
Converting regexes to Parsing Expression Grammars

Marcelo Oikawa1, Roberto Ierusalimschy1, Ana Lúcia de Moura1

1Departamento de Informática, PUC-Rio,
R. Marquês de São Vicente 225, Gávea,

Rio de Janeiro, 22453-900.

{moikawa, roberto}@inf.puc-rio.br, analuciadm@gmail.com

Abstract. Most scripting languages offer pattern-matching libraries based on
extensions of regular expressions. These extensions are mainly composed of ad-
hoc constructions that aim at specific problems, resulting in complex implemen-
tations without a formal basis. Parsing Expression Grammars (PEGs) provide
a well-founded alternative for pattern recognition, with more expressive power
than pure regular expressions. In this work we present a new algorithm to con-
vert regular expressions into PEGs and discuss the conversion of some common
regular-expression extensions, such as captures and independent subpatterns.
Besides its practical applications, this conversion algorithm sheds some light
on the semantics of those extensions.

1. Introduction
Most scripting languages offer pattern-matching implementations based on extensions of
regular expressions. These extensions, called regexes, aim to solve limitations in pure
regular expressions when used for pattern-matching. Among the most common construc-
tions found in these implementations we have anchors, independent subpatterns, captures,
and lookaheads.

Regexes are useful to describe several patterns in practice but they bring their
own set of problems. Because they incorporate an aggregate of features with no formal
basis, it is difficult to infer the semantics of some combinations and also to predict the
performance of any particular pattern.

Parsing Expression Grammars (PEGs) [Ford 2004] are a recognition-based foun-
dation for describing syntax, and provide an alternative for context-free grammars. Re-
cently, one of the authors [Ierusalimschy 2009] has proposed that PEGs also provide an
interesting alternative for pattern recognition, with more expressive power than pure reg-
ular expressions.

The absense of a formal basis for regex constructions and the expressive power of
PEGs motivated us to investigate a translation from regexes to PEGs. Our insight for this
investigation was that PEG operators, besides having similarities with pure regular ex-
pressions, also have similarities with regex constructions, such as lookaheads, possessive
quantifiers, and independent expressions. One result from this translation is a better un-
derstanding of the semantics of regexes, supported by the formal model of PEGs. Another
result is the possibility to execute regexes using a PEG engine.

This paper presents a new algorithm to convert regular expressions into PEGs,
called continuation-based conversion, and also discusses the conversion of some common

regular-expression extensions. It is organized as follows: section 2 discusses some typical
regex constructions. Section 3 reviews PEG concepts. Section 4 presents our algorithm
for converting regular expressions into PEGs and discusses the conversion of some regex
extensions such as captures and independent expressions. Finally, section 5 draws some
conclusions.

2. Regexes

Regular expressions are a powerful tool for describing regular languages, but are too
limited for creating some patterns in practice. Most pattern-matching implementations
are then based on combinations of regular expression operators, shown in table 1, with
additional constructions that address specific pattern-matching needs.

e L(e) Operation

φ φ empty language
ε {""} empty string
a {"a"} alphabet symbol a ∈ Σ

e1 | e2 L(e1) ∪ L(e2) alternation
e1 e2 L(e1) L(e2) concatenation
e∗ L(e)∗ repetition

Table 1. Regular expression constructors

Perl’s regex [Truskett] popularized the use of pattern-matching based on reg-
ular expression extensions, and introduced several constructions that are the basis for
most current regex libraries, such as Python’s [Lutz 2006], Ruby’s [Thomas et al. 2009],
Java’s [Habibi 2004], and the PCRE library [Hazel 2009]. These implementations are
based on backtracking, which allows them to determine exactly how a matching was
found, and thus support captures and backreferences.

The rest of this section presents some common regex extensions provided by Perl’s
regex. As we will see, some of these constructions do not have a clear semantics and when
we combine them unexpected behaviors can occur.

2.1. Independent expressions

An independent expression (sometimes called atomic grouping [Friedl 2006]) is a con-
struction that allows a subexpression to match independently of its enclosing expression.
If an independent expression matches, it will not be subject to backtracking, even if its en-
closing expression matching fails. Independent expressions are denoted by (?>p) where
p is a pattern.

Making subexpressions match independently has some interesting practical con-
sequences, notably for pattern optimizations. Because an independent expression is not
subject to backtracking, it is possible to avoid trying useless matches when no overall
match is found. As an example, consider the expression \b(?>\d*)\bwhere \bmatches
word boundaries and \d matches a digit. When we match this expression against the
string "123abc 456", the first \b matches at the start of subject and the subpattern

(?>\d*) matches "123", but the second \b fails to match between "3" and "a". Be-
cause the subpattern is an independent expression, there will be no further attempts to
match it with shorter sequences, which would not lead to a successful overall match.

Note that the use of independent subexpressions does not result only in a more
effective matching process. Whether a subexpression is an independent expression affects
the semantics of its enclosing expression, providing different matches or preventing some.

2.2. Quantifiers

Quantifiers are used to express pattern repetitions. All the pattern-matching engines stud-
ied offer at least two types of quantifiers: greedy and lazy.

Greedy quantifiers express the usual pattern repetition, and always try to match
the maximum possible span. Repetitions are non-blind: they occur as long as the rest of
the pattern matches. As an example, let us consider the expression .*10 that matches a
(possibly empty) string of characters followed by the substring "10". In order to permit
a match for the entire subject "May 2010", the repetition subexpression .* will match
the substring "May 20", leaving the rest of the subject to be matched by the subsequent
pattern 10.

Lazy, or non-greedy, quantifiers (also called reluctant) always try the shortest pos-
sible match that permits sucessful subsequent matches. A typical use of lazy quantifiers
is to obtain the value of a tag. A naive solution would use a greedy repetition like in
.*. If matched against the string "firstsecond" this
repetition will match "firstsecond" instead of the desired result "first".
An adequate expression for this task can be built with a lazy quantifier, like .*?,
which would match only the first tag value.

A third type of quantifier, called possessive, is offered by Perl’s and Ruby’s regex
implementations. Possessive quantifiers match the longest possible string, but never back-
track, even if doing so would allow the overall match to succeed.

Because independent expressions prevent backtracking, they can express posses-
sive quantifiers. As an example, the possessive quantifier (ab|c)*+ can be expressed
by the independent subexpression (?>(ab|c)*).

2.3. Lookahead

Lookaheads are used to check whether a pattern is followed by another without consuming
any input. Lookaheads are classified as zero-width assertions: zero-width because they
do not consume any input and assertion because they check a property of the matching.

A positive lookahead is denoted by (?=p), where p is a pattern. A negative
lookeahead is denoted by (?!p). The expression p(?=q)matches a subject if qmatches
after p, but q does not consume any portion of the input string. If a negative lookahead
is used, like in p(?!q), there can be no match for q after p for the overall match to
succeed.

A simple use for a lookahead is an expression that matches words followed by a
comma, like \w+(?=\,). We can also express the final anchor ($), which matches the
subject’s end, using the negative lookahead p(?!.). This expression matches only at

the end of the subject, where pattern . (which matches any character) does not match
because no more characters are available.

2.4. Captures

Regular expressions were originally introduced for describing languages. Therefore,
when we use regular expressions for pattern-matching, the basic ideia is to recognize
a particular set of strings in the subject.

However, in most practical uses of pattern-matching, it is usually necessary to
determine the structure of the given subject and retrieve the portions that matched specific
patterns. To accomplish this task, regex implementations provide captures.

To be able to support captures, a pattern-matching engine needs to break the
matching of a subject into matching portions, each of them corresponding to the match-
ing of a subexpression. It is then possible to determine how each of these matchings was
found and retrieve their results.

Captures are very useful, but they modify the matching process to match in a de-
terministic way, and can disturb some regular expression properties. The POSIX rules to
achieve determinism [IEEE 2004], for instance, alter the associative property of concate-
nation [Fowler 2003].

In all pattern-matching implementations, parentheses are used for making cap-
tures: the expression (p) indicates that the string that matched with pattern p will be
captured for later retrieval. The pattern "([a-z]*)" is a simple example that matches
strings enclosed in double quotes and captures these strings.

In Perl’s, Python’s and Ruby’s implementations, it is possible to make a capture
inside a positive lookahead. As an example, if the pattern p(?=(q)) matches, it pro-
duces the value captured by (q). Captures inside negative lookaheads are ignored, but
the libraries documentation do not describe this behavior.

2.5. Backreferences

Backreferences are used to reference a captured value at matching time. Backreferences
have the syntax \n, where n is the capture identifier. The backreference \1 in pattern
([a-z])\1 is replaced with the substring matched by the capture ([a-z]).

Backreferences extend regular expressions by allowing the recognition of more
than regular languages. As an example, the expression (a+)(b+)\1\2 defines the lan-
guage { a i b j a i b j | i , j > 0 } which is not context-free.

Backreferences can result in an exponential running time of the matching algo-
rithm. This problem is unavoidable because the 3-SAT problem can be reduced to regexes
with backreferences. Therefore, any matcher thus constructed is NP-Complete [Abigail].

The documentation of Perl, Python and Ruby regexes show some simple exam-
ples of backreferences, but do not explain their behavior when combined with other con-
structions. Some questions are difficult to answer without testing. For example: can we
quantify a backreference? Can backreferences be used inside character classes? Can we
capture backreferences? When testing these combinations we observe that backreferences
cannot be used inside character classes, but only Python’s documentation describes this

behavior. Our tests also showed that a backreference can be quantified in all implementa-
tions and can also can be captured, as in (ab)(\1).

2.6. Lookbehind

Lookbehinds are used to check whether a pattern is preceded by another, without consum-
ing any input. This construction is available in Perl, PCRE and Python implementations;
Ruby does not offer lookbehinds. The syntax for a positive lookbehind is (?<=p) and
for a negative lookbehind is (?<!p).

A lookbehind checks if the portion of the subject that precedes the current match-
ing position matches a given pattern. To perform this check, the matching engine saves
the current position and moves back, trying to match the pattern. After that, the engine
resumes the matching process from the saved position, and tries to match the rest of the
expression. As other zero-width assertives, lookbehinds do not consume any input.

Perl and Python regexes documentation state that lookbehinds can only use ex-
pressions that match “fixed width” strings. This restriction allows the pattern-matching
engine to know how many matching positions it needs to go back. However, the doc-
umentation do not clearly specify what kind of expressions can be accepted. A closer
inspection of these regex implementations reveals that expressions like abc, a{2} and
ab|cd are accepted but not a*, a+, a{3,4} or ab|c. They also exclude backreferences
inside lookbehinds because backreferences are patterns that match a variable number of
characters. The PCRE implementation permits more types of expressions inside lookbe-
hinds, such as a|ab.

Some other pattern-matching implementations are less restrictive with respect
to expressions inside lookbehinds [Friedl 2006]. Java’s lookbehind allows patterns like
(ab?), which matches an "a" optionally followed by a "b" (a matching with one or
two characters). The pattern-matching engine of Microsoft’s .NET does not impose any
restriction on expressions inside lookbehinds. However, variable length patterns inside
lookbehinds can result in efficiency problems when used without precautions, specially
for matchings near the end of a large input, because the pattern-matching machine may
need to try a matching from the beginning of the subject [Friedl 2006].

3. Parsing Expression Grammars

Parsing Expression Grammars (PEGs) are a formal system for language recognition based
on Top Down Parsing Languages [Ford 2004]. A PEG is an alternative for Chomsky’s
generative system of grammars, particularly context-free grammars and regular expres-
sions. PEGs have also been shown to be powerful enough to express all deterministic
LR(k) languages and even some non-context free languages [Ford 2004].

A PEG consists of a set of rules of the form A← e, where A is a nonterminal and
e is a parsing expression, plus an initial parsing expression es. Table 2 summarizes the
operators for constructing these expressions.

In an ordered choice expression e1/e2, the option e2 is only tried if e1 fails; once
an alternative has been chosen, it cannot be changed because of a later failure. This means
that a PEG does only local backtracking. As an example, consider the following PEG:

Operation Description

’’ literal
"" literal
[. . .] character class

. any character
e? optional
e* zero-or-more
e+ one-or-more
&e and-predicate
!e not-predicate
e1 e2 concatenation
e1 / e2 ordered choice

Table 2. Operators for constructing parsing expressions

S ← A B

A ← p1 / p2 / ... /pn

The attempt to match S begins by trying to match A. To match A, a match for its
first alternative, p1, is tried; if it fails, a match for p2 is tried, and so on. If a pattern pi

matches, there is no backtracking for A even if the subsequent match for B fails.

PEGs also offer two syntactic predicates, which do not consume any input. The
not predicate, denoted by !, corresponds to a negative lookahead: the expression !e
matches only if pattern e fails with the current subject. The and predicate, denoted by
&, corresponds to a positive lookahead. The expression &e is defined as !!e: it matches
only if e suceeds.

As an example, the following PEG matches C comments:

C ← "/*" (!"*/" .)* "*/"

After a match of the comment’s start ("/*"), the internal expression matches the com-
ment’s text by repeatedly consuming characters as long as "*/" (the comment’s end)
does not match.

The following PEG recognizes simple arithmetic expressions:

Exp ← Factor (FactorOp Factor)* !.

Factor ← Term (TermOp Term)*
Term ← "-"? Number

FactorOp ← [+-]

TermOp ← [*/]

Number ← [0-9]+

An arithmetic expression (Exp) is a sequence of one or more factors separated by
an operator ("+" or "-"). The pattern !. means that this sequence cannot be followed by

any character. A factor is a sequence of one or more terms separated by an operator ("*"
or "/"). A term is a number optionally prefixed with a "-". A number is a sequence of
one or more digits.

In particular, the PEG "" (an empty parsing expression) always match an empty
prefix of any string. The PEG !"", on the other hand, fails for any input. As we will see,
the empty PEG has an important role in our conversion algorithm.

4. Converting regular expressions to PEGs
Despite the syntactic similarity between regular expressions and PEGs, a PEG with a sim-
ilar syntax to a regular expression does not usually recognize the same language defined
by the expression. As an example, the regular expression (a|ab)c defines the language
{ac, abc}, but the PEG (a/ab)c does not accept the string "abc". This happens be-
cause after matching the first alternative a with "a", the PEG engine tries to match c
with the rest of the input, "bc". Although this subsequent match fails, there will be no
backtracking for the second alternative of the ordered choice, ab.

The example above is a particular case of the structure (p1 | p2) p3. In a PEG, if
p1 matches a portion of the subject and p3 does not match the rest of the input, there will
be no backtracking for the alternative p2. In pattern-matching engines, this backtracking
always occurs. In order to build a PEG that recognizes the language defined by a reg-
ular expression with such an structure, we need to append the pattern that follows the
alternation to the end of each alternative of the PEG ordered choice. This will result in a
expression like (p1p3 | p2p3).

In the following subsections we present an algorithm that correctly converts regu-
lar expressions and some of their extensions into PEGS. The basic idea of this algorithm
is to introduce an explicit continuation to guide the conversion process. As an example,
let us return to the expression (a|ab)c, which is a concatenation of two subexpres-
sions: (a|ab) and c. The second subexpression, c, can be seen as the continuation of
the first subexpression, (a|ab), in the sense that it defines what needs to be matched
subsequently. When we concatenate this continuation to all the alternatives in the first
subexpression, we obtain the PEG ac/abc, which correctly recognizes the language
{ac, abc}.

4.1. Continuation-based conversion

The continuation-based conversion is a function Π(e, k) that receives a regular expression
(e) and a continuation (k), and returns a parsing expression. The continuation defines what
needs to be matched after e. As a side-effect, throughout the conversion process a PEG
is built such that at the end of the conversion the resulting PEG is equivalent to the given
regular expression.

Note that the continuation-based conversion process begins with the empty pars-
ing expression "" as continuation, because when the entire expression matches, there is
nothing else to match.

We will define Π by cases. The first four cases are as follows:

Π(ε, k) = k (1)

Π(c, k) = c k (2)

Π(e1e2, k) = Π(e1, Π(e2, k)) (3)

Π(e1|e2, k) = Π(e1, k) /Π(e2, k) (4)

Case 1 describes the conversion of the regular expression ε, which matches the
empty string. This conversion results in the parsing expression provided as the continua-
tion.

Case 2 describes the conversion of a single character (c). Its result is the parsing
expression ck, that matches c and then k.

Case 3 describes concatenation. To convert a concatenation e1e2, we begin by
converting the second subexpression using the original continuation. This conversion is
denoted by Π(e2, k). The resulting parsing expression is then used as the continuation for
converting the first subexpression.

Case 4 shows that to convert an alternation, we need to convert each alternative
using the original continuation k. This is the key step for distributing the concatenation to
the alternatives, providing the solution to our original problem, the conversion of expres-
sions like (p1 | p2) p3 into (p1 p3 | p2 p3).

To deal with the conversion of repetitions e∗, we need something slightly more
complex. Our insight for this conversion is that a repetition can be defined as follows:

e∗ = e e∗ | ε

Using this equality, we can expand Π(e∗, k):

Π(e∗, k) = Π(e e∗ | ε, k)

= Π(e e∗, k) /Π(ε, k) (case 4)
= Π(e e∗, k) / k (case 1)
= Π(e ,Π(e∗, k)) / k (case 3)

Now, if we substitute Π(e∗, k) for a nonterminal A, we obtain

A = Π(e, A) / k

We then add the nonterminal A and its corresponding rule to the PEG built by the
conversion process, and define the conversion of a repetition as follows:

Π(e∗, k) = A (5)
where A ← Π(e, A) / k

As an example of the conversion of a regular expression into a PEG, let us convert
the expression (ba|a)*a:

Π((ba|a)*a, "") = Π((ba|a)*, Π(a, ""))

= Π((ba|a)*, a)

= A

A ← baA / aA / a

Note that baA/aA is the result of Π((ba|a),A).

Applying the continuation-based conversion to sequences of alternations may re-
sult in an exponencial growth of the size of the resulting parsing expressions. As an
example, the expression (a|b)(c|d) produces the PEG ac/ad/bc/bd, doubling the
number of alternatives. However, this does not mean that the resulting PEG will double
the time required to match the original expression using a regex engine. Because function
Π merely converts regex global backtrackings to PEG local backtrackings, the number of
backtrackings involved when matching a subject with either the original expression or the
produced PEG is actually the same.

An equivalent conversion to case 4 that preserves the number of alternatives in the
original expression and, thus, reduces space requirements, is given below:

Π(e1|e2, k) = Π(e1, A) /Π(e2, A)

A ← k

However, except for some uncommon examples, like the 82-line Perl expression
used for validating email adresses [Warren 2002], most practical uses of regexes involve
relatively small expressions. The largest sequence of alternations shown in the book Mas-
tering Regular Expressions [Friedl 2006], for instance, contains eight alternatives. All the
other examples in the book contain four alternatives at most.

A formal proof of the correctness of the continuation-based conversion is pre-
sented in Medeiros’ doctoral thesis [Medeiros 2010]. The basic idea of this proof is to
show that if a regular expression ek is equivalent to a PEG pk, denoted ek ∼ pk, then the
concatenation of an expression e to ek is equivalent to the conversion of e using pk as a
continuation: ek ∼ pk ⇒ e ek ∼ Π(e, pk).

4.2. Converting regexes to PEGs

We will now discuss how to convert some of the regex extensions presented earlier.

The conversion of lazy quantifiers is similar to the conversion of greedy quanti-
fiers, described in the previous section. In order to make the PEG simulate the behavior
of a lazy repetition, we only need to change the order of the alternatives in the rule that
we associate to the nonterminal. Case 6 describes how to do it:

Π(e∗?, k) = A (6)
where A ← k / Π(e, A)

With this new definition, A first tries to match only the continuation; if this fails,
it will match e and try again.

Independent subexpressions, as described in section 2, match independently of
their enclosing expressions. The basic concept here is to disallow backtrackings that retry
to match portions already consumed. Note that this is the original behavior of backtrack-
ing in PEGs, so all we have to do is to avoid converting e with the given continuation.
Instead, we convert e using the empty PEG as continuation and concatenate the original
continuation to the result of this conversion, as described by case 7:

Π((?>e), k) = Π(e, "") k (7)

We have discussed earlier that a possessive quantifier is a particular case of an
independent expression. Therefore, the conversion of possessive quantifiers is straight-
forward if we use case 7 as its basis:

Π(e ∗+, k) = Π(e∗, "") k (8)

A subexpression used in a lookahead also matches independently of the rest of
the pattern. To convert an expression in a lookahead we thus use the empty PEG as
continuation, as we have done for converting independent subexpressions. The resulting
expression is then prefixed with a syntactic predicate so that it does not consume any
input. The conversion of a positive lookahead uses the and predicate, as described by
case 9:

Π((? = e), k) = &Π(e, "") k (9)

To convert a negative lookahead, we use the not predicate (!):

Π((?! e), k) = ! Π(e, "") k (10)

Captures pose an insteresting problem, because our conversion algorithm may
break up a capture. To illustrate this problem, let us consider the expression {a(b|c)}d.
To avoid confusion, we have denoted the start and the end of a capture with the metachar-
acters ’{’ and ’}’. Our algorithm would distribute the capture delimiters to the alter-
natives, resulting in a PEG like {a(b}d|c}d), where the capture delimiters are not
statically balanced. So, clearly captures cannot be converted to equivalent captures in
PEGs.

5. Conclusions
This work presented a new algorithm to convert regexes into PEGs. It introduced the
continuation-based conversion function, showing how to use it to convert pure regular
expressions into PEGs; it then presented some extensions of this function that cover some
common constructions of Perl’s regex such as lookaheads, independent expressions, and
lazy and possessive quantifiers.

The main contribution of this work is to permit the execution of regexes on the for-
mal model of PEGs. Besides providing a better understanding of the semantics of regexes,
the conversion of regexes into PEGs also allows us to benefit from the performance model
of PEGs.

As we discussed earlier, captures pose interesting problems, and cannot be con-
verted to equivalent captures in PEGs. LPeg [Ierusalimschy 2008], a PEG implementa-
tion, provides several powerful capture functions. Based on this implementation, we are
developing an alternative for converting regex captures.

Backreferences also cannot be converted into PEGs. This regex extension is di-
rectly related to captures and thus its conversion depends on the provision of this facility.

The lookbehind construction also poses interesting problems. Behind its apparent
simplicity, it implies changes in the conceptual model supporting PEGs, which assumes
that only the rest of the input may affect the match. In PEGs, it can create subtle cases
of left recursion and infinite loops. We are currently investigating some alternatives for
converting this construction.

Based on the observation that right-linear grammars have the same behavior seen
both as PEGs and as CFGs, one of the authors has already proposed a translation from
finite automata to PEGs. The basic idea of this translation is to use traditional techniques
to convert finite automata into right-linear grammars, producing a PEG that recognizes the
same language as the given automata. In this paper we presented an algorithm to directly
convert regular expressions and some regex extensions into PEGs; as far as we know, this
is the first proposal of an algorithm to perform such a conversion.

References
Abigail. Reduction of 3-CNF-SAT to Perl Regular Expression Matching.
http://perl.plover.com/NPC/NPC-3SAT.html, visited on May 2010.

Ford, B. (2004). Parsing Expression Grammars: a recognition-based syntactic founda-
tion. In POPL ’04: Proceedings of the 31st Symposium on Principles of Programming
Languages, pages 111–122, New York, NY. ACM.

Fowler, G. (2003). An Interpretation of the POSIX regex Standard. http://www2.
research.att.com/˜gsf/testregex/re-interpretation.html, vis-
ited on May 2010.

Friedl, J. (2006). Mastering Regular Expressions. O’Reilly Media, Inc.

Habibi, M. (2004). Real World Regular Expressions with Java 1.4. APress.

Hazel, P. (2009). PCRE - Perl Compatible Regular Expressions.
http://www.pcre.org/, visited on January 2010.

IEEE (2004). The Open Group Base Specifications Issue 6. http:
//www.opengroup.org/onlinepubs/009695399/basedefs/xbd_
chap09.html , visited on December, 2009.

Ierusalimschy, R. (2008). Parsing Expression Grammars for Lua.
http://www.inf.puc-rio.br/˜roberto/lpeg/, visited on Novem-
ber 2009.

Ierusalimschy, R. (2009). A text pattern-matching tool based on Parsing Expression
Grammars. Softw. Pract. Exper., 39(3):221–258.

Lutz, M. (2006). Programming Python. O’Reilly Media, Inc.

Medeiros, S. (2010). Um Estudo Sobre Gramáticas de Expressões de Parsing e a sua
Correspondência com Expressões Regulares e Gramáticas Livres de Contexto LL(k)-
Forte. PhD thesis, PUC-Rio.

Thomas, D., Fowler, C., and Hunt, A. (2009). Programming Ruby 1.9: The Pragmatic
Programmers’ Guide. Pragmatic Bookshelf.

Truskett, I. Perl - Regular Expressions Reference.
http://perldoc.perl.org/perlreref.html, visited on January 2010.

Warren, P. (2002). regexp-based address validation.
http://www.ex-parrot.com/˜pdw/Mail-RFC822-Address.html,
visited on July 2010.

