-
abling and disabling various optimizations passes of his compiler,
to estimate how much of an impact these aspects have in the perfor-
mance of Python programs [3]. Some of the optimizations that he
implemented were removal of redundant reference counting, static
dispatch of arithmetic operations, unboxing of number and con-
tainer objects, and call-stack frame removal. These Python-specific
optimizations allowed Barany to investigate the performance im-
pact of more features of the interpreter other than just the bytecode
handling. However, his compiler is more complex than ours; he had
to reimplement most of the bytecodes using the LibJIT framework.

Finally, we want to mention that our work does not consider
optimizations of the interpreter itself, including superinstructions
or threaded dispatch [6]. We also did not study the effect of type
inference. Our focus was in reducing the direct interpretation over-
head.

6 CONCLUSION
Dynamic programming languages are often implemented using
interpreters, which spend some portion of the running time on
interpretation overhead. Compilers can avoid this, but they may be
complex to implement.

In this paper we have presented LuaAOT, a simple ahead-of-time
compiler for Lua. Using less than 500 lines of new code in a total of
1600 lines, we were able to compile the entirety of Lua, including
features like coroutines and tail calls.

In return, we achieved a reduction in running times between 20%
and 60%. While these numbers cannot compete head-to-head with
a good JIT compiler, they demonstrate a noticeable performance
boost, for a tiny fraction of the implementation cost. These numbers
also offer a contribution to studies about interpretation overheads.

One novelty presented in this paper was the trampoline-based
compilation strategy, which does not require modifications to the
jump instructions. While it is not as fast as the goto-based strategy,
it is even simpler to implement. It also supports coroutines with very
little work. That is something that is tricky to do when compiling
to C, because C itself does not support coroutines.

We believe that the technique we used to implement LuaAOT
may be of interest to other programming languages. In particular,
the basic ideas of our work may also be applicable to other inter-
preters that use a bytecode-based virtual machine written in C.
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A EXAMPLE OF GENERATED CODE
In Section 2, our examples featured a simplified interpreter. In this
appendix, we show some real code produced by LuaAOT. It is the
result of compiling the foo function from Figure 1. To make it fit, we
made minor stylistic edits and replaced some sections by /*...*/
comments. The code starts with some boilerplate initialization code,
followed by the coroutine dispatch table, and finally the handlers
for each bytecode instruction. In this code, we can see some of
the preprocessor macro tricks. The vmfetch macro initializes the
i variable to a compile-time constant, allowing the C compiler
to constant fold the GETARG_sBx macro. The LUAOT_SKIP1 macro
allows instructions like op_arith to skip over the next instruction;
in the original interpreter, they increment the program counter
(pc++) while in LuaAOT we replace that by goto LUAOT_SKIP1.
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{
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LClosure *cl = clLvalue(s2v(ci->func));
TValue *k = cl->p->k;
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if (trap) { /*...*/ }
StkId base = ci->func + 1;

Instruction *code = cl->p->code;
Instruction i;
StkId ra;
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case 0: goto label_00;
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case 6: goto label_06;

}

// 0 - LOADI 3 17
#undef LUAOT_SKIP1
#define LUAOT_SKIP1 label_02
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// 1 - ADD 0 1 2
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#define LUAOT_SKIP1 label_03
label_01: {

aot_vmfetch(0x02010022);
op_arith(L, l_addi, luai_numadd);

}

/*...*/
// 6 - RETURN0
label_06: {

aot_vmfetch(0x00010247);
if (L->hookmask) {

L->top = ra;
savepc(ci);
luaD_poscall(L, ci, 0);
trap = 1;

} else {
L->ci = ci->previous;
L->top = base - 1;
for (int nres = ci->nresults; nres > 0; nres--)

setnilvalue(s2v(L->top++));
}
return;

}

Figure 7: The actual code generated by the compiler.
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