
An Object�Oriented Library for

Tracing Requirements

Francisco A� C� Pinheiro

Universidade de Bras��lia
Departamento de Ci�encia da Computa�c�ao

facp�cic�unb�br

Abstract� We present the overall design of an object�oriented library
for use when developing tracing capable applications� The library is im�
plemented as java classes and consists of de�nitions of the basic classes
for registration of objects and relations	 as well as methods for di
erent
types of tracing procedures and components for manipulating tracing
results and viewing them graphically�

Keywords� Requirements traceability	 object�orientation	 object library	
tracing environments�

� Introduction

Requirements traceability remains an important concern for software developers�
including management� It supports assessment of changes� provides guidance�
and is viewed as a measure of quality� Nevertheless� its adoption and consequent
bene�ts do not produce uniform results �Palmer ������ There are many factors
in	uencing the e
ectiveness of requirements traceability� Environmental and or�
ganizational factors are chief among them but technical factors also have an
impact�

Many traceability models and techniques were proposed from tagging to in�
dexing schemes� through traceability matrices �Davis ������ tracing structures
�Gotel ���� and tracing languages �Pinheiro and Goguen ������ to cite just a
few� Although the basic concept of requirements tracing is quite simple� to fol�
low links or relations� its implementation is made di�cult because the proposed
models and techniques are not easy to be incorporated in tools and software
environments� They usually have to be hardcoded�

Some major gaps in the current traceability tools may be the result of this
lack of 	exibility� Jarke ������ identi�es the adaptability to project speci�c needs
as a critical issue and D�omges and Pohl ������ cite integration into the process�
adaptation to the situation� and support for organizational knowledge creation as
desirable features of tracing environments� Although these issues are not entirely
technical� a tracing library may be useful to overcome some of the di�culties
by making easier to develop software environments and applications exhibiting
desired traceability features�

Trace Engine

Trace State
Registration
Procedures

Extraction
Procedures

Trace
Objects

Trace
Viewers

Trace Manager

Fig� �� Tracing Library Components

In this paper we present the overall design of an object�oriented library for
tracing requirements� The library is implemented in Java and so are the examples
presented here� The paper is structured in the following way� Sect� � describes
the structure of the library and its basic classes� Sect� � describes the main
structure of the library� the con�guration automaton used to recognize tracing
expressions� Sect� � presents the procedures used to register objects and relations�
Sect� discusses some of the methods available for tracing� Sect� � presents some
of the classes used to show trace results in a window environment� and Sect� �
contains the concluding remarks�

� Objects and Classes

The library is composed by the four components shown in Fig� �� The Trace

Objects component contains the basic classes of traceable objects and their �al�
lowed� relationships� It is an extensible part of the library� the user may and
should provide his own classes� The Tracing Engine component comprises the
classes for controlling the state of the environment� i�e�� the con�guration of all
traceable objects and relations� as well as classes to implement procedures for
registering objects and relations and for extracting tracing results� The Trace

Viewers component contains classes providing several ways to visualize tracing
results� It is mainly intended for use in window applications� The Trace Manager

component is responsible for implementing the functionality of the library as a
whole� In every application or environment using this library there will be only
one instance of a class TrcManager� This instance controls the message passing
mechanism among all other library objects�

The library comes with an abstract class TrcObject that is the superclass of
all classes of traceable objects and relations� A traceable object is an object one
can trace using the library� The same explanation is valid for traceable relations�
All traceable objects should have an speci�c class that is a subclass of TrcObj
and all traceable relations should have an speci�c class that is a subclass of
TrcRel� This basic hierarchy is shown in Fig� � where Object is the superclass
of all Java objects�

Object

TrcObject

TrcObj TrcRel

Fig� �� Class Hierarchy

The relation objects are instances of TrcRel� They contain as a minimum
source and target attributes for holding the related objects�

public class TrcRel

�

TrcObject source�

TrcObject target�

�

The use of the library is simple� For an application A the user should import
the library classes he wants to use �in fact the only optional classes are those
implementing the trace viewers�� For every class Cobj whose objects he wants
to trace� he should declare it as a subclass of TrcObj� In the same way� for every
type of link he wants to consider for tracing an appropriate relation class should
be declared as a subclass of TrcRel�

Once the desired classes are structured the user should provide for every
created object to be registered with the trace manager�

� Con�guration Automaton

The con�guration automaton is the main structure of the tracing engine com�
ponent of the library� A con�guration automaton is an automaton used to verify
if a tracing expression is matched by any con�guration of objects and relations
registered in the environment� By registration of an object we mean the e
ective
creation of the object instance and its placement under the control of the trace
manager� i�e�� the object becomes traceable� Similarly� the registration of a rela�
tion comprises the e
ective creation of a relation instance relating two objects
and its placement under the control of the trace manager�

For each object obj and relation rel registered in the environment there are
corresponding states Sobj and Srel in the con�guration automaton� The con�g�
uration automaton is dynamically maintained�

SDerive

SobjA

SobjB

SobjC

SobjD

SRefine

S�

�

�

�

�

s

s

y

y

Fig� �� Con�guration Automaton

� For each object obj registered in the environment� a state Sobj is added in
the automaton as well as a transition from its initial state S� to Sobj � The
state Sobj is �nal and the transition is labelled with the object identi�er�

� For each relation instance of class rel relating objects obj� and obj�� a state
Srel and two transitions are added to the automaton� The transition from
Sobj� to Srel is labelled with the relation class identi�er rel and the transition
from Srel to Sobj� is labelled with object identi�er obj��

Figure � shows the states and transitions for a con�guration where objects
objA and objB are related by an instance of the relation class Derive and objects
objC and objD are related by an instance of the relation class Re�ne� There are
also procedures to remove states and transitions when the corresponding objects
and relations are excluded�

The con�guration automaton is implemented by the CfgState class�

private class CfgState

�

int stateType�

Vector stateTo� �� transitions coming out of state

TrcObject stateId�

�

The CfgState instances contain the attribute stateIdwhich holds �a pointer
to� the object corresponding to this state� the attribute stateTo which is a
list� implemented as a vector� of all arcs coming out of it� and the attribute
stateType used to di
erentiate the initial� object and relation states� Each el�
ement of stateTo points to a state reachable from this instance of CfgState�
Figure � illustrates the use of stateTo vectors in CfgState instances�

stateId�

stateTo�

stateType� stateId�

stateTo�

stateType�

stateId�

stateTo�

stateType� stateId�

stateTo�

stateType��

SI

�

objA

�

objB
null

rel�

�

�

R

�

Fig� �� CfgState instances

� Registering Objects and Relations

The user of the library has to know only one method for registering objects
and relations� The method trcRegister is polymorphic and implements all the
necessary operations to create the corresponding states and transitions in the
con�guration automaton�

�� trcRegister�TrcObj obj� to register objects one wants to trace�

�� trcRegister�TrcRel rel� to register relations one wants to use when trac�
ing�

A single initial state SI with stateType � �� stateId � null� and stateTo

� null is created automatically as part of the initialization of the con�guration
automaton� When registering an object objA we have the following procedure�

Sobj � new CfgState�objA�which creates a new instance of
the class CfgState with attributes
stateType � 	� stateId � objA� and
stateTo � null�

addStateObj�SI
Sobj� which adds the newly created state
Sobj to the list of states reached from
the initial state SI� that is� Sobj will be
an element of SI�stateTo vector�

When registering a relation instance rel	 of class rel relating objects objA
and objB we have the following procedure�

Srel � new CfgState�rel	�which creates a new instance of
the class CfgState with attributes
stateType � �� stateId � rel	� and
stateTo � null�

addStateObj�SobjA
Srel� which adds the newly created state
Srel to the list of states reached from
the state SobjA� that is� Srel will be an
element of SobjA�stateTo vector�

addStateObj�Srel
SobjB� which adds the state SobjB to the list
of states reached from the state Srel�

� Tracing Methods

There are some public methods to allow the user of the library to get and ma�
nipulate tracing results�

�� TrcGraph traceExpr�String strexpr� returns all object and relation in�
stances matching the tracing expression strexpr�

The traceExpr method implements tracing based on the matching of trac�
ing expressions� A tracing expression is a pattern of objects and relations� In
its most simple form a tracing expression consists of object and relation class
identi�ers� For example� for object identi�ers obj�� obj�� and obj�� and relation
class identi�ers Derive and Refine�

obj�Derive obj�
obj�Derive obj�Refine obj�
obj�Derive obj�Derive obj�

are all tracing expressions�
Tracing expressions are used in a pattern matching procedure to verify if

they can be recognized by the con�guration automaton� The string strexpr

is successfully traced if there are registered objects and relations satisfying the
pattern� For example� the expression

objA Derive objB Derive objC

will trace successfully if there is an object objA related to an object objB which
in turn is related to an object objC� all by relation instances of class Derive�

The tracing expression is really a regular expression where the symbols are
object and relation class identi�ers� Any sequence of the form

obj�identi�er� class�name obj�identi�er�

will be matched whenever there are actual objects identi�ed by obj�identi�er�

and obj�identi�er�� related by an instance of the relation class class�name� The
usual regular expression operators may be used� For example� the expression

objA Derive �objB objC�

will trace successfully if there is an object objA related by a relation instance of
class Derive to either an object objB or an object objC�

Tracing expressions are more 	exible than usual regular expressions� For
example� it is possible to express that the matching procedure should consider
the attributes of objects and not their identi�ers�

Requirement�priority � �� Derive ObjB

The expression above is matched by any object of class Requirement that
has the value � for its priority attribute and is related to object objB by an
instance of the relation Derive� There are several other possibilities to write a
tracing expression� All the possible forms and their formal details are presented
elsewhere �Pinheiro ������

The result of the method traceExpr is an object of class TrcGraph� which is
a graph with nodes representing objects and labelled arcs representing relation�
ships between them� It is a convenient way of viewing trace results graphically�

There are also more specialized methods used to trace objects in both forward
and backward directions�

�� TrcGraph traceFFGraph�TrcObj obj� returns all objects reached from obj

in a forward direction�
�� TrcGraph traceBWGraph�TrcObj obj� returns all objects reached from obj

in a backward direction�

The return types of these methods are also TrcGraph� which means that a
graph is returned as a result of using them� But the user may get list of objects
as a result of tracing using one of the following methods�

�� TrcList traceFFList�TrcObj obj� returns all objects reached from obj

in a forward direction�
� TrcList traceBWList�TrcObj obj� returns all objects reached from obj

in a backward direction�

The traceFFList and traceBWList methods result in an object of class
TrcList which is a list containing the objects reached from obj together with
the relations used to relate them� The result is indeed a list of triples

� source� rel� target �

each one indicating that object source is related to target by a relation instance
of class rel�

Given a trace result of type TrcGraph or TrcList the user may manipulate
its elements� For example� there methods for traversing the graph� probing the
result for speci�c objects� and getting the next element of the list� There are also
methods to directly inquiry the existence of relationships between objects�

�� Boolean isrelated�TrcObj source
 TrcObj target� returns true if the
object source is related to target by a relation of any kind�

�� Boolean isrelated�TrcObj source
 String rel
 trcObj target� re�
turns true if there is a relation of class rel relating source to target�

�� Boolean isrelated��TrcObj source
 TrcObj target� returns true if ob�
jects source and target are related by a chain of relations� with possible
intermediate objects�

� Viewing Results

The library has classes for manipulating tracing results in a graphical way� These
widgets are provided in terms of frames to be used in a window environment�

� TrcGraphFrame� This class allows the viewing of trace results graphically�
The nodes are mouse sensitive and activate pushdown menus with options
to show object�s properties� There are also buttons to select some classes
from the result such that only objects of these classes are visible�

� TrcListFrame� This class allows the viewing of trace results in form of a list�
It is also possible to selectively choose the classes of the visible objects�

� TrcMatrixFrame� This class allows the viewing of traceability matrices�

These classes are subclasses of the Java class Frame� They serve as containers
to hold complex objects� Each one of these classes has an attribute to hold the
data to be shown� The data for the TrcGraphFrame is a graph� i�e�� an object of
class TrcGraph� The data for the TrcListFrame is a list� i�e�� an object of the class
TrcList� The TrcMatrix is the class of the objects hold by the TrcMatrixFrame�

There are speci�c methods to generate traceability matrices�

� traceMatrix�Vector Lclass
 Vector Cclass� returns a TrcMatrix ob�
ject which is a matrix with a line for each object of class Lclass and a
column for each object of class Cclass and with elements �i� j� marked if
the object in line i is related to the object in column j by any relation�

� traceMatrix�TrcRel rel
 Vector Lclass
 Vector Cclass� returns an
object of class TrcMatrix with a line for each object of class Lclass and a
column for each object class Cclass and with elements �i� j� marked if the
object in line i is related to the object in column j by a relation of class rel�

If a more detailed matrix is needed one can use the traceMatrix method
specifying a list �class MtrList� of individual objects to be considered as elements
of lines and columns�

� traceMatrix�MtrList Lobj
 MtrList Cobj� returns a TrcMatrix object
with a line for each object speci�ed in the list Lobj and a column for each
object speci�ed in the list Cobj and with elements �i� j� marked if the object
in line i is related to the object in column j by any relation�

� traceMatrix�TrcRel rel
 MtrList Lobj
 MtrList Cobj� returns a ma�
trix object with a line for each object speci�ed in the list Lobj and a column
for each object speci�ed in the list Cobj and with elements �i� j� marked if
the object in line i is related to the object in column j by a relation of class
rel�

It is even possible to specify speci�c relation classes for each pair �i� j� such
that the matrix element �i� j� will be marked if the object in line i is related to
the object in column j by the relation speci�ed for �i� j�� The signature for this
method usage is not given here�

The data for these viewer classes may be maintained statically or dynami�
cally� Statically� once the data is shown� say from a TrcGraph object� it is not
modi�ed anymore� There are speci�c methods to update the contents of a viewer
class object� say generating a new TrcGraph object to be used as data source�
Dynamically� every time an object or relation is registered or unregistered the
data used as source may be regenerated�

�� In the event of registering a new object or relation� it is veri�ed if the tracing
result object been shown �graph� list� or matrix� should be modi�ed� If so�
then a new �graph� list� or matrix� tracing result object is generated and
used as data source�

�� In the event of an object or relation being unregistered� it is veri�ed if the ob�
ject is been shown as part of any instance of a viewer class �TrcGraphFrame�
TrcListFrame� or TrcMatrixFrame�� If so� then a new �graph� list� or ma�
trix� tracing result object is generated and used as data source�

� Conclusions

The library components presented here are useful for incorporating traceability
features into software development environments� The elements of the library
basically implement structures to maintain a con�guration state of objects and
relations and mechanisms to update and retrieve information from it� The library
does not de�ne any tracing model and does not enforce any tracing method�

As with any library� its use should be carefully thought in advance and the
tracing model to be implemented with the library should be designed to meet
speci�c user needs� Ramesh ������ identi�es two kinds of traceability users� Low
end users use traceability to

�� model dependencies among requirements�
�� allocate requirements to system components� and
�� establish links to compliance veri�cation procedures�

High�end users additionally use traceability to

�� capture process�related information� such as design rationale� and
� capture the evolution of various artifacts�

High�end users of traceability demand to know what information should be
captured� by whom� and how it should be used� They also require that the critical
elements of the software process should be traced to their stakeholders�

Of the above list of possible traceability usage� the one in item � referring
to the evolution of artifacts� is not properly captured by any element of the
library� Also� the usage mentioned in item � is only captured to the extent that
the process�related information may be represented by a tangible artifact like a
design rationale� Other types of process information that could be traced� like
assignment of tasks to individuals and organizational hints to speci�c expertise
�Rose ����� are of a more di�cult nature�

Another critical feature not addressed by the library is the generation of
traceability documentation� But in this case one may easily devise ways of ex�
tending the library to do so�

The library presented here is not enough to solve many of the important
problems associated with the implementation of traceability procedures� These
problems are to a large extent social� related to environmental and organiza�
tional issues� Nevertheless� the building of software development environments
and applications incorporating traceability features is made easier by the use of
a 	exible library of tracing classes� The design we presented here is of simple
use� For each software environment or application been developed one should�

�� Import the tracing classes from the library�
�� De�ne the class hierarchy of the traceable objects and relations by declaring

the classes he wants to consider as subclasses of either TrcObj or TrcRel�
�� Write down speci�c commands to register and unregister objects and rela�

tions� This may be facilitated by a good structuring of the application�
�� De�ne the interface� incorporating the trace viewer components he wants to

use�

At the moment the library is in a design stage� Thus� we lack a concrete
example showing its actual use� We expect the features discussed here to be
fully developed in the forthcoming months as a result of a master�s thesis� As
part of the work yet to be done we have to address issues like the storage of
tracing data in persistent media� con�guration management facilities to deal
with versioning of objects� and the use of the library in a multi�user� distributed
environment� dealing with multiple viewpoints and web�based development�

Acknowledgements

The anonymous referees provided useful comments that led to improvements in
this paper�

References

Davis	 A� M�� Software Requirements� Analysis � Speci�cation� Prentice�Hall Interna�
tional ������

D�omges	 R�	 Pohl	 K�� Adapting Traceability Environments to Project Speci�c Needs�
Communications of the ACM ���� ������ ����

Gotel	 O�� Contribution Structures for Requirements Traceability� Doctoral disserta�
tion	 Imperial College	 Department of Computing	 London	 August ������

Jarke	 M�� Requirements Tracing� Communications of the ACM ���� ������ ����
Palmer	 J�D�� Traceability� in� R� H� Thayer and M� Dorfman �editors�� Software Re�

quirements Engineering� IEEE Computer Society Press ������
Pinheiro	 F�A�C�� Design of a Hyper�Environment for Tracing Object�Oriented Require�

ments� Doctoral dissertation	 University of Oxford	 Oxford University Computing
Laboratory	 Oxford	 UK ������

Pinheiro	 F�A�C�	 Goguen	 J�A�� An Object�Oriented Tool for Tracing Requirements�
IEEE Software ��� ������ ����

Ramesh	 B�� Factors In�uencing Requirements Traceability Practice� Communications
of the ACM ���� ������ �����

Rose	 T�� Visual Assessment of Engineering Processes in Virtual Enterprises� Commu�
nications of the ACM ���� ������ ����

