
Specifying Cooperation Environment Requirements
using Formal and Graphical Techniques1

Marisol Sánchez-Alonso and Juan M. Murillo

QUERCUS Software Engineering Group, Computer Science Department, University of
Extremadura, Spain

{marisol, juanmamu}@unex.es

Abstract. . Using formal languages to specify system requirements guarantees
the correctness of systems specifications. However, having correct
specifications does not guarantee such specification matching user
requirements. To guarantee such matching, users are required to validate formal
specifications. This is a difficult task because, usually, users are unaware of
notations. This work focus on this problem, in particular the validation of
formal specifications of complex coordinated systems. To make the user’s
validation easier, a new graphic technique to represent the dependencies in a
coordinated environment is proposed. This graphic (and visual) technique
increases users’ understanding whilst lack of precisions is avoided. In fact, the
proposed graphics correspond with visual representations of formal Maude
specifications. Besides, taking advantage of the features of Maude, the system
simulation is supported by the execution of Maude specifications. Thus, users
are allowed to check whether the system produces the expected results.

1. Introduction

One of the first steps to be taken when developing software systems is to represent the
system’s requirements. Using formal languages in these steps allows the syntactic and
semantic correctness of the system specification to be checked, and at the same time,
ambiguities and lack of precision are avoided [1]. However, formal languages
themselves do not guarantee that produced specifications are valid [2]. Consequently,
one can have a correct specification that does not match the user requirements. So, in
addition to a system specification process, a specification validation step is required.

The validation process confronts informal requirements stated by users with
specifications representing the system’s conceptual model. Some validation methods
[3] include the simulation of the system by executing the formal specifications. Using
that technique, users can observe the system’s dynamic behavior in different
situations, checking whether the specifications produce the expected results.
However, validation presents some difficulties: The validation process requires the
users’ collaboration, requiring them to understand formal specifications to detect
errors and misinterpretations. Nevertheless, formal techniques are not especially

1 This work has been supported by the project CICYT under grant TIC 99-1083-C02-02.

comprehensible by users unaware of notation [2]. This problem grows when the
system being built is a complex one, in which different components interact following
some negotiation rules. In such cases, the formal specification of components
becomes obscured on the formal specification of negotiation rules, making harder the
validation task.

This paper focuses the above topics proposing a technique to make the
specification and validation process easier for both software engineers and users. This
proposal is based on the joint use of the formal language Maude [4] and a new kind of
diagrams called Interelement Requirement Diagrams (IRD). Maude is used to specify
components behavior. IRDs are used to specify the negotiation rules (coordinated
interactions) between components in a graphical way. The use of IRDs makes the
system specifications more comprehensible but does not introduce lack of strictness.
In fact, the artifacts from IRDs have a well-defined semantic in Maude (and finally,
IRDs are translated to Maude specifications). Thus, the main advantages of the
technique presented are:
1. Using IRDs designers specify the coordinated interactions between components

independently from components specifications. Thus, IRDs make the formal
specification of complex systems by focusing on how components interact and
abstracting from specifications of components’ internal behavior.

2. IRDs are a graphical and visual specification tool more suitable for system users
than formal specification languages. By using IRDs, users can easily understand
the specification of the negotiation rules that govern the interaction between
components.

3. The use of IRDs does not introduce lack of precision. IRDs are graphic
representations with a Maude specification, and this graphical interface makes the
Maude specification understandable.

4. The final specification obtained in Maude can be executed allowing the system
simulation. Thus, users are allowed to check whether the specified system
produces the expected result. Moreover, IRDs are integrated in a specification tool
that supports the progressive refinement of the system specification.
The paper structure is as follows: In section 2 related works are commented.

Section 3 describes the formal context used to specify de Diagrams explained in
section 4. In Section 5 the formal specification of diagrams are described. Section 6
explains future works and works in progress. Finally, section 7 presents conclusions
and next, the references.

2. Related works

In last years new specification languages (or extensions of existing languages) have
been appeared, combining formal techniques with OO paradigm, like, Lotos [5], Z++
[6], VDM++[7], ALBERT[8], TROLL[9], OASIS[10]; getting the advantages of
both, but the difficulty in understanding too.

With the aim of making the software development easier a wide range of graphical
tools combining both graphical and formal techniques, have been developed in recent
years. For example Rhapsody [11] and Statemate [12] are commercial tools based on

226 WER 2002

the use of statecharts [13], appropriate to specify intra object behavior. The OO-
Method [14] combines OASIS and UML [15], and the TROLL Workbench [16] and
TROLL Tbench [17] tools combine TROLL and OTROLL (based on OMT). These
tools can express in a detailed way the static and dynamic aspects of the system, but
making use of different charts to express each one.

Our proposal intends to express inter object behavior abstracting from the internal
behavior of the system’s components, in a unique diagram describing the important
static and dynamic features. This unique diagram provides a global view very
appropriate for users and designers to understand the system description.

In addition, in order to provide the validation process, several techniques have been
proposed rendering the conceptual model more comprehensible for users. Most of
these techniques consist of introducing graphic symbols or user’s concept defined
[18], paraphrasing parts of the conceptual model in natural language [19] or
generating explanations from the specification [20], but simulation by means of the
model execution is the technique that better permits the observation and testing of the
dynamic properties of the system. Often the formal specifications execution is named
animation. Most of the animation techniques need the translation of the specification
to a programming language to be executed [16,17,21]. That can provoke lack of
precision and fidelity between both representations due to the different abstraction
levels of the languages [22]. The use of a formal language like Maude allowing the
execution of formal specification avoids that problem.

3. Context

In this section, first, an overview describing the main steps of our proposal is
presented. Next, the Maude formal language and the motivations of its use in this
context are briefly outlined. Finally the objectives of IRDs are described to introduce
the next section.

The aim of this work is to integrate a set of techniques and tools to make the
description, the development and the validation of software systems with important
coordination constraints easier. All this focuses on the separation of the coordination
aspect promoting the reutilization of software components.

Figure 1 shows the main steps of the environment: 1) the main system components,
their external interface and the negotiation rules of the system are expressed using
IRDs. 2) The IRD has a Maude representation allowing to check for the agreement of
a detailed Maude specification with regard to the original requirements expressed in
the IRD. This representation is the entry to 3) the system specification in Maude. 4)
The behavior simulation of the system can be tested and validated in each refinement
iteration of the specifications as well as being in accordance with the formal
representation of IRD by means of 5) the checker.

Maude is an executable algebraic language based on rewriting logic. The language
allows both functional and object- oriented specifications in a concurrent and non-
deterministic environment. Maude specifications can be executed by means of its
rewrite engine, which facilitates its use for prototyping and for checking the
specifications behavior [23].

Specifying Cooperation Environment Requirements 227

Maude is divided into two levels: Core Maude and Full Maude. Core Maude contains
the basic syntax of the language allowing the definition of functional and system
modules. Operations and equations can be defined in both kinds of modules. In
system modules, rewriting rules can also be defined. Full Maude is developed on
Core Maude, and extends Maude with the necessary syntax to define object-oriented
modules. In these modules the rewrite rules are interpreted as state transition rules of
the object classes defined in them. Full Maude also provides the use of parameterized
modules by means of views and theories.

IRD
definition

Maude
representation

of IRDs

Maude
System

specification
Behavior
simulation

FeedbackRefinement

accordance
checker

IRD
definition

Maude
representation

of IRDs

Maude
System

specification
Behavior
simulation

FeedbackRefinement

accordance
checker

Figure 1. Main steps of the proposal

The clarity of the language, its wide range of application, its executability and its
reflection facilitates by modules provided in the environment, have been decisive to
select Maude as formal language in our context.

Finally, IRDs can be used to represent the negotiation rules in a separate way, by
means of interrelations between objects in a system, independently of the
coordination model adopted in the design phase. In this work, the first aim was to
translate the restrictions imposed by the coordination models to early phases in
software life cycle. Exogenous coordination models promoting the separation of
functional and coordination aspects were considered. In particular, attention was
focused on Coordinated Roles (CR)[24] because of its special adaptation. That model,
based on IWIM [25], makes use of Event Notification Protocols to coordinate the
different components of a system in a transparent way. In fact, the considered events
in this model (reception of a message, beginning of the processing of a message, end
of the processing of a message and state researched) have inspired the considered
events in the relation constraints of IRDs.

4. Interelement Requirement Diagram

In the early phases of the software development process, the scope, objectives and
constraints of the future system have to be described. It is interesting to represent the
system elements and their dependencies using an initial graphic schema, independent
of later design decisions. Users must help to make that representation, collaborating in
the discovery and the comprehension of the relationships between the different

228 WER 2002

components in the system. A diagram construction, in this way, would be the previous
step to define a formal model of the system and it could be very useful to identify the
candidate elements to be reused. With the aim of achieving an easy graphic
representation to express initial system requirements we propose a new kind of
diagrams named Interelement Requirement Diagrams (IRD).
The aim under IRDs is to represent the system’s main features in the requirements
definition when the system’s specific objects and their classes have not yet been
determined. This representation consists of a unique graphic where the following
topics are expressed: main system elements, their global behavior, how they are
related and how they answer to specific stimulus, and how different features in their
context are expressed. The same representation contains the system’s static (the
element’s observable structure and external interface) and dynamic (relations
describing the system behavior) aspects. Static aspects are expressed by means of
nodes named elements, their observable external actions (operations the element can
perform) and the values needed to perform these actions. Dynamic aspects are
expressed by means of relations between components, represented by single arrows,
where some conditions can decide if the action invocations are attended to.

Next, an example is introduced, in order to clarify the characteristics and
components of an IRD.

4.1. Museum example

The example presents a fire control system for a museum showroom. The showroom
has a smoke detector connected to several elements: an alarm, a shower and an access
door to the room. When sensors detect smoke, send messages to the elements,
invoking the actions to switch on the alarm, to open the shower and to close the door.
However, all these actions must be coordinated to avoid people may be trapped in the
showroom or the shower opens before the showroom has been evacuated.

The system alarm can perform the actions Alarm_On and Alarm_Off. The smoke
detector will invoke these actions when the smoke is detected and stops being
detected respectively. The shower can do the actions Open_Shower and
Close_Shower. These actions will be also invoked when there is smoke or not,
respectively. The door behavior is a little more complex. The door detects when
people come in or out in the showroom by means of sensors. The sensors send
messages invoking the action In or Out that increases or decreases respectively the
number of persons in the room. The door can also do the actions Close and Open that
are invoked when there is or not smoke. The Close action can be executed if there are
no people in the showroom and the door is opened. Otherwise the Close action will
not have effect. Close or Open actions modify the door state if they can be performed.

When the smoke sensor activates the alarm, and there are no people in the
showroom, the door will be closed. Then the shower will be switched on. Just when
the smoke stops being detected, the shower and the alarm will be switched off and
after the two actions occur, the door will be open automatically.

Figure2 shows the example IRD. Each element is represented as a node in the
graph. Thus, the museum IRD has three elements: (A) the alarm, (D) the showroom
door and (S) the shower. An element belongs to a specific class of elements (i.e. the D

Specifying Cooperation Environment Requirements 229

element belongs to the Door class of element). For each class of elements its
observable structure is described when the first element of the class is specified. In
this definition the following features can be expressed: a state, a list of values and a
list of actions. In this way, when a new elements belonging to a specified class are
defined, it is only necessary to express which is their class.

Element D is ::Door.
State closed : Bool
Value inside
Actions In { inside ++}

Out { inside --}
Close {if closed == false and inside= = 0 then closed = true}
Open {if closed == true then closed = false}

Element A is :: Alarm
Actions Alarm_On
 Alarm_Off

Element S is :: Shower
Actions Open_Shower
 Close_Shower

Relation Door_Ok
Constraint End Alarm_Off and End Close_Shower then Open mode synchronous

Relation Shower_Ok
Constraint State closed == false and End Alarm_On then Open_Shower mode synchronous

A
Alarm_On Alarm_Off

Shower_Ok

Open_Shower

Close_Shower

In

Close

Open

Out

Door_Ok

DS

Figure2. IRD of the Museum example.

The state is defined if the system behavior description refers to it. In the example,
only the Door element specifies a state that is referred to in the Shower_Ok relation.
Values represent variables or attributes of the elements that can be operated or
changed by actions in the element; and they cannot be referred out of the element
definition. The list of actions represents the operations that the element can perform
and can be externally invoked (represented as a double arrow to the element). If the
actions modify the state or the values specified as part of its internal behavior, that
feature must be specified making use of sentences. The sentences change the state
and/or values defined in an element and can be performed if a condition is satisfied.
The condition can ask about the content of the state and values. So, in the example all
the actions in the Door description define sentences modifying its value and its state.

230 WER 2002

The dependencies between elements are expressed by means of relations. In the
example there are two dependency relations: Shower_Ok defining the sequences of
actions to perform when there is smoke, and Door_Ok, defining the system behavior
when the smoke stops is no longer detected. Both relations need the conditions
imposed by their two origins to be satisfied. In the case of the Shower_Ok relation,
the Open_Shower action will be allowed if the Alarm_On action has ended and the
door state is closed. In the Door_Ok relation the Open action is allowed if the
Open_Shower and the Alarm_Off actions have been performed. So, in a relation the
following can be expressed: the conditions that must be satisfied in the origin and/or
final element(s), the events triggered, the actions to perform in the final element(s)
and the mode (synchronous or asynchronous) in which each action is invoked. Events
constrain the actions to be performed in the destination elements of a relation and can
be triggered from different elements (origins of the dependency relation). In the
Shower_Ok relation, the events state changes in the Door element, and the end of
processing of the Alarm_On action in the Alarm element constrains the execution of
the Open-Shower action in the Shower element. Thus, in this relation there are two
origins D and A, and one destination element S.

5. Formal representation of IRD

An IRD represents system requirements in a semiformal way providing a visual
representation of the system and a description of the constraints over the relations
between the system elements. That representation is easier to understand by users and
designers but it may be inaccurate, incomplete or inconsistent with the design
specification In order to take the advantages of this representation and avoid the
disadvantages, the semantic of each element in the IRD has been defined using the
Maude formal language. To facilitate that representation, several object modules have
been defined to be included. Some of then are shown below.

(omod DefELEMENT is

 protecting MACHINE-INT .

 protecting QID .

 sorts DefState ListVal Val NameState Atrib .

 subsorts Val < ListVal .

 subsorts Qid < Oid NameState .

 subsorts MachineInt Bool < Val Atrib .

 class Elmt | State : DefState .

 op null : -> DefState .

Specifying Cooperation Environment Requirements 231

 op Ste : NameState ListVal -> DefState .

 op <_;_> : ListVal Val -> ListVal .

 op <_:_> : MachineInt MachineInt -> ListVal .

 ops <_:> <:_> : MachineInt -> ListVal .

endom)

The DefELEMENT module defines the Elmt class, and all elements in an IRD are
instances of this class. The attribute State can be null when an element has no state
declared. Otherwise it will have a name and a value or list of possible values. A sort
named Attrib is a generic type that can be use to define any attribute in a specific
element if has no a predefined sort. In this module, two predefined Maude modules
are imported, MACHINE-INT and QID, to use the definitions and operations of
integer numbers and quoted identifiers respectively.

(omod DefRELATION is

 protecting DefSET .

 protecting DefELEMENT .

 sorts DefCons ListCons ListAct NotEvent Mode .

 class Relation | From : DefSet, To : DefSet,

 Constraint : DefCons .

 op __ : ListCons ListAct -> DefCons .

 ops RM BoP EoP : -> NotEvent .

 op Event : NotEvent Msg -> ListCons .

 op Event_._ : Oid NameState -> ListCons .

 op Event_._==_ : Oid NameState Val -> ListCons .

 op Event_._=/=_ : Oid NameState Val -> ListCons .

 op Eventnot_._: Oid NameState -> ListCons .

 op Eventnot_._==_ : Oid NameState Val -> ListCons .

 op Eventnot_._=/=_ : Oid NameState Val -> ListCons .

 op <_or_> <_and_> : ListCons ListCons -> ListCons .

232 WER 2002

 ops sync async: -> Mode .

 op Action : Msg Mode -> ListAct .

ops <_and_> <_or_> : ListAct ListAct -> ListAct .

ops <_orthen_> <_;_>: ListAct ListAct -> ListAct .

ops <_else_> <_xor_>: ListAct ListAct -> ListAct .

endom)

DefRELATION module is used to define constraint relations in an IRD. It imports
the above DefSET module and declares the Relation class. All constrains relations of
an IRD are instances of this class . The attributes From and To indicate the origin and
the end element or set of elements of the relation, and the Constraint attribute
indicates the conditions imposed by the relation. The operations show how to express
the different event notification modes and the priority and/or the messages necessary
to perform the actions imposed by the relation.

Next, in DefIRD, the class IRD is used to define an IRD. It has two attributes
representing the set of elements and the set of relations in the IRD.

(omod DefIRD is

protecting DefSET .

class IRD | ElmtSet : DefSet , RelSet : DefSet .

endom)

5.1. Formal representation of the Museum example

Performing to the Museum example, the different modules composing the formal
specification of the system are defined.. The module ELMT_Alarm represents the
Alarm class of element.

(omod ELMT_Alarm is

 protecting DefELEMENT .

 class Alarm .

 subclass Alarm < Elmt .

 msgs Alarm_On Alarm_Off : Oid -> Msg .

endom)

Specifying Cooperation Environment Requirements 233

Each element in an IRD is represented by means of an object module in Maude,
where a class is defined as a subclass of Elmt (defined in DefELEMENT) with its
own attributes and the actions defined as messages. Alarm is an Elmt subclass. The
two actions Alarm_On and Alarm_Off are represented as messages. No attributes and
State are defined in this element.

In the same way, the ELMT_Shower module is defined. with the Open_Shower
and the Close_Shower messages representing the corresponding actions.

(omod ELMT_Shower is

 protecting DefELEMENT .

 class Shower .

 subclass Shower < Elmt .

 msgs Open_Shower Close_Shower : Oid -> Msg .

endom)

The Door element definition in the IRD has four actions, the closed state typed
Bool and a value named inside. The actions are formally represented as messages, but
in this case the actions define sentences. When sentences are defined in an action,
those are represented in Maude as rewriting rules. Consequently, there is a rewriting
rule for each action. The left side in the rule represents the action invoked and the
configuration of the elements to apply the rule. The right side in the rule represents
the changes of the element after applying it. Conditional sentences are represented by
conditional rules.

(omod ELMT_Door is

 protecting DefELEMENT .

 class Door | inside : Atrib .

 subclass Door < Elmt .

 msgs In Out : Oid -> Msg .

 msgs Open Close : Oid -> Msg .

 var D : Oid .

 var A : Atrib .

 rl[in] : In(D) < D : Door | inside : A >

 => < D : Door | inside : (A + 1) > .

234 WER 2002

 rl[out] : Out(D) < D : Door | inside : A >

 => < D : Door | inside : (A - 1) > .

 rl[close] : Close(D) < D : Door |

 State : Ste (•closed , false) , inside : 0 >

 => < D : Door | State : Ste (•closed , true) > .

 rl[open] : Out(D)

 < D : Door | State : Ste (•closed , true) >

 => < D : Door | State : Ste (•closed , false) > .

endom)

So, the in labeled rule is applied when an In message is invoked; in this case the
inside value is incremented by one. In the same way, the out labeled rule acts on the
contrary, when an Out message is invoked. Close and open rules are applied only if
the corresponding actions are invoked and the conditions imposed by the state and
value of the Door are satisfied. To apply the close rule it is necessary the inside value
is 0 and the closed state is false. Only in this case the state is switched to true (the
door will be closed). On the other hand, the open rule will be applied when the action
is invoked, and if the closed state of the door is true, changing the state value to false.

Another object module represents the complete IRD in Maude, representing the
instances of the IRD class where the set elements and the set of relations are defined.
In the example, the IRD_Museum module represents the concrete instances of the
elements above defined and their relations.

(omod IRD_Museum is

 protecting DefIRD .

 protecting DefRELATION .

 protecting CONFIGURATION .

 protecting ELMT_Shower .

 protecting ELMT_Door .

 protecting ELMT_Alarm .

 subsort Qid < Oid .

 op init : -> Configuration .

 eq init = < 'S : Shower | State : null >

Specifying Cooperation Environment Requirements 235

 < 'A : Alarm | State : null >

 < 'D : Door | State : Ste ('closed , false)

 , inside : 0 >

 < 'Shower_Ok : Relation | From : 'A 'D , To : 'S ,

 Constraint: < Event 'D. 'closed and Event

 (EoP , Alarm_On('A)) >

 Action (Open_Shower ('S) , sync) >

 < 'Door_Ok : Relation | From : 'A ' S , To : 'D ,

 Constraint: < Event (EoP , Alarm_Off('A) and

 Event (EoP , Close_Shower('S)) >

 Action (Open ('D) , sync) >

 < 'Museum : DRI | ElmtSet : 'A 'D 'S ,

 RelSet : 'Door_Ok 'Shower_Ok > .

endom)

It is necessary to import all the above element definitions and the auxiliary DefIRD
and DefRELATION modules. CONFIGURATION is a predefined Maude module to
represent a specific object configuration. The Init operation results in a system
configuration, the associated equation creates instances of each element in the
Museum IRD. The ‘A alarm and the ‘S shower elements have null state attribute
because they have no state declared. The ‘D door element has a typical initial
configuration when the Museum is opened with the closed state set false and the
inside value set 0 (there are nobody in the showroom). The two constraint relations in
IRD are declared now. The ‘Shower_Ok relation indicates the origin of the relation in
the From attribute. In this case there are two origins: the ‘A and the ‘D elements. The
‘S final element of the relation is indicated by the To attribute. The Constraint
attribute expresses the necessary conditions to perform the Open_Shower action. Two
conditions must be satisfied to execute that action; the closed state of the ‘D door
element must be true and the end of the processing event over Alarm_On message to
‘A alarm element must have happened. The processing mode has to be synchronous:
the door and the alarm will be locked until the Open_Shower action can be processed.
The ‘Door_Ok relation acts in the same way; it has two origin elements and a final
element represented in the attributes. Its constraint also has two events that must
occur to allow the execution of the Open action in the shower element in synchronous
mode. These events are the end of processing the Alarm_Off action in the alarm
element and the end of the processing of the Close_Shower in the shower element.

236 WER 2002

Finally the ‘Museum object of IRD class is defined with the set of the door, shower
and alarm elements and the set of both relations.

In this way, the coordination constraints imposed by the relations between
elements are specified separately of the elements. So, this provides several
advantages. On the one hand, it is making the reusability of the IRDs easier, changing
the constraints imposed by the dependency relations without modifying the element
specifications. On the other hand, this representation allows one to focus on the
negotiation rules of the system abstracting of the component specifications.

6. Future works

Currently, we are developing the tool supporting the creation of IRDs and a checker
that determines whether the system’s refined specifications in Maude reflect only all
the elements and their relations expressed in the original IRD. The checker has to
guarantee that all features in the specification correspond to features in the IRD, and
all features in the IRD are presented in the specification through the successive
refinements and changes in the development process.

The relations between the system specification and the corresponding IRD have
been defined considering that in the detailed specification internal operations and
values that are not represented in the IRD can appear. In such case, the new features
only must reflect internal behavior and must not affect interelement relations or their
constraints.

The checker is being developed using Maude. The META-LEVEL predefined
module in Maude, facilitates the use of the reflective properties of the language,
simplifying the work with terms and modules in the same language.

The next objective is the generation of executable specifications from the system’s
IRD with the aim to validate the system’s behavior. In order to generate specifications
reflecting the intrinsic characteristics of cooperation environments, which are easier to
understand by designers, we consider more appropriate the generation of
specifications making use of CoordMaude (a set of primitives Maude that we are
developed allowing to use the syntax of Coordinated Roles[20] to generate Maude
specifications in a simple, clear and short way).

7. Conclusions

This work explains a technique to represent both visually and formally, the
dependency requirements between different elements in a system. Interelement
Requirements Diagrams facilitate the descriptions and representations of relations
between elements in a transparent manner with regards to the internal behavior of
each element. The advantages of this representation are: 1) simplicity in the
construction of systems by means of components composing, because the
coordination dependencies are specified separately from the components 2) the
changes in dependency policies can be easily expressed 3) usefulness in the
representation of open and distributed systems where the elements configuration, the

Specifying Cooperation Environment Requirements 237

system and their relations are variable and 4) a unique and single representation of the
system, expressing static and dynamic aspects.

The correspondence between an IRD and their representation using an executable
algebraic language provides a means to formally specify the IRD artifacts. So, it can
be used to validate the global system behavior executing those formal specifications
from a particular system configuration and simulating a set of event occurrences.
Moreover, that representation can be used to verify whether later specification
refinements are in accordance with the initial requirements represented by the IRD.
And a representation better oriented to designers can be generated, making use of the
coordination model based on the separation of the functional and coordination
aspects.

8. References

1. C. Rolland and C. Cauvet. “Trends and Perspectives in Conceptual Modelling”. In P.
Loucopoulos and R. Zicari (eds.), Conceptual Modeling, Databases and CASE, Chapter 1,
John Wiley and Sons, Inc. , 1992.

2. R. Kneuper. “Limits of Formal Methods” Formal Aspects of Computing. Vol. 9 , pags:
379-394, 1997.

3. A. Gravell and P. Henderson. Executing Formal Specifications Need Not Be Harmful.
Software Engineering Journal vol. 11 nº 2, 1996.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer and J. Quesada.
Maude: Specification and Programming in Rewriting Logic. Computer Science
Laboratory. SRI International. March 1999.

5. E. Cusack, S. Rudkin and C. Smith. An Object-Oriented Interpretation of LOTOS. In
S.Vuong (ed.) Formal Description Techniques II (FORTE’89), Amsterdam, 1990.

6. K. Lano. Z++: an Object-Oriented Extension to Z. In J. Nicholls, ed., Z Users Workshop:
Proc. of 4th Annual Z User Meeting. Springer-Verlag 1991

7. E. H. Dürr and J. Katwijk. VDM++. A Formal Specification Language for Object-
Oriented Design. In Proc. of TOOLS7 , Technology of Object-Oriented Languages and
Systems. Prentice-Hall,1992.

8. P. Du Bois. The Albert II Language. On the Design and the Use of a Formal Specification
Language for Requirements Analysis. PhD thesis, University of Namur, Belgium, 1995.

9. R. Jungclaus, G. Saake, T. Hartmann and C. Sernadas. TROLL. A Language for Object-
Oriented Specification of Information Systems ACM Transactions on Information
Systems vol.14 nº2, April 1996, pags 175-211.

10. P. Letelier, I. Ramos P. Sánchez and O. Pastor. OASIS v3.0: Un Enfoque Formal para el
Modelado Conceptual Orientado a Objeto. Universidad Politécnica de Valencia. 1998.

11. Rhapsody. I-Logix Inc., Andover, MA, 1999.
12. D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM Transactions

on Software Engineering and Methodology, vol. 5 nº 4, pags. 293-333. 1996.
13. D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer

Programming, vol 8. pags:231-274, 1987.
14. O. Pastor, V. Pelechano, E. Insfrán and J. Gómez. From Object-Oriented Conceptual

Modeling to Automated Programming in Java. In T.W. Ling, S. Ram and M. L. Lee (eds.)
Proc. of the 17th Int. Conf. On Conceptual Modeling (ER’98) LNCS 1507, 1998.N. E.

15. J.Rumbaugh, I. Jacobson, G. Booch. The Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

238 WER 2002

16. A.Grau. Computer-Aided Validation of Formal Conceptual Models PhD. Thesis.
Technischen Universität Braunschweig. March 2001.

17. J.Kusch, P.Hartel, T.Hartmann and G.Saake. Gaining a Uniform View of Different
Integration Aspects in a Prototyping Environment. In Proc. 6th Int. Conference on
Database and Expert Systems Applications (Dexa’95) Springer-Verlag LNCS 978 1995.

18. D. Kung. “The Behavior Network Model for Conceptual Information Modelling”.
Information Systems, vol. 18, nº 1 pags:1-21, 1993.

19. H. Dalianis. “A Method for Validating a Conceptual Model by Natural Language
Discourse Generation”. In P. Loucopoulos (ed.) Proc. of Int. Conf. On Advanced System
s Engineering (CAISE’92) Springer, LNCS 593, pags: 425-444, 1992.

20. J. A. Gulla. “A Genera Explanation Component for Conceptual Modelling in CASE
Environments”. ACM Transactions on Information Systems vol. 14, nº 2, pags:297-329,
1996.

21. P. Letelier. “Animación Automática de Especificaciones OASIS utilizando Programación
Lógica Concurrente”. Tesis Doctoral, Universidad Politécnica de Valencia, 1999.

22. I.J. Hayes and C.B. Jones. “Specifications are not (necessarily) executable”. In Software
Engineering Journal Vol. 4 nº6 pags:320-338, 1989.

23. Marisol Sánchez, José L. Herrero, Juan M. Murillo, Juan Hernández. Guaranteeing
Coherent Software System when Composing Coordinating Systems. A. Porto and C.
Roman (Eds.). Fourth Int. Conference COORDINATION’2000. LNCS 1906. 2000.

24. J. M. Murillo. Coordinated Roles: un modelo de coordinación de objetos activos. PhD.
Thesis. University of Extremadura, 2001.

25. F. Arbab. The IWIM Model for Coordination of Concurrent Activities. P. Ciancarini, C.
Hankin (Eds.). First International conference Coordination’96. LNCS 1061. 1996.

Specifying Cooperation Environment Requirements 239

