
Requirements Elicitation Using a Combination of
Prototypes and Scenarios

Markus Mannio, Uolevi Nikula
Department of Information Technology, Lappeenranta University of Technology,

Lappeenranta, Finland
{Markus.Mannio|Uolevi.Nikula}@lut.fi

Abstract. A survey of different types of prototypes and current prototyping
methods is presented. Especially the usage of prototypes with use cases and sce-
narios is investigated, and an approach to requirements engineering combining
the systematic use of prototyping and use cases is described. The approach con-
sists of repeated prototype demonstration sessions with stakeholders in which
use cases represented by multimedia prototypes are demonstrated. The proto-
types are presented in a context familiar to the stakeholders and the use cases
and prototypes are refined based on stakeholder feedback for subsequent itera-
tions of prototyping. The purpose of the method is to aid in eliciting require-
ments from a diverse group of stakeholders. A small case study demonstrating
the approach is described where the method is used to elicit the initial require-
ments for a mobile payment system for car parking fees. The results of the study
are discussed and recommendations for future work are presented.

Keywords: requirements engineering, requirements elicitation, prototyping, use
cases, scenarios

1.� Introduction

A modern software engineering project involves a diverse group of different
stakeholders. The needs and expectations of the stakeholders in addition to, for exam-
ple, laws and industry standards form the basis for the requirements of a software
system. To successfully complete a software engineering project an agreement has to
be reached at the early stages of the project on what capabilities must be delivered and
what else is required of the system [1].
One of the most difficult problems in deciding on the system requirements is the
communication gap between different stakeholders. The system analysts tend to speak
with technical terms while the customer and end-users prefer to use the language used
in their daily business. As a result the analysts may not have a clear idea what kind of
system they are building and the customer and end-users are often surprised when they
notice that the final product does not fulfil their expectations and solve the problems
they needed the system for in the first place. A well-known solution for narrowing the

communication gap is the usage of prototypes, which present something concrete the
stakeholders can react to [2]. Another, more recent solution for improving the quality
of communication in requirements engineering is the introduction of use cases and
scenarios, which allow the different stakeholders describe and review the problem in
their own language instead of some abstract model [3].
Use cases and scenarios are common in requirements engineering and various meth-
ods for their use exist (e.g. [4,5,6]) and a number of methods for the usage of proto-
types also exist (e.g. [7,8,9]). However, even though use cases and prototypes are
frequently used together in software development, practical approaches combining
requirements specification, scenarios, prototypes, and evolutionary system develop-
ment do not exist [3]. To make the end user participation in requirements development
more natural we wanted to have an approach that helps the user to image herself in the
real use context. Thus we developed a systematic method combining prototypes, use
cases, and scenarios for specifying initial stakeholder requirements by representing
textual use cases with multimedia prototypes of the new system.
In Section 2 survey of different types of prototypes, prototyping methods, and their
usage with use cases and scenarios in requirements engineering is presented. Section 3
describes the proposed method itself and Section 4 presents a small case study demon-
strating it. Finally Section 5 includes the conclusions and proposals for future work
based on the case study results.

2.� State-of-the-art study

In the following an overview of different types of prototypes, prototyping methods,
and use cases and scenarios is presented.

2.1� Classification of prototypes

Different types of prototypes for different purposes in software engineering exist.
Prototypes can be categorised, for example, as throwaway versus evolutionary, hori-
zontal versus vertical, architectural versus requirements, textual versus visual, and
executable versus non-executable prototypes [7,8,10,11].
Architectural prototypes are concerned with the performance and the feasibility of the
technology used, whereas requirements prototypes are suggested to be used in re-
quirements acquisition and user interface design [8]. Wiegers [11] presents horizontal
prototypes as behavioral prototypes that do not necessarily contain any real function-
ality, whereas a vertical prototype implements a specific part of system functionality
in a quality manner. The goal of a horizontal prototype is refining unclear require-
ments while a vertical prototype is used, for example, in algorithm optimisation. Ac-
cording to Kotonya and Sommerville [10], throwaway prototypes are discarded when
the final system has been developed, whereas evolutionary prototypes are made avail-
able to users early in the development process and then extended to produce the final
system. Sommerville and Sawyer [9] describe executable prototypes as software con-
structed using a high level programming language and non-executable prototypes as
paper prototypes and other mock-ups of the system.

Visual prototyping methods include such techniques as diagrams, state charts, story-
boards, and scenarios, whereas textual methods consist of formal prototyping lan-
guages [7]. Sutcliffe [12], and McGraw and Harbison [13] propose that the use of
prototypes, mock-ups, examples, scenes, and narrative descriptions of contexts could
all be called scenario-based approaches.

2.2� Use cases and scenarios

Many different definitions for use cases and scenarios exist. Constantine and Lock-
wood [14] define use cases as a collection of user actions and system responses.
Similarly, Leffingwell and Widrig [8] describe use cases as interactions between the
user and the system. Wiegers [11] gives a more general definition presenting use cases
as descriptions of the tasks the system is required to accomplish. Although use cases
were introduced as a part of object oriented approach, in practice their use is not lim-
ited to object oriented methods [11,14].
Scenarios are defined as narrative descriptions or stories in a specific context bound in
time [14] or as specific instances containing descriptions of the environment, the con-
text, the actors, and the actions with definite beginning and end points [13]. They are
also presented as specific instances of use cases where a scenario describes a path of
actions through a use case [5].
Thus, both scenarios and use cases describe the interactions between the system and
the users without considering the internal structure of the system. Both describe the
user activities and system responses while scenarios describe the context and the envi-
ronment of the events in more detail. Use cases can be presented with different levels
of abstractions [14], and use cases themselves can be thought as abstract scenarios.
Use cases and scenarios can be used throughout the whole software system develop-
ment process from requirements elicitation to testing. In requirements elicitation and
analysis use cases can be used in an iterative fashion. First, the actors and their high-
level use case descriptions are acquired based on interviews and application domain
knowledge. After that the use cases are refined by gradually adding more detailed
scenarios and descriptions. The refined use cases are then analysed and the essential
use cases are chosen for implementation [5,6]. Leffingwell and Widrig [8] suggest use
cases to be used mainly for gathering functional requirements, but Kulak and Guiney
[5] propose also methods for non-functional requirements gathering with the aid of
use cases.

2.3� Prototype usage and methods

Asur and Hufnagel [7] suggest prototypes to be used for example in finding and speci-
fying requirements, studying feasibility of development strategies, defining user inter-
faces, helping in the communication between stakeholders and increasing their par-
ticipation in the system development process, and visualising future applications. Non-
executable and visual prototypes are considered as cheap, fast, and low-risk tech-
niques of prototyping that should be used when hypothetical system behaviour is to be
displayed or the problem is not well understood [7,9,11].

Sommerville and Sawyer [9] and Wiegers [11] suggest non-executable prototypes to
be used together with narrative evaluation scenarios to elicit requirements from
stakeholders. Scenarios are proposed to be used in interaction sessions between the
user and the system represented by a prototype. Kotonya and Sommerville [10] also
discuss a ‘Wizard of Oz’ prototyping technique where a person simulates the re-
sponses of the system in response to some user inputs and thus acts as the prototype.
Leffingwell and Widrig [8] discuss a storyboarding requirements elicitation technique
where a storyboard is an early representation of the system. Three different classes of
storyboards are presented: passive, active, and interactive.
Asur and Hufangel [7] present a general process for prototyping, which constitutes of
the following steps:

1. Preliminary analysis of users’ requirements.
2. Prototype design.
3. Rapid prototype implementation.
4. Prototype evaluation with different stakeholders.
5. Iterative refinement of the prototype.
6. Refinement of requirements and specifications.
7. Design and implementation of the production system.

Sutcliffe [15] and Sutcliffe and Ryan [16] present a scenario-based method that uses
early prototypes in combination with scenarios. A prototype is built based on initial
requirements elicited by conventional requirements elicitation techniques. The proto-
type is then presented as a script in a requirements analysis-validation session with the
users. Different options are visualised with design rationales and probe questions are
asked at key points of the prototype presentation. The sessions are recorded and the
data collected is analysed afterwards, and the prototype is revised based on user feed-
back. In the presented example cases the method was effective in gathering functional
and usability requirements. The noticeable differences between different analysts, and
the bias towards the option implemented in the prototype were some of the problems
discovered.
Studies in the commercial usage of prototypes [3,17] show that prototypes are widely
used in software development together with other methods. The main advantages of
prototyping perceived by software developers were better user involvement and im-
proved communication with the users. The biggest disadvantages were reduced man-
agement control of project, false user expectations, and time required for user partici-
pation [2,17].
A study of scenario usage in industrial projects [3] shows that scenarios are used for
diverse purposes in software development. According to the study scenarios are used
mostly in making abstract models concrete, interdisciplinary development, and facili-
tating agreement between different stakeholders. Scenarios presented in text, images,
diagrammatic notations, or animations and simulations were used with prototypes of
the new system in two-thirds of the projects studied. It was noted, however, that no
practical approach exists in combining requirements specification, scenarios, proto-
types, and evolutionary system development [3].

3.� Method

A method using a combination of prototypes, use cases, and scenarios for eliciting
initial software requirements is described. The process is based on the general
prototyping process presented by Asur and Hufnagel [7] and the scenario-based
method described by Sutcliffe [15]. It combines elements from the use case approach
first presented by Jacobson et al. [4] and further developed by, for example, Schneider
and Winters [6] with prototyping and scenarios [18].
In the method presented the use cases begin as abstract high-level descriptions of the
tasks the system needs to accomplish for each user class and gradually move towards
more concrete descriptions of how these tasks could be accomplished. Thus, the first
versions of the use cases resemble the “essential use cases” presented by Constantine
and Lockwood [14] evolving towards the more concrete “filled use cases” presented
by Kulak and Guiney [5]. Scenarios are used as more concrete instances of use cases
presented in user language within the context of use. The use cases and scenarios are
visualised with the prototypes in demonstration sessions with system stakeholders in
order to elicit software requirements.
The method is an iterating process in which the number of iterations through the
phases depends on the objectives of the process, the size and complexity of the sys-
tem, and the level of detail needed for the requirements. The outputs of the whole
process are the detailed use case descriptions with scenarios, other requirements, and
the prototype versions.
The steps of the process are shown in Figure 1 and explained in the following subsec-
tions.

Figure 1. The prototyping process.

3.1� Initial phase

The main purpose of first phase in the process is acquiring the basic understanding of
the system and familiarising the system analysts to the problem domain. This phase
roughly corresponds to the first steps of the processes and techniques presented by
Sutcliffe [15], and Schneider and Winters [6].
The system description, context, and initial boundaries are identified with traditional
requirements elicitation techniques such as structured and unstructured interviews, and
brainstorming sessions with the system stakeholders. Existing documentation and

Initial
phase

Use case
analysis

Prototype
construction

Session
analysis

Demonstrat ion
session

Prototype
design

Concluding
phase

Optional

developer domain knowledge are also studied. Different user classes of the system are
identified and the primary tasks that each class needs to accomplish are documented to
use case templates [6].
The templates for recording use cases and scenarios can be based, for example, on the
ones presented by Kulak and Guiney [5]. At least the name of the use case, date, a
short description, and user classes associated to the task are recorded at this stage. For
traceability reasons a unique identifier, the source of the use case, and change history
can also be documented [19,20]. The use case description is presented at a high level
of abstraction to describe only the task, not the implementation. General system re-
quirements that are not connected to any specific use cases are recorded in a separate
document. Also, the goals of the prototyping process are recorded to aid in evaluating
the progress and guiding the process.
This initial phase needs to be executed only in the beginning of the process. However,
it can be executed also on subsequent rounds through the process if major changes
occur in the system definition.

3.2� Use case analysis

In the use case analysis phase the decision is made about continuing the prototyping
process. The use cases, other documentation, and system analyst knowledge are com-
bined in document inspections to decide if the goals set in the initial phase of the
prototyping process are achieved and whether these goals are reasonably achievable. If
the goals are achieved or they are deemed unreasonable to prototype, the process it-
erations are aborted and the concluding phase is executed.
If the prototyping process is continued, the use cases to prototype have to be selected.
The previously recorded use cases are analysed and prioritised�according to the their
significance so that critical, poorly understood, ambiguous, or conflicting use cases
should have high priority and therefore they should be likely candidates for
prototyping. Prototyping well-understood requirements is unnecessary and should not
be done [8].

3.3� Prototype design

One prototype is designed for each use case chosen for prototyping. A context, which
is a description of the prototype environment presented in the user’s language, is de-
vised for the prototype. User classes are presented as specific people and storylines are
generated to justify and illustrate user actions. Scenarios are generated based on the
prototype context and can be documented as scenario descriptions.
Prototype structure is developed by first designing a prototype skeleton where every
use case event is represented by at least one prototype screen. The purpose of the
skeleton is to present the use case and the problem; proposing any solutions to open
questions should be avoided. The solutions and design options for the use case are
presented in the scenarios. Multiple alternative scenarios may be directly implemented
in the prototype, and separate documents such as design rationales [15,16] are not
needed. The starting and end points of each scenario are determined in the prototype

skeleton, so that each scenario can focus on a specific problem area and the common,
overlapping parts in scenarios need not to be designed multiple times. Also, the rela-
tionships between the scenarios themselves are determined; a scenario selected at any
given point of the prototype skeleton may propose further refined alternatives for
solutions. An example of a tree-like scenario structure is presented in Figure 2, which
also illustrates the difference between the use case events and scenarios.

Figure 2. An example scenario structure.

Finally, screens are designed for each scenario and the skeleton of the prototype by
describing what kind of multimedia objects each screen should contain.

3.4� Prototype construction

In construction phase the designed prototype structure and screens are implemented.
The prototypes are constructed from multimedia objects, which may consist of pic-
tures, animations, sounds, or video clips. These objects may be combined to form
more complex objects that may also contain user interactivity. The primary require-
ments for the prototyping software are the ability to display multiple multimedia ob-
jects on the screen, ability to interact with the objects, and the ability to link the
screens together so that an alternative scenario can be selected from any screen of the
prototype. Each prototype is named according the use case it represents and given a
unique version number to allow requirements traceability to a specific prototype ver-
sion.
First step in implementing a scenario is to construct the screens by searching suitable
multimedia objects from an object database. If suitable objects do not exist, they are
constructed, documented, classified, and inserted to the object database for future use.
Objects can be modified on screen to fit better in the context of the prototype and
scenario. Second, the screens are linked together to form the designed structure of the
prototype as shown in the example in Figure 2. Finally, the prototype is tested by
traversing the screens and links of the prototype, and by checking the functionality of
possible interactive objects.

Use case
event

Use case
event

Scenario
screen

Scenario
screen

Scenario
screen

Scenario
screen

Scenario
screen

Scenario
screen

Scenario
screen

Use case
event

3URWRW\SH
VNHOHWRQ

$OWHUQDWLYH
VFHQDULRV

:KDW�"

+RZ�"

3.5� Prototype demonstration session

The prototype is used in a demonstration session with the system stakeholders to rec-
ord stakeholder views and elicit requirements. The prototype is used to invoke reac-
tions from the stakeholders and create discussion about the proposed system and de-
sign options. The session set-up consists of the computer running the prototype, a
system analyst operating the prototype, a small group of system stakeholders, and a
projector displaying the prototype. The session set-up is similar to the one presented
by Sutcliffe [15]. Optionally, the session audio or video can be recorded, but this may
present some problems, such as stakeholder distraction [13]. If the prototype contains
interactive objects, recording the prototype screen display can also be used.
The course of the session is adapted from the principles described by McGraw and
Harbison [13]. The session begins with an introduction, where the system analyst
introduces himself, states the purpose of the session, explains the context of the pro-
totype and a short description of the use case. Then the system analyst runs the proto-
type through the skeleton of the use case events and concurrently recites the storyline
of the use case, thus presenting the use case and the problem. The main purpose of this
first round through the prototype is to give an overview of the use case and the con-
text.
The prototype is then restarted from the beginning and the system analyst tries to
stimulate discussion about each screen by asking questions and presenting the scenar-
ios as possible solutions. At each screen stakeholder suggestions, comments and ideas
are recorded in the prototype or on paper. If multiple optional scenarios are discussed
for a use case event, a preferred order of the scenarios should be decided and recorded.
General requirements that are not directly linked to the use case at hand are recorded
in the other requirements document. The system analyst concludes the session by
presenting a summary of the use case and the alternative scenarios discussed and the
stakeholder preferences documented during the prototype presentation.
Multiple prototypes and use cases may be presented in a session; preferably so that the
use cases are interconnected and have the same context to ensure continuity of the
storyline. That is, the post conditions of the previous prototype fulfil the preconditions
of the following prototype.

3.6� Session analysis

Each round of the process in concluded by a session analysis phase, where the
prototyping session recordings are analysed. The session recordings consist of the
textual information recorded in the prototype screens and paper, the other require-
ments document, and the possible audio, video, and screen captures.
Recorded text that is connected to the use case events skeleton should propose new use
cases, changes to the use case events or new scenarios. On the other hand, recorded
text connected to a specific scenario screen describes the suitability of the solution
presented by the scenario to the problem presented by the use case. The use case
events should be filled and made more concrete by modifying the use case description
based on the most preferred related scenario.

Thus, the use cases become more detailed in each round, as it is also proposed in the
processes presented by Kulak and Guiney [5], and Schneider and Winters [6]. After
the prototype version is documented on the use case and scenario templates, and the
prototype version and possible other recordings are stored, the prototype may be used
to serve as the basis for modifications for the next round of the process iteration be-
ginning from the use case analysis phase.

3.7� Concluding phase

This is the final phase in the process, which is executed after the decision about stop-
ping the iterations through the prototyping process is made. The purpose of the phase
is to combine all essential documentation generated during the process to a single
document to be available for the following stages of the system development. This
document should contain at least a description of the system and the problem proto-
typed, and an explanation of the goals of the prototyping process and their fulfilment.
Also, the latest versions of the use case descriptions and the other requirements docu-
ment should be attached. In addition, the constructed prototypes and session record-
ings should be stored and made available for future reference.

3.8� Summary of the proposed method

The proposed method is summarised in the following Figure 3. Each phase is de-
scribed by its inputs and outputs and tasks. The inputs with bold letters indicate new
inputs to the process; other inputs are outputs from previous phases.

4.� Case study

The described method was experimented using a small fictive test case in which the
first round through the process was executed. As the subject for the example case a
system handling the mobile payment of car parking fees was chosen. The phases of
the process executed during the case are described below in more detail.
In the initial phase the main idea is to familiarise the system analysts to the problem.
In this case the methods used for acquiring the basic understanding of the problem
were two stakeholder interview sessions and studying topic related literature. The goal
of the prototyping was set to be the elicitation of the initial system requirements.
Based on the interviews three top-level user classes of the system were identified: the
vehicle driver, traffic warden, and the system administrator. Also, the most important
high-level tasks for each of the main user classes were uncovered.
In the use case analysis phase it was determined that the objectives could be achieved
through prototyping and thus the process was continued. The information gathered
during the initial phase was analysed and three essential high-level use cases were
chosen for prototyping. The chosen use cases were the car driver parking a car, the car
driver ending parking, and the traffic warden checking the parking area.

,QSXWV 3KDVH 2XWSXWV
'RPDLQ�NQRZOHGJH
6WDNHKROGHU�YLVLRQ
'RFXPHQWV

,QLWLDO�SKDVH Prototyping goals
System context
User classes
Use case descriptions
Scenarios
Other requirements

Prototyping goals
System context
User classes
Use case descriptions
Other requirements
$QDO\VW�NQRZOHGJH

8VH�FDVH�DQDO\VLV Go / no-go decision
Description of the selected
use case

Description of the selected
use case
System context

3URWRW\SH�GHVLJQ
���'HVLJQ�FRQWH[W
���6HOHFW�VFHQDULRV
���'HVLJQ�SURWRW\SH

VWUXFWXUH
���'HVLJQ�VFUHHQV

Prototype context
Scenarios to implement
Screen descriptions
Scenario storylines
Prototype structure

Prototype context
Description of the selected
use case
Scenarios to implement
Screen descriptions
3RVVLEOH�SUHYLRXV�YHUVLRQ�RI
SURWRW\SH
0XOWLPHGLD�REMHFWV

3URWRW\SH�FRQVWUXFWLRQ
���&RQVWUXFW�VFUHHQV

���/LQN�VFUHHQV
���7HVW�SURWRW\SH

Use case prototype
New multimedia objects

Use case prototype
Scenario storylines
6WDNHKROGHUV�YLHZV
)DFLOLWDWRU�VNLOO

3URWRW\SH�GHPRQVWUDWLRQ
VHVVLRQ

���,QWURGXFWLRQ
���3URWRW\SH�SUHVHQWDWLRQ

���&RQFOXVLRQ

Session recordings

Session recordings 6HVVLRQ�DQDO\VLV New use cases
More detailed use cases
New scenarios
Other requirements

Prototyping goals
System context
Use case descriptions
Other requirements

&RQFOXGLQJ�SKDVH Process report

Figure 3. The phases of the prototyping process.

The prototype design phase was executed for each of the three use cases chosen for
prototyping. A common context was devised for all the prototypes forming a continu-
ous story from the beginning of the first use case to the end of the last. Scenarios were
generated and corresponding screens designed for each use case to present possible
solutions to the use case events. The screens contained mainly images but also some

animations were used. Finally, the structure linking the scenarios to a use case was
designed.
In the prototype construction phase the designs of the previous step were imple-
mented. In the lack of any domain specific multimedia object database or previous
prototype versions the primary source for the screens was Microsoft Digital Gallery
[21]. The tool used to construct the prototypes was Microsoft PowerPoint, which
loosely fulfils all the requirements set for the prototyping tool. After the prototype
screens were constructed and assembled to a PowerPoint presentation, the prototypes
were tested by executing all the scenarios by displaying all their respective screens in
correct order
The prototypes were demonstrated in one session with two customer representatives
and a system analyst. One of the customer participants had extensive technical knowl-
edge on the example case, while the other had a business-oriented background. The
purpose of the session was to increase the understanding between the customer and the
system analyst about the system properties. The session set-up consisted of a laptop
computer connected to a projector operated by the system analyst. The session was
begun by a short introduction from the system analyst describing the method and the
purpose for the session. The participants were encouraged to express their ideas and
opinions at any time during the prototype demonstration. The participants were espe-
cially encouraged to think what the main actor in the use case would do in the situa-
tion presented by use case and the scenarios.
The three prototypes had the same context and they formed a continuous story. First,
the car driver parked his car to attend a lunch meeting, and while he was having his
lunch a traffic warden checked the area where the driver’s car was parked. Finally, the
car driver left the restaurant to get back to his car and drove back to his office. At the
beginning of each prototype the analyst presented the use case and recited the sto-
ryline. Then the individual scenarios were discussed and the analyst recorded the dis-
cussions about the use case event or scenario in question on paper. The session was
concluded with the analyst stepping through the prototype and explaining the preferred
solution for each event.
After the demonstration session the written recordings were analysed. Unambiguous
customer preferences were obtained to most of the open questions presented by the use
cases. Details were added to the use cases based on the preferred scenarios of the
session participants. For example, in the parking use case the car driver should use a
mobile phone to call to a number to signal the beginning of parking. In some cases the
customers considered multiple options possible. These resulted in alternative paths in
the use cases, which could possibly be converted to totally new use cases. Completely
new use cases, such as: “Vehicle driver reserving parking space beforehand” or “Ve-
hicle driver registering to the parking service” were also discovered.
A summary of the time used by the system analyst for different phases in the case
study is presented in Table 1. The initial phase of the process took 17 man-hours and
other phases took a total of 40 man-hours. The time used on the design and imple-
mentation would probably have been notably reduced if previous versions of proto-
types and domain specific multimedia object database had existed.

3KDVH 7LPH��KRXUV�

Initial phase 17
Use case analysis 5
Design of prototypes 13
Prototype construction 14
Demonstration session 2
Session analysis 6
7RWDO ��

Table 1. Summary of the time usage in the case study.

5.� Discussion and conclusions

The method presented was successful in eliciting requirements from the customers in
the example case. An initial reaction was acquired from the customers about the dif-
ferent design options and in most open questions a preference was also established
between different options. In addition to the design options presented in the proto-
types, the session participants also presented other solutions to the questions, which
was probably due to the good domain knowledge of the customers. The main advan-
tage of the method was the increased mutual understanding developed during the pro-
totype demonstration session. Both the session participants and the system analyst
considered the session more focused and systematic than a session without the proto-
types would have been. Presenting the use cases and design options with the proto-
types helped the participants to concentrate on specific problems. Also, a better gen-
eral view of the system and the different design options was achieved.
Since the open questions and their possible solutions were separated in the prototypes
and the multiple design options were presented in the prototype itself, there was no
need for separate documents illustrating the different options. As a consequence some
of the possible disadvantages presented by Sutcliffe [15] and Sutcliffe and Ryan [16],
such as the difficulties in stakeholder understanding the options presented in diagrams
or stakeholder bias towards some solutions, were not so apparent in the example case.
One perceived problem was the lack of visualisation of the design options that were
presented by the session participants and had not been implemented in the prototypes.
These options were discussed but a better understanding would probably have been
achieved if the options could have been visualised somehow. Another problem was the
structural complexity of some of the prototypes presenting a lot of different scenarios,
which might cause stakeholder confusion in some cases. This could probably be
avoided by better planning and structuring of the use cases. Also, as suggested by
Sutcliffe [15], the system analyst style may have a considerable impact on the number
and quality of the requirements elicited.
Methods suggested by Schneider and Winters [6], and Kulak and Guiney [5] present
the use case approach, but offer little guidance how use cases could be combined with
the use of prototypes in practice. Sutcliffe [15], and Sutcliffe and Ryan [16] present a
method combining scenarios with prototypes without including all the design options
in the prototype itself. In the method presented in this paper the design options are

visualised inside the multimedia prototype itself to facilitate the communication with
the stakeholders. Also, the scenarios are presented in a use case context, thus making
it possible to incorporate the method in an existing use case based software process.
Naturally a realistic assessment of a requirements elicitation method in software engi-
neering is impossible unless a complete project is executed and evaluated. The quality
and sufficiency of the captured requirements is difficult to determine based only on an
incomplete example case. Although a substantial number of new requirements were
gathered in this case, the acquired information still represents the view of only one
group of stakeholders on some aspects of the future system.
The developed method focuses currently only to combine prototyping and scenario
approaches to improve the customer understanding and participation to the require-
ments elicitation in software development. Since issues like management and selection
of use cases, prototypes, scenarios, and traceability are addressed in other literature we
chose to ignore them in this phase of the method development (see e.g. [5,19,20]). Of
course, before the method is ready for industrial application these questions must be
studied closer and approaches to them must be integrated in the method.
In the future further studies are needed to assess the real value of the proposed method
for requirements elicitation. In addition to a more extensive case study a more com-
prehensive comparison of the method with existing methods should be conducted. The
most urgent development needs in the method itself are the ways to document session
discussions and presenting new and modified scenarios during the session.
For example being able to draw sketches of the proposed scenarios during the session
could reduce the need for follow-up sessions since new scenarios could be validated
immediately. Despite the shortcomings of the current method both the initial literature
and practical studies suggest that there is still space for requirements elicitation meth-
ods that provide the user a more realistic view on the planned software system.

Acknowledgements

This work was carried out in the Telecom Business Research Center (TBRC) of Lap-
peenranta University of Technology in co-operation with Sonera Service Software.
The authors would like to thank TBRC and Sonera for making this work possible and
especially Laura Nihti and Kari Leino from Sonera for their valuable advice and sup-
port. The project responsible director Prof. Heikki Kälviäinen and academic instructor
Prof. Jan Voracek are also acknowledged for their support for this work.

References

[1] Hruschka, P., “Detailing and deriving system requirements”, 3URFHHGLQJV�IURP�WKH�,QWHUQD�
WLRQDO�&RQIHUHQFH� DQG�:RUNVKRS� RQ� (QJLQHHULQJ� RI� &RPSXWHU�%DVHG� 6\VWHPV, March 1997,
pp. 25-32.
[2] Kimmond, R.M.,� ³Survey into the acceptance of prototyping in software development”,
3URFHHGLQJV�IURP�WKH�,(((�6L[WK�,QWHUQDWLRQDO�:RUNVKRS�RQ�5DSLG�6\VWHP�3URWRW\SLQJ, June
1995, pp. 147-152.

[3] Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P.,� ³Scenarios in system development:
current practice”, ,(((�6RIWZDUH, IEEE, 15(2) 1998, pp. 34-45.
[4] Jacobson, I., Christenson M., Jonsson P., Overgaard, G��� 2EMHFW�RULHQWHG� VRIWZDUH� HQJL�
QHHULQJ��D�XVH�FDVH�GULYHQ�DSSURDFK, ACM Press, 1992.
[5] Kulak, D., Guiney E., 8VH�FDVHV�±�UHTXLUHPHQWV�LQ�FRQWH[W, ACM Press, 2000.
[6] Schneider, G., Winters, J.P., $SSO\LQJ�XVH�FDVHV��D�SUDFWLFDO�JXLGH, Addison Wesley Long-
man Inc., 1998.
[7] Asur, S., Hufnagel, S., “Taxonomy of rapid-prototyping methods and tools”, 3URFHHGLQJV
IURP�WKH�,(((�)RXUWK� ,QWHUQDWLRQDO�:RUNVKRS�RQ�5DSLG�6\VWHP�3URWRW\SLQJ, June 1993, pp.
42-56.
[8] Leffingwell, D., Widrig, D., 0DQDJLQJ� VRIWZDUH� UHTXLUHPHQWV�� $� XQLILHG� DSSURDFK,
Addison-Wesley, 2000.
[9] Sommerville, I., Sawyer, P., 5HTXLUHPHQWV�HQJLQHHULQJ��$�JRRG�SUDFWLVH�JXLGH, John Wiley
& Sons Inc., 1997.
[10] Kotonya, G., Sommerville, I., 5HTXLUHPHQWV�HQJLQHHULQJ��SURFHVVHV�DQG�WHFKQLTXHV, John
Wiley & Sons Inc., 1997.
[11] Wiegers, K. E., 6RIWZDUH�UHTXLUHPHQWV, Microsoft Press, 1999.
[12] Sutcliffe, A., “Workshop exploring scenarios in requirements engineering´��3URFHHGLQJV
IURP� WKH� ,(((�7KLUG� ,QWHUQDWLRQDO�6\PSRVLXP�RQ�5HTXLUHPHQWV�(QJLQHHULQJ, Jan. 1997, pp.
180-182.
[13] McGraw, K., Harbison K., User-centred requirements�� 7KH� VFHQDULR�EDVHG� HQJLQHHULQJ
SURFHVV, Lawrence Erlbaum Associates, Inc., 1997.
[14] Constantine, L.L., Lockwood, L.A.D���6RIWZDUH�IRU�XVH��D�SUDFWLFDO�JXLGH� WR� WKH�PRGHOV
DQG�PHWKRGV�RI�XVDJH�FHQWHUHG�GHVLJQ, Addison Wesley Longman Inc., 1999.
[15] Sutcliffe, A., “A technique combination approach to requirements engineering”, 3URFHHG�
LQJV�IURP�WKH�,(((�7KLUG�,QWHUQDWLRQDO�6\PSRVLXP�RQ�5HTXLUHPHQWV�(QJLQHHULQJ, Jan. 1997,
pp. 65-74.
[16] Sutcliffe, A., Ryan, M., “Experience with SCRAM: a scenario requirements analysis
method́ ��3URFHHGLQJV�IURP�WKH�,(((�7KLUG�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�5HTXLUHPHQWV�(QJL�
QHHULQJ, April 1998, pp. 164-171.
[17] Khalifa, M., Verner, J.M., “Drivers for software development method usage´�� ,(((
7UDQVDFWLRQV�RQ�(QJLQHHULQJ�0DQDJHPHQW, IEEE, 47(3) 2000, pp. 360-369.
[18] Chance, B.D., Melhart, B.E., “A taxonomy for scenario use in requirements elicitation and
analysis of software systems”, 3URFHHGLQJV�IURP�WKH�,(((�&RQIHUHQFH�DQG�:RUNVKRS�RQ�(QJL�
QHHULQJ�RI�&RPSXWHU�%DVHG�6\VWHPV�(&%6�
��, March 1999, pp. 232–238.
[19] Gotel, O.C.Z., Finkelstein A.C.W., “An Analysis of the Requirements Traceability Prob-
lem”, 3URFHHGLQJV�RI� WKH�)LUVW� ,QWHUQDWLRQDO�&RQIHUHQFH�RQ�5HTXLUHPHQWV�(QJLQHHULQJ, April
1994, pp. 94-101.
[20] Robertson, S., Robertson J., 0DVWHULQJ�WKH�5HTXLUHPHQWV�3URFHVV, Addison-Wesley, 1999.
[21] Microsoft Digital Gallery, http://dgl.microsoft.com, Microsoft Corporation, 2001.

