
Procedural Generation of Quests for Games Using Genetic Algorithms and

Automated Planning

Edirlei Soares de Lima

School of Design, Technology and Communication

Universidade Europeia

Lisbon, Portugal

edirlei.lima@universidadeeuropeia.pt

Bruno Feijó, Antonio L. Furtado

Department of Informatics

Pontifical Catholic University of Rio de Janeiro

Rio de Janeiro, Brazil

{bfeijo, furtado}@inf.puc-rio.br

Abstract — The production of high-quality commercial games

requires the work of a few hundred individuals, including

designers, artists, and story writers, to produce game content,

such as 3D models, textures, and narratives. Over the last

decade, the production of game content has grown to the point

of becoming a bottleneck in companies’ schedules and

budgets. In this context, procedural content generation

techniques are increasingly being applied to reduce the work

overload of the development teams. Although game

developers and academic researchers have extensively

explored procedural content generation, there is a lack of

techniques to handle procedural generation of quests. In this

paper, we present a new quest generation method based on

genetic algorithms and automated planning. By combining

planning with an evolutionary search strategy guided by story

arcs, the proposed method can generate coherent quests based

on a specific narrative structure. Preliminary results show

that quests created with our method are nearly at par with

those created by game design professionals.

Keywords – quest generation; genetic algorithms; planning;

interactive storylling;

I. INTRODUCTION

In the game industry, the production of high-quality
commercial games requires the effort of a few hundred
individuals, including artists, designers, programmers, and
story writers, many of whom work mainly to produce game
content, such as 3D models, textures, environments, stories,
and quests [10]. Over the last decade, the production of
game content has grown to the point that it has become a
bottleneck in companies’ schedules and budgets [11]. As a
solution to this problem, many game development
companies are employing Procedural Content Generation
techniques (PCG) to reduce the work overload of the
development teams. PCG involves the use of algorithms for
the generation of game content with limited or no human
contribution [12]. In this way, game content is not generated
manually by human designers, but by computers executing
well-defined procedures that can be adjusted to match the
vision and objectives of artists and designers.

With more than three decades of research, PCG methods
have been applied for the generation of many types of game
content (see [10] and [13] for extensive surveys of PCG
techniques). Today, PCG techniques are even presented as
key features and selling points of some games, such as No
Man Sky (2016), which featured a procedurally generated
open world universe composed of over 18 quintillion
planets with their own ecosystems and unique forms of
fauna and flora. Tools for PCG are also very common
nowadays, such as the SpeedTree system, which has been

used for the generation of trees, grass and other types of
vegetation in hundreds of commercial games, such as
Horizon Zero Dawn (2017), Far Cry 5 (2018), and Forza
Horizon 4 (2018).

Although PCG has been extensively explored by game
developers and academic researchers, there is a lack of
techniques to handle procedural generation of quests.
Computer Role-Playing Games (RPGs) usually employ
quests as a fundamental mechanism for narrative
progression, which provides players with concrete goals
that guide the gameplay. The computational generation and
adaptation of narratives is the objective of a specific type of
PCG oriented towards Interactive Storytelling, a promising
research area dedicated, since the 1970s, to exploring
narrative generation (see [14] for a survey on narrative
generation methods). However, most of the existing
narrative generation methods are not designed to handle
dynamic game environments. Although it is fair to
recognize that narrative generation methods have
significantly evolved in the last decades, we are still far
from having algorithms capable of producing complex and
creative stories with the quality of those created by
professional writers.

Quest generation for games involves several challenges,
especially regarding the dynamic interaction between
player, environment, and story, where the logical coherence
must be a primary concern. Indeed, even relatively
unimportant sidequests (quests that usually have no effects
in the main storyline of the game), must affect future
sidequests or game events that involve the same characters,
objects or places (e.g. if a character dies in one quest, he
cannot appear alive in a future quest without any
justification). Another essential requirement for a quest
generation system is related to its ability to generate
diversified plots. The repetition of gameplay elements is
known for causing frustration on players [16]; therefore, it
is important to guarantee the right level of variety among
the generated quests.

In this work, we aim at some of the challenges faced by
quest generation methods, especially how to achieve the
ability to handle dynamic game environments, guarantee the
logical coherence of the story, and generate diversified
plots. To accomplish this goal, we propose a new quest
generation method based on genetic algorithms and
automated planning. By combining planning with an
evolutionary search strategy guided by story arcs, the
proposed method can generate coherent quests based on a
specific narrative structure. The main objective of this paper
is to present our method and to validate the produced results
by analyzing how close the generated quests are to those
created by human game designers.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 495

The paper is organized as follows. Section II describes
related work. Section III introduces the proposed method for
quest generation and describes the implementation details
of the genetic algorithm. Section IV describes an application
of the method in a game prototype. Section V presents an
evaluation of the method. Section VII offers concluding
remarks.

II. RELATED WORK

There are several works on quest generation in the
literature, such as the generic framework presented by
Sullivan et al. [7]. In their system, a game manager uses the
player history and the current state of the world to
dynamically generate and alter the structure of quests. Their
rule-based system works on a library of quests and can
dynamically recombine them upon generation. Another
recent framework for quest generation was proposed by
Breault et al. [9], who present a quest engine that relies only
on automated planning to create quests. Their system takes
in a world description represented as a set of facts and
generates quests according to the state of the world using a
deterministic planning algorithm. A more dynamic solution
is presented by Lima et al. [8], who propose a method to
generate quests based on hierarchical task decomposition
and planning under non-determinism. Their approach
combines planning, execution, and monitoring to handle
nondeterministic events and support quests with multiple
endings that affect the game’s narrative and create
interactive and dynamic story plots.

Although, to the best of our knowledge, no previous
work has directly explored the use of genetic algorithms for
quest generation, we can find some related works that use
genetic algorithms for general narrative generation. An
example is the work of McIntyre and Lapata [2], which
describes a story generator system that employs an
evolutionary search strategy where each plot is represented
by an ordered graph of dependency trees (corresponding to
sentences of the narrative text). Since their algorithm works
directly with text sentences, the genetic operations were
designed to handle the syntax and semantics of the
sentences, such as the mutation, which can occur on any
verb, noun, adverb, or adjective in the sentence. If a noun,
adverb or adjective is chosen to undergo mutation, it will be
replaced with a new lexical item that is sufficiently similar.
Their algorithm uses a fitness function that scores
candidates based on their coherence.

The use of story templates and graphs to provide
information to a genetic algorithm was also explored in
previous works [1][4]. Ong and Leggett [1] present a system
for narrative generation that uses a genetic algorithm to
recombine story components created from a set of story
templates. In their algorithm, the fitness of a given story is
determined by the events, which must be previously rated
by the author. The basic structure of the narrative is ensured
by rules and conditions described in pre-determined
templates. In a similar context, Giannatos et al. [4] present
a system that uses an evolutionary algorithm to suggest new
story events that, if added to an existing story graph, would
improve the quality of traversals of the story space. Their
algorithm constructs story graphs with candidate plot points
and then samples 100 possible playthroughs from the story
graph. The sampled stories are then rated according to three
criteria: spatial locality, thought flow and motivation. The

final fitness is computed as the average of the fitness values
obtained from evaluating all playthroughs.

A different approach is explored by Nairat et al. [5][6],
where, instead of following a plot-based approach, they
integrate evolutionary methods in a character-based system.
They propose a method for generating stories that integrates
an agent-based system where the characters are created
using an interactive genetic algorithm. In their method, each
individual of the population is represented by internal states
(resources and emotions) and actions rules that define the
personality and behavior of the agent. The author is
responsible for observing and selecting the agents whose
behaviors are relevant for the intended story. When the
author decides that the characters are interesting enough to
develop further, the system performs the reproduction
process to create a new generation.

The combination of genetic and planning algorithms
was also previously explored by Giannatos et al. [3], who
proposed a method that uses genetic algorithms to generate
plan operators representing possible story actions. As is
common in planning-based storytelling systems, they
represent the story world using predicates and action
operators (defined by pre and post-conditions). The goal of
their genetic algorithm is to generate plan operators as
narrative units for constructing new story plots. In order to
evaluate the solutions, they use a fitness function that
estimates the operator’s contribution to generate
suspenseful stories. Although the work of Giannatos et al.
[3] explores the combination of genetic and planning
algorithms as proposed in this work, they use genetic
algorithms only to create new operators (parameters,
preconditions, and effects), without changing the initial
state and goals as we do in the present paper. In the context
of a game, it would not always be feasible to change existing
operators, as each operator results in a different mechanism
that must be implemented in the game. An evident difficulty
of their approach is that it does not generate meaning for the
operators. Their algorithm only generates preconditions and
effects that are logically valid, but it is not explicit what kind
of action/event the operator represents.

Although quest and narrative generation has been
extensively explored by academic researchers in game and
non-game contexts, most of the methods require a library of
existing quests (e.g.: [1][7]) or highly detailed descriptions
of planning problems with predefined goal states (e.g.:
[8][9]), which demands extra authorial work and restricts
the space of possible quests. In such context, the use of
genetic algorithms has been limited to non-game
applications, where event structures are not necessary (e.g.
[2][5][6]) or other methods are responsible for the actual
narrative generation (e.g. [3][4]).

III. QUEST GENERATION

In traditional literature, a quest represents a journey
towards a specific mission or goal, where multiple
adventures can occur. According to Propp’s analysis of
folktales [17], the main adventure begins when a villainy is
committed or a lack is recognized, after which the hero
departs on a perilous journey, culminating with a struggle
against some sort of adversary. But other adventures often
occur, typically in a preliminary phase wherein the villain
makes preparations, and even after the hero’s victory the
quest may not terminate.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 496

In computer games, quests also represent missions or
objectives to be accomplished by avatars (i.e. game
characters controlled by human players). However,
differently from the well-established theory about quests in
literature, there is no general quest theory in computer
games, mainly because the concept of narrative in
videogames is not properly defined. There are many
contradictory opinions about the videogame’s narrative:
Aarseth [18] describes it as a “post-narrative discourse”;
Tosca [19] claims that games are not narratives (and only
after the quest has been completed, it can be narrated as a
story); and Jenkins [20] defends a hybrid concept between
games and narratology.

In this paper, we consider that a quest is defined by a set
of tasks to be accomplished by the player (e.g. gathering and
delivering items, killing enemies, protecting and saving
characters). This set of tasks represents the plot of the quest
(i.e. storyline). Although each quest has its own plot (with
beginning, middle, and end), all quests take place in the
same world; therefore, changes in the world state can have
implications in the plot of future quests (e.g. if the player
opens the gate to a secrete place as part of the tasks of one
quest, there is reason to make it a recurring task in future
quests – except if there was an intermediary quest that
required the player to close the gate).

Game worlds are often populated by dozens of non-
player characters, amid thousands of objects, items, enemies
and places. In addition, players can interact with the world
by performing dozens of different actions, which increases
the complexity of finding a “good” sequence of tasks for a
quest. In this type of problem, the search space would
normally contain thousands of nodes that could produce
tens of thousands of possible quests. Searching in this
complex space is a difficult optimization problem that must
satisfy several constraints, typically related to the logical
coherence of the events, the overall narrative structure, and
the length of the quest. In this context, we argue that a
genetic algorithm is advantageous as it can search and find
good solutions in a more efficient way than traditional
search methods.

As illustrated in Figure 1, the architecture of the
proposed quest generator system is composed of two
subsystems: (1) the Offline Quest Generator (OQG), which
is responsible for running the genetic algorithm and
handling the results (generated quests); and (2) the Game
Manager (GM), which handles the execution of quests while
the player interacts in real-time. The OQG runs in a
preprocessing phase (offline) and provides the GM with the
full set of quests generated for the game. As part of the
OQG, the Genetic Algorithm module implements all
methods of a traditional genetic algorithm and handles the
execution of Quest Planners to validate the generated
quests. Quests are generated based on information stored in
a Domain Database, which includes the definition of valid
quest events, characters, places and objects that are part of
the game world. While players interact with the game, their
actions are used to update the World State, which is used in
turn by the Quest Manager to keep track of the player
progression as he/she performs quests. Meanwhile, the
Player receives help from the Player’s Assistant, who
provides tips about the next objectives of the current quest.

1 http://www.gutenberg.org/files/1228/1228-h/1228-h.htm

Figure 1. Architecture of the quest generator system.

A. Genetic Algorithm

The theory of evolution by natural selection proposed by
Charles Darwin in his famous book “On the Origin of
Species”1 states that all life forms that exist today are the
result of millions of years of adaptation caused by demands
of the environment (cf. [22]). According to this theory, at
any given time, several different organisms may co-exist
and compete for the same resources in an ecosystem. The
organisms that are more capable of acquiring resources and
successfully reproducing will have more descendants in the
future [15]. Organisms that are less capable, will tend to
have few or no descendants (less chance to survive). Over
time, the entire population of the ecosystem will evolve to
contain organisms that are more fit and adapted to their
environment than those of previous generations (promoting
the survival of the fittest).

A genetic algorithm abstracts these evolutionary
principles into computational processes that can be used to
search for optimal solutions of a problem. In a traditional
implementation, an initial population of individuals (also
called chromosomes) is randomly generated, where a
genetic structure represents each individual. This structure
is usually defined by a fixed-length bit string (but many
problems – including ours – require more complex
structures), where each position in the string represents a
feature of the individual (an analogy to the genes found in
DNA of biological organisms). Each individual of the
population is evaluated according to a fitness function.
After being evaluated, a certain number of individuals are
selected to be parents (according to their fitness) and
undergo crossover (also called reproduction or
recombination) and mutation processes in order to produce
a new and evolved population (the new chromosomes are
called offsprings). Since offsprings usually combine genes
from good individuals, they are expected to be better than
their parents. Therefore, offsprings are inserted into the new
population to replace the inferior individuals of the previous
generation. This process is repeated until a given
termination criterion triggers (usually a given number of
generations). The repetition leads to the evolution of the
population. At the end, the fittest individuals represent the
best solution to the problem.

Offline Quest Generator (OQG)

Domain
Database

Genetic
Algorithm

Quest PlannersQuest PlannersQuest Planners

Game Manager (GM)

World
State

Quest
Manager

Player's
Assistant

Player

tips

actionsworld data

quest events

quests

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 497

As illustrated in Figure 2, our method involves the main
steps of a traditional genetic algorithm (initialize
population, evaluation, selection, crossover, mutation) with
the addition of an extra control loop to manage the
generation of sequential quests. By updating the world state
(that is stored in the Domain Database) with information
extracted from the final state of the a previously generated
quest, the algorithm can guarantee the logical coherence of
sequences of quests.

Figure 2. Overview of the proposed genetic algorithm, where Φ is the

maximum number of generations and Θ is the number of sequential

quests to be generated.

In our genetic algorithm, each individual (i.e., each
chromosome) represents a quest, which is encoded as a
planning problem:2

𝑄 = (𝑃, 𝑆0, 𝐺, 𝑂),

where 𝑃 is a set of atomic formulas (or atoms, for short), 𝑂
is a set of planning operators, 𝑆0 is the initial state of the
quest, and 𝐺 is the goal state, such that:

• An atom is an expression of the form
𝑝𝑟𝑒𝑑(𝑟1, ⋯ , 𝑟𝑘), where pred is a predicate symbol

and 𝑟1 ,⋯ , 𝑟𝑘 are variable terms (e.g. CH1 and IT)
or ground terms (e.g. player and antidote);

• A literal is an atom 𝑝 or the negation of an atom,
¬𝑝, letting negation represent the deletion of the
proposition from the current world state S (i.e. we
use the closed-world assumption: a proposition
that is not explicitly specified in a state does not
hold in that state); and

• 𝑆0 ⊆ 𝑃 and 𝐺 ⊆ 𝑃 are sets of ground literals.
An operator 𝑜 ∈ 𝑂 is denoted by

𝑜 = (𝑛𝑎𝑚𝑒(𝑜), 𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑜), 𝑒𝑓𝑓𝑒𝑐𝑡(𝑜)),

where:

• 𝑛𝑎𝑚𝑒(𝑜) is the name of the operator, which is an
atom 𝑜𝑝(𝑥1, 𝑥2, … , 𝑥𝑘) , where 𝑜𝑝 is a unique
symbol called an operator symbol, and 𝑥𝑖 is a
variable symbol that occurs anywhere in o;

2 Notation closely adapted from planning theory [21].

• 𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑜) is a set of literals that define the
preconditions of 𝑜 (i.e. the positive and/or
negative literals that must be true in order to use
the operator 𝑜); and

• 𝑒𝑓𝑓𝑒𝑐𝑡(𝑜) is a set of literals that define the effects

of 𝑜 (i.e. the positive and/or negative literals the

operator 𝑜 will cause to hold).
The genetic structure of an individual comprises

schematic and reactive elements. Both 𝑃 and 𝑂 are
schematic and defined as part of the conceptual schema of
the domain (game world). While 𝑂 defines possible types of
events that can occur in the course of a quest, 𝑃 establishes
valid atoms to be used to describe states, goals, and
operators. These domain elements are schematic and used
to compose the planning problems of all individuals. On the
other hand, 𝑆0 and 𝐺 (initial state and goal state) are
reactive and can vary from one individual to another,
expressing different ways to perceive a situation and the
impulse to change it according to character-dependent
preferences. Therefore, 𝑆0 and 𝐺 are the elements that
define the distinguishing features of each individual and,
consequently, they are the elements submitted to the
crossover and mutation operations. Considering that these
elements are sets of ground literals with no fixed length,
they are represented in the genetic structure of the
individuals by two linked lists (in contrast to more
traditional implementations that use fixed-length bit strings).

The following example illustrates the representation of
an individual in our genetic algorithm (for the sake of
simplicity, we omitted operators and atoms that were not
relevant for this example):

Schematic:

P: at(C, P), has(C, P), hero(C), healthy(C),

 isantidote(I), alive(C), infected(C),

 cured(C), path(L1, L2)

o1:

 name: go(CH, PL1, PL2)

 precond: character(CH), place(PL1),

 place(PL2), at(CH, PL1),

 alive(CH), hero(CH),

 path(PL1, PL2)

 effect: at(CH, PL2), ¬at(CH, PL1)

o2:

 name: get(CH, IT, PL)

 precond: character(CH), item(IT),

 place(PL), at(CH, PL), alive(CH),

 hero(CH), at(IT, PL)

 effect: has(CH, IT), ¬at(IT, PL)

o3:

 name: attack(ZO, CH, PL)

 precond: zombie(ZO), character(CH),

 place(PL), at(CH, PL),

 at(ZO, PL), alive(CH),

 healthy(CH)

 effect: infected(CH), ¬healthy(CH)

o4:

 name: cure(CH1, CH1, IT, PL)

 precond: character(CH1), character(CH3),

 item(IT), place(PL), at(CH1, PL),

 at(CH2,PL), alive(CH1), hero(CH1)

 alive(CH2), infected(CH2),

 has(CH1, IT), isantidote(IT)

 effect: cured(CH2), healthy(CH2),

 ¬infected(CH2), ¬has(CH1, IT)

Initialize Population

Evaluation

Selection

Crossover

Mutation
Add Best

Quest to

 =

=

 Φ
𝑛𝑜 𝑒

𝑛 Θ

𝑛 = 𝑛

Update Domain
Database

𝑛𝑜

 𝑒

Start

Return Generated Quests

𝑛 =

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 498

Reactive (S0 with 20 genes and G with 4):

S0: character(john), character(anne),

 place(village), place(johnhome),

 place(store), item(antidote1),

 isantidote(antidote1), hero(john),

 alive(john), alive(anne), healthy(john),

 healthy(anne), enemy(zombie),

 path(johnhome, village), path(village,

 johnhome), path(store, village),

 path(village, store),at(john, johnhome),

 at(anne, johnhome),at(antidote1, store)

G: cured(anne), healthy(anne),

 at(john, johnhome), alive(john)

In the above example, the schematic elements define the
domain of the planning problem, which includes the
vocabulary of atoms used to describe the problem (𝑃) and
four operators based on the well-known STRIPS formalism
that represent possible events for the quest (go, get,
attack, cure). In the reactive part of the individual, we

can notice that the initial state of the quest (𝑆0) defines that
john and anne are characters; john is the hero of the story;
johnhome, village and store are places; john and

anne are both at johnhome, alive and healthy; antidote1

is an item that is at the store; there is a zombie that is an

enemy; and there is a path connecting johnhome with the
village (amongst other paths connecting places). The goal

state (𝐺) establishes that anne must be cured and healthy,

and john must be alive and at johnhome.
When the planning problem of an individual is solved

by a planner, the plot for the quest is established as a linear
sequence of events or tasks to be accomplished by the
player. In the above example, the plot comprises:

attack(zombie, anne, johnhome), go(john,

johnhome, village), go(john, village,

store), get(john, antidote1, store),

go(john, store, village), go(john, village,

johnhome), cure(john, anne, antidote1,

johnhome).

Individuals for the initial population of the genetic

algorithm are randomly generated according to the
information defined in the Domain Database (𝐷𝐵), 3 which
is a set:

𝐷𝐵 = {Α, Β, Γ, Δ, Ε},

where:

• Α is a set of pairs 𝛼𝑖 = (𝑜𝑏𝑗𝑖 , 𝑜𝑏𝑗𝑇 𝑝𝑒𝑖) that defines
all objects of the game world (𝑜𝑏𝑗𝑖) and associate
them with a specific object type (𝑜𝑏𝑗𝑇 𝑝𝑒𝑖). For
example, Α= {(john, character), (home(john),
place), (antidote1, item)} defines that john is a

character, home(john) is a place, and antidote1 is an
item. Currently, for the sake of simplicity, we
represent function symbols as constants (e.g., we use
johnhome instead of home(john));

• Β is a set of ground literals that describe properties
and relations of objects that exist in the game world,
e.g.: Β = { path(johnhome, village), alive(
john), at(john, johnhome), isantidote(

antidote1)};

3 In our implementation, 𝐷𝐵 is defined in an XML file. An
example of database used in our prototype is available at:
http://www.icad.puc-rio.br/~logtell/geneticquest_db.xml

• Γ is a set of semantic integrity constraints on
predicates 𝑝𝑟𝑒𝑑𝑖, which plays a central role in the
chromosome generation process of our algorithm.
Currently, we have three constraints types: variable
types, contradictory or opposite relations, and
existential uniqueness quantification. That is, each

member of the set Γ is 𝛾𝑖 = (𝑝𝑟𝑒𝑑𝑖 , 𝑜𝑝𝑝𝑖 ,
(𝑢1𝑡1,⋯ , 𝑢𝑛𝑡𝑛)) , where 𝑝𝑟𝑒𝑑𝑖 is a predicate

symbol with n terms (e.g. at, has, cured), 𝑜𝑝𝑝𝑖 is

the opposite predicate of 𝑝𝑟𝑒𝑑𝑖 , 𝑡𝑗 denotes the

object type (𝑜𝑏𝑗𝑇 𝑝𝑒) that is required for the 𝑗-th
ground term of 𝑝𝑟𝑒𝑑𝑖 to produce a valid instance of

the predicate, and 𝑢𝑗 indicates a uniqueness

quantification ∃! 𝑡𝑗 𝑝𝑟𝑒𝑑𝑖 (i.e., there exists exactly

one 𝑡𝑗 such that 𝑝𝑟𝑒𝑑𝑖 is true). For example, 𝛾𝑖 =

(𝑐𝑢𝑟𝑒𝑑, (𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟)) indicates that the predicate

cured has a single term that must be of type
character. An example of opposite relation is 𝛾𝑖 =
(ℎ𝑒𝑎𝑙𝑡ℎ , 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑, (𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟)), which denotes

that either healthy(john) holds or

infected(john) holds, but not both. An example

of uniqueness of a term is 𝛾𝑖 = (𝑎𝑡, (𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟,

∃! 𝑝𝑙𝑎𝑐𝑒)) , which denote that each character can

only be at one place at a time. In this later case, the
predicate at(john,…) can appear only once in a

state for the character john;

• Δ defines a set of planning operators based on the
STRIPS formalism (with preconditions and effects)
that represents all possible events that can occur in
the course of a quest; and

• Ε is a set of pairs 𝜀𝑖 = (𝑜𝑖 , 𝑡𝑒𝑛 𝑖𝑜𝑛𝑖) that
establishes how each operator 𝑜𝑖 affects the overall
tension of the quest (𝑡𝑒𝑛 𝑖𝑜𝑛𝑖), which can be
increased (+), decreased (-), or maintained (=). For
example, the attack operator creates tension and

the cure represents a resolution that reduces the

tension, therefore: Ε= {(attack, +), (cure, -), …}.
In order to create the initial population for the genetic

algorithm, planning problems are generated to represent the
individuals of the population. For the schematic elements of
each planning problem, 𝑃 is defined by the unique atoms
found in Α ⊆ 𝐷𝐵 and Β ⊆ 𝐷𝐵, and 𝑂 is created with the
planning operators defined in Δ ⊆ 𝐷𝐵 . For the reactive
elements, first the initial state of the quest (𝑆0) is initialized
with the schematic elements of the game world (Α ⊆ 𝐷𝐵),
and then a number of new ground literals are randomly
generated (according to the semantic integrity constraints
established in Γ ⊆ 𝐷𝐵) and added to 𝑆0 . Similarly, a
random number of ground literals are generated for the goal
state (𝐺). The process to generate random ground literals
automatically avoids adding repeated ground literals to the
same state and ensures the uniqueness of literals that contain
specific terms that must appear only once in a state
(according to Γ ⊆ 𝐷𝐵). The number of individuals of the
population and the total number of ground literals to be
added to 𝑆0 and 𝐺 are defined through parameters of the
genetic algorithm. In our experiments, we use populations

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 499

of 100 individuals and random values in the range [1, 30] to
define the number of ground literals of 𝑆0 and [1, 10] for 𝐺.

After generating the initial population, individuals are
evaluated according to the story arcs of their plots (see
subsection B for details about the fitness function). Then, to
select individuals for reproduction, we used the fitness
proportionate selection method (also known as roulette
wheel selection [22]), which uses the individuals’ fitness to
calculate a selection probability, allowing candidates to be
selected randomly but with a bias towards those with a
larger proportion of the population’s combined fitness. In
addition, to avoid decreasing the quality of solutions from
one generation to the next, we also applied the elitist
selection strategy [15], where a limited number of
individuals with the best fitness values are copied directly
to the next generation (in our experiments, we use an elitism
factor of 2%).

Once the individuals are selected for reproduction, the
next step of the algorithm is the crossover process, which
combines the genetic information of two parents to generate
new offspring. As illustrated in Figure 3, we use a single
point crossover on each reactive element of the individuals
(𝑆0 and 𝐺). Therefore, two crossover points are randomly
selected, one along the length of the initial state of the
parents (𝑆0) and another one along the length of goal state
(𝐺). When the length of the states does not match, the point
is selected along the smallest length. Then, ground literals
of the parents’ states on each side of the crossover points are
swapped and copied to two different children (Figure 3).
While copying ground literals to a new child, the algorithm
automatically removes repeated literals and ensures the
uniqueness of ground literals according to Γ ⊆ 𝐷𝐵. At the
end, two different children are created, each one carrying
genetic information from both parents (Figure 3).

Figure 3. Crossover process (vertical dashed lines are the crossover

points and shadowed variables are the parent X’s genes).

After crossover, offspring are submitted to mutation,
which prevents the algorithm from being trapped in a local
minimum and maintains the diversity of the population.
Considering that the reactive elements of individuals are
represented by sets of ground literals, traditional mutation
methods, such as flipping and interchanging genes, cannot
be directly applied. Therefore, we employed a mutation
procedure that randomly removes or adds ground literals
from the initial state (𝑆0), goal state (𝐺), or both. Given a
mutation probability 𝑀𝑝, a random mutation type 𝑀𝑡 (add,

remove, or add & remove), and a random target 𝑀𝑠 (𝑆0, 𝐺,

or both), the mutation is performed with probability 𝑀𝑝

4 https://archive.org/details/freytagstechniqu00freyuoft/page/n4

over state 𝑀𝑠 , changing it according to 𝑀𝑡 . When
performing an add mutation type, a new ground literal is
randomly generated according to the rules established in
Γ ⊆ 𝐷𝐵. In our experiments, we used 𝑀𝑝 = 20%.

All offspring created through the crossover process,
which may or may not be affected by mutation, are inserted
into a new population. When the size of the new population
reaches the maximum number of individuals (100 in our
experiments), the current population is replaced by the new
population, establishing a new generation. The new
generation is then evaluated and the whole process is
repeated for a given number of generations (Figure 2).

B. Fitness Function

In a genetic algorithm, the fitness function takes an
individual as input and returns a numeric value representing
the evaluation of the indicated individual. In our method, the
utility/quality of a quest is estimated by how well its plot
resembles a desired story arc.

The concept of story arc dates back to 1863, when
Gustav Freytag, inspired by the ideas of Aristotle about epic
poetry and tragedy, proposed a simple plot pattern that
represents the narrative structure of a classical five-act
tragedy (Freytag, 19004). This structure was enhanced by
subsequent theorists towards a more general model, known
today as Freytag's Pyramid or Freytag's Triangle. Although
modern literary narrative has been increasingly hostile to
normative notions of structure, the new entertainment media
(e.g. films, comic books, and videogames), have special
needs and challenges, because they deal with audiences
engaged in short episodes (e.g. 80 min films), visually
intensive discourses and short narrative cycles (e.g. comics
and graphic novels), and/or interactive experiences (e.g.
videogames and interactive storytelling). In these cases,
normative notions of dramatic structure are very helpful.
This may explain the enormous success of simple variants
of the Freytag's Pyramid that are known in the film and
videogame industry as story arcs.

The most famous story arc is the three-act structure used
by the film industry (Figure 4), which is divided into Setup
(1/4 of the story time), Confrontation (2/4 of the story time),
and Resolution (1/4 or less of the story time). This structure
has 3 notable turning points: Plot Point 1 (Inciting Incident),
Plot Point 2 (the stirring turning point, with uncertain
outcome – e.g. will the protagonist win, lose, or die?), and
Crisis (the climax, the final and dramatic confrontation,
which is followed by the denouement). As illustrated in
Figure 4, the horizontal axis represents time and the vertical
axis represents emotional tension.

Figure 4. Story arc as a three-act structure.

Parent X

Parent Y

𝑆0 = { 1

, 2

,

,

,

,

}

𝐺 = { 1

, 2

,

}

Child 1

Child 2

𝑆0 = { 1
 , 2

 ,
 ,

 ,
 ,

 ,
 }

𝐺 = { 1
 , 2

 ,
 ,

 }

𝑆0 = { 1
 , 2

 ,
 ,

 ,

,

}

𝐺 = { 1
 , 2

 ,

}

𝐺 = { 1

, 2

,
 ,

 }

𝑆0 = { 1

, 2

,

,

,
 ,

 ,
 }

Setup Confrontation Resolution

Crisis

Plot Point 1

Plot Point 2

tension

time

Inciting

Incident

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 500

Considering that story arcs are composed of falls and
rises in the tension axis, we represent a story arc of a plot 𝑝

as a sequence of symbols 𝑝𝑎𝑟𝑐
𝑠 𝑚

= { 1, 2, … , 𝑛} , where
each Si can be: “ ” to represent rise; or “−” to represent
fall; or “=” to represent the maintenance of the tension
level. The number of symbols in the sequence represents the
discretized time axis. For example, the three-act story arc

illustrated in Figure 4 can be expressed as: 𝑝𝑎𝑟𝑐
𝑠 𝑚

= { , ,
 , −}, where: 1/4 of the story time is dedicated to the Setup
(first " " symbol); 2/4 is dedicated to the Confrontation
(second and third " " symbols); and 1/4 of the remaining
story time is reserved for the Resolution (last " − " symbol).

The symbolic representation of a story arc can also be
converted into a numeric representation 𝑝𝑎𝑟𝑐

𝑛𝑢𝑚 =
{𝑣1, 𝑣2, … , 𝑣𝑛} , where each 𝑣𝑖 of 𝑝𝑎𝑟𝑐

𝑠 𝑚
 is a number

indicating the current tension value in the vertical axis of the
story arc. Letting 𝑣0 = 0, the tension value for each element
of 𝑝𝑎𝑟𝑐

𝑛𝑢𝑚 is given by:

𝑣𝑖 = {
𝑣𝑖−1 𝑖𝑓 𝑖 = " "
𝑣𝑖−1 − 𝑖𝑓 𝑖 = " − "
𝑣𝑖−1 𝑖𝑓 𝑖 = " = "

For example, the symbolic story arc 𝑝𝑎𝑟𝑐
𝑠 𝑚

= { , , , −}
yields 𝑝𝑎𝑟𝑐

𝑛𝑢𝑚 = { , 2, 3, 2}.
In our method, the fitness function takes as input a

desired story arc (provided by the user using the symbolic
notation) and an individual of the population. Then, to
calculate the fitness of the individual, the function preforms
three steps: (1) solves the planning problem of the
individual to generate the plot of the quest; (2) estimates the
story arc of the quest plot using the information defined in
Ε ⊆ 𝐷𝐵, which describes how each event affects the overall
tension of the quest; and (3) calculates the fitness of the
individual by comparing the story arc of the quest plot with
the desired story arc.

The process to solve planning problems can be
performed by any classical planner. In our implementation,
we used the HSP2 planner provided by Bonet and Geffner
[23], which is fully compatible with our STRIPS-like
formalism. It is important to notice that not all genetic
structure characterizations of individuals can be treated as a
planning problem leading to proper solutions. Therefore, the
planner must handle situations where there is no valid
sequence of actions that leads from the initial state to the
goal state; or when the searching process exceeds a
prescribed time limit (indicating an infinite loop or an
excessively complex problem). In these cases, the plot of the
quest will be empty.

After obtaining the plot of the quest, the story arc is
calculated according to the events that occur along the plot.
For example, considering a plot 𝑝 with the events:

attack(zombie, anne, home), go(john,

johnhome, village), go(john, village,

store), get(john, antidote1, store),

go(john, store, village), go(john, village,

johnhome), cure(john, anne, antidote1,

johnhome),

and assuming that Ε ⊆ 𝐷𝐵 defines the effects of the
operators as Ε = { attack:"+", get:"+", go:"=",

cure:"-",…}, the story arc for plot 𝑝 can be expressed in

the symbolic notation as 𝑝𝑎𝑟𝑐
𝑠 𝑚

= { ,=,=, ,=,=, −} and

converted to its numeric representation: 𝑝𝑎𝑟𝑐
𝑛𝑢𝑚 =

{ , , , 2, 2, 2, }.
In order to estimate how well the story arc of a plot

resembles a desired story arc, we calculate the difference of
the two arcs. However, considering that story arcs can have
different time scales, first we rescale them both to a
common time interval. In our experiments, all story arcs are
scaled to the interval [1, 10]:

∀𝑖 ∈ { ,… , 0} 𝑝𝑎𝑟𝑐𝑖
𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑝𝑎𝑟𝑐

⌈
𝑖−1
10
 (𝑝𝑎𝑟𝑐
𝑛𝑢𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −1)⌉+1

𝑛𝑢𝑚

where 𝑝𝑎𝑟𝑐
𝑛𝑢𝑚̅̅ ̅̅ ̅̅ ̅ represents the length of 𝑝𝑎𝑟𝑐

𝑛𝑢𝑚 . For example,
the three-act story arc 𝑣𝑎𝑟𝑐

𝑛𝑢𝑚 = { , 2, 3, 2} is scaled to

𝑣𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = { , , 2, 2, 2, 3, 3, 2, 2, 2}. In the same way, the

plot of the example presented above 𝑝𝑎𝑟𝑐
𝑛𝑢𝑚 = { , , , 2, 2,

2, } is scaled to 𝑝𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = { , , , , 2, 2, 2, 2, , }. With

both story arcs scaled to the same time interval, their
differences can be comparted (as shown in Figure 5).

Figure 5. Visual comparasion of two scaled story arcs.

In order to calculate the difference between two scaled
story arcs (𝑑 and 𝑝), we use the mean squared error:

𝑚 𝑒(𝑝, 𝑑) =

𝑛
∑(𝑝𝑎𝑟𝑐𝑖

𝑠𝑐𝑎𝑙𝑒𝑑 − 𝑑𝑎𝑟𝑐𝑖
𝑠𝑐𝑎𝑙𝑒𝑑)

2
𝑛

𝑖=1

The final fitness of an individual is calculated as:

𝑓𝑖𝑡𝑛𝑒 (𝑝, 𝑑) =
𝑝̅

𝑚 𝑒(𝑝𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑑𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑)

where 𝑝 is the plot of an individual of the population, 𝑑 is
the desired story arc provided by the user, and 𝑝̅ represents
the length of 𝑝 (i.e., the number of events in the plot).

C. Optimizations

The process to evaluate the individuals of the population
is the most computationally expensive part of our genetic
algorithm, especially because it involves the execution of a
planner to generate the quest plot of each individual.
Although a genetic algorithm is naturally an offline process,
fast responses are important in our context to allow users to
try out different parameters or modifications in the game
world. Therefore, we implemented two optimizations for
the evaluation process: parallel evaluation and cached plots.

Considering that each individual represents an
independent planning problem, we can take advantage of
multi-core processors to evaluate multiple individuals in
parallel. For this optimization, we use a thread pool that
maintains multiple threads waiting for tasks (evaluation of
individuals) to be allocated for concurrent execution. As
will be described in section V, the use of threads noticeably
improves the overall performance of our genetic algorithm.

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10

Te
n

si
o

n

Time

Three-Act Story Arc (v) Example Story Arc (p)

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 501

Another characteristic of the populations of our genetic
algorithm is the occurrence of individuals with equal
planning problems along the same or different generations,
especially when the game world is small. In these cases, the
same planning problem would need to be solved multiple
times, wasting time and CPU resources. In order to optimize
this process, we implemented a memoization (a.k.a.
memoisation) technique to store the plots generated from
previous planning problems. When a similar planning
problem is about to be solved, the cached plot is retrieved
and reutilized. The cache uses a hash table structure to
efficiently map keys (calculated according to the initial state
and goal state of the planning problems) to values (plots).

IV. APPLICATION

In order to test and validate our method, we adapted a
2D RPG developed for a previous project [8][24][25]
(Figure 6), in which we incorporated the proposed
architecture to use quests generated by our genetic
algorithm. The game pertains to a zombie survival genre,
telling the story of a family that lives in a world dominated
by a zombie plague. The game world comprises 15 different
places: a village; a forest; a hospital; a store; the main
character’s house; a neighbor’s house; an island, which
includes east, west and central regions; a mountain area that
equally includes east, west and central regions; a bridge
connecting the village with the island; and another bridge
connecting the island with the mountain area. The world is
inhabited by 7 characters: the brave husband John
(controlled by the player); Anne (John’s wife); Maggie
(John’s daughter); Rick (a shop attendant); Bob (a doctor);
Matt (a wood cutter); and Robin (a survival specialist).
Several collectable items are scattered through the world,
including keys to open locked doors, antidotes to cure
infected characters, food to feed starving characters, and
piles of wood that can be used in combination with a tool kit
to fix broken bridges. In addition, the game world includes
several zombies that can attack and infect other characters.

Figure 6. Scene of the prototype game, where the player’s avatar (John)

is surrounded by zombies.

The gameplay is designed to be driven by the story
quests, wherein it is the player’s responsibility to collect
items, interact with non-player characters, kill zombies,
open locked doors, fix broken bridges, cure infected
characters, and feed starving characters. In order to fight
against the zombies, the player has a gun with a limited

5 https://love2d.org/
6 For the sake of simplicity, we condensed sequences of go

events by describing only the initial and final locations (for

amount of ammunition, which is reloaded when the player
collects ammunition kits. When the player is attacked by
zombies, he/she loses an amount of life (i.e. of the life
energy initially attributed to the player), which is only
restored when he/she collects medic kits. The game was
implemented in Lua using the Löve 2D framework. 5

In order to generate the quests for the game, we used our
quest generation method. To test the genetic algorithm, we
employed a fixed population size of 100 individuals, and
each run of the algorithm comprised 100 generations. At the
end of a run, only the best individual’s quest was selected to
be included in the game. For all runs, the three-act structure
was used as the desired story arc. A total of 3 quests were
generated for the game: 6

Q1 = starve(maggie, home), go(john,

johnhome, store), ask(john, rick, food2,

store), give(rick, john, food2, store),

go(john, store, johnhome), feed(john,

maggie, food2, johnhome).

Q2 = attack(zombie, anne, johnhome),

go(john, johnhome, neighborhouse),

kill(john, zombie2, neighborhouse),

get(john, hospitalkey, neighborhouse),

go(john, neighborhouse, hospitaldoor),

opendoor(john, hospitalkey, hospitaldoor),

go(john, hospitaldoor, hospital), ask(john,

bob, antidote2, hospital), give(bob, john,

antidote2, hospital), go(john, hospital,

johnhome), cure(john, anne, antidote2,

johnhome).

Q3 = attack(zombie, bob, hospital), go(john,

johnhome, forest), kill(john, bigzombie,

forest), get(john, wood1, forest), go(john,

forest, store), get(john, toolkit, store),

go(john, store, villageislandbridge),

fixbridge(john, toolkit, wood1,

villageislandbridge), go(john,

villageislandbridge, islandeast), ask(john,

matt, antidote3, islandeast), give(matt,

john, antidote3, islandeast), go(john,

islandeast, hospital), cure(john, bob,

antidote3, hospital).

Although our game world supports more quests, we
generated only 3 quests to give human designers more
freedom to design their own quests for the user evaluation
test (a Turing-like Test) described in section V.

V. EVALUATION

To evaluate the results produced by the proposed
method, we performed two tests: (1) a technical test to check
the performance and the evolution progress of our genetic
algorithm; and (2) a user evaluation test to compare the
quests automatically generated by our system with quests
manually produced by a human game designer.

A. Techinical Evaluation

The technical evaluation of our method comprised two
experiments. First, we analyzed the evolution progress of
the genetic algorithm and compared it with a random quest
generation strategy. For the second experiment, we
evaluated the computational performance of the algorithm.

example, “go(john, home, village), go(john,

village, forests)” is represented as “go(john, home,
forest)”).

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 502

To evaluate the evolution progress, we performed 25
runs of the genetic algorithm to generate a single quest. For
this experiment, we used the world of the game described in
section IV and the following settings in the genetic
algorithm: population size of 100 individuals; elitism factor
of 2%; single point crossover (following the process
described in section III (A)); mutation probability of 20%;
termination condition of 100 generations; and the three-act
structure as the desired story arc. These settings were chosen
in the course of preliminary experiments.

In order to compare the results with a random quest
generation strategy, we created another version of our
system that uses our method to generate a random initial
population for the genetic algorithm, but, instead of
applying the evolutionary strategy, each new generation is
initialized as a new population. As the genetic algorithm, the
process is repeated for 100 generations with the population
size set to 100 individuals (testing a total of 10.000 random
quests). At each generation, the best random quest is
selected to be compared to the best, average and worst
individuals of the genetic algorithm.

Figure 7 shows the results of this experiment. As can be
noticed, the genetic algorithm clearly overcomes the
random strategy with just a few generations. In addition, 50
generations proved to be enough for the individuals to
converge to the optimal solution for this problem (that is,
for this game world configuration and using the three-act
structure as the desired story arc).

Figure 7. Average evolution progress of the best, average, and worst

(valid) individuals of the population during 25 runs of the genetic

algorithm in comparsion with the best random quests created with a

random strategy.

To evaluate the computational performance of our
method, including de efficiency of the optimizations
described in Section III (C), we calculated the average time
required to process a population of 100 individuals during
one generation of the genetic algorithm (using the same
settings of the previous experiment). Three versions of our
algorithm were tested: (1) a version without optimizations
(Base Version); (2) an optimized version with multiple
threads for the evaluation process (Parallel Version); and (3)
a fully optimized version using multiple threads and cached
plots (Optimized Version). The computer used to run the
experiments was an Intel Core i7 7820HK, 2.9 GHZ CPU,
16 GB of RAM. Each version was tested for 25 full runs of
the genetic algorithm, each one testing 100 generations
(generating a total of 2500 time samples per version). Table
I shows the results of the tests, which indicate that the
optimized version is more than 6 times faster than the base

version. Although the optimized version still needs a
considerable amount of time to generate a quest plot
(average time of 3.59 minutes to run the algorithm for 50
generations), the quality of the solution (in comparison with
those generated by a random strategy) fairly compensates
the processing time.

TABLE I. AVERAGE TIME TO PROCESS A POPULATION OF 100

INDIVIDUALS DURING ONE GENERATION IN THREE VERSIONS OF OUR

GENETIC ALGORITHM: (1) BASE VERSION WITHOUT OPTIMIZATIONS; (2)

PARALLEL VERSION USING MULTIPLE THREADS; AND (3) OPTIMIZED

VERSION USING MULTIPLE THREADS AND CACHED PLOTS

 Base
Version

Parallel
Version

Optimized
Version

Time (sec) 27.56 10.45 4.31
Standard
Deviation

13.21 7.11 3.72

B. User Evaluation

In order to compare quests automatically generated by
our system with those manually produced by game design
professionals, we conducted a simplified Turing-like Test to
evaluate if human players would be able to differentiate
quests produced by our algorithm from those created by a
human game designer.

For this experiment, we asked a professional game
designer with over 10 years of game industry experience to
design 3 new quests for our game, allowing him to freely
add new characters, places, items and actions, but without
interfering in the logic and structure of the existing quests
previously generated by our algorithm. The quests created
by the game designer are:

DQ1 = go(john, home, store), ask(rick, john,

killvillagezombies), go(john, store,

village), kill(john, villagezombies,

village), go(john, village, store),

thank(rick, john).

DQ2 = getlost(george, forest), go(john,

home, forest), kill(john, zombie4, forest),

find(john, george, forest), take(john,

george, forest, hospital).

DQ3 = attack(zombie, maggie, home), go(john,

home, islandeast), kill(john, zombie5,

islandeast), get(john, wood2, islandeast),

go(john, islandeast, islandmountainbridge),

fixbridge(john, toolkit, wood2,

islandmountainbridge), go(john,

islandmountainbridge, mountainwest),

attack(zombie, robin, mountainwest),

die(robin, mountainwest), steal(john,

robin, antidote4, mountainwest), go(john,

mountainwest, home), cure(john, maggie,

antidote4, home).,

which were integrated with those resulting from our
algorithm in the order: {Q1, DQ1, Q2, DQ2, Q3, DQ3}.

After integrating the designer’s quests into the game, we
asked 34 students (28 male and 6 female, aged 18 to 23) to
play our game and classify quests according to whether they
were created by a human designer or by a machine. Before
the test, we explained to subjects that some quests were
created by an algorithm and others by a game designer, but
did not tell them how many quests were created by each one.
After completing each quest, the game was automatically
paused, and the subjects were prompted to judge if the quest
was created by a human designer or by a machine. All

0

10

20

30

40

50

60

70

1 10 19 28 37 46 55 64 73 82 91 100

Fi
tn

es
s

Generations

Best Average Worst Random

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 503

participants were able to complete all quests. On average,
each session lasted 32.4 minutes (standard deviation of 8.3).

Over the entire test set of 204 data points (34 players,
each evaluating 6 quests), the “machine” version was
correctly identified in 48 cases (out of a total of 102) and the
“human” version was correctly identified in 52 cases (out of
a total of 102), leading to an overall accuracy of 49.02%.

An ideal Turing Test is represented by the case where
the computer and the human versions are indistinguishable,
leading therefore to a random choice of 50% accuracy. The
small difference between the achieved accuracy (49.02%)
and the ideal Turing Test value (50%) suggests that the
computer-generated and the human-designed quests are
hardly distinguishable, which is an indication of the
capacity of the proposed quest generation method to achieve
quest plots closely similar to those created by professional
game designers.

VI. CONCLUSION REMARKS

We described in this paper a new quest generation
method, combining planning with an evolutionary search
strategy guided by story arcs, which can generate coherent
and diversified quests based on a specific narrative
structure. Our method provides game designers with new
ways of imagining and creating narratives for games. Also,
game developers can take advantage of this technique to
automate the process of designing new quests for games,
and, therefore, to reduce the work overload of the
development teams.

In our experiments, the proposed method revealed
encouraging results. The genetic algorithm showed good
overall evolution progress that easily overcomes a random
quest generation strategy with just a few generations.
Another suggestive evidence comes from the fact that
players were not able to distinguish quests created by our
method from those created by a professional game designer.

In terms of performance, although some optimizations
in our method were already implemented, users still need to
wait a few minutes to visualize the results (as described in
section V (A)). Accordingly, one of our next research goals
is to find alternatives to improve the overall performance of
our method, for instance by replacing the planning algorithm
by faster methods (e.g., hierarchical task networks) or by
implementing a cloud computing architecture.

As another research objective, to be pursued while
exploring alternatives to improve performance, we plan to
extend the proposed method to support the generation of
narratives with branching storylines. The alternative paths
can be created by using the final states of the best
individuals as initial states for new runs of the genetic
algorithm. This form of branching storylines may provide
game designers with new ways to expand traditional quests
towards new forms of interactive storytelling.

REFERENCES

[1] T. Ong, and J. J. Leggett, “A genetic algorithm approach to
interactive narrative generation,” Proceedings of the fifteenth ACM

conference on Hypertext and hypermedia, 2004, pp. 181–182.

[2] N. McIntyre, and M. Lapata, “Plot induction and evolutionary search
for story generation,” Proceedings of the 48th Annual Meeting of

the Association for Computational Linguistics, 2010, pp. 1562–1572.

[3] S. Giannatos, Y.-G. Cheong, M. J. Nelson, and G. N. Yannakakis,
“Generating Narrative Action Schematics for Suspense,”

Proceedings of the Workshop on Intelligent Narrative Technologies,

Artificial Intelligence and Interactive Digital Entertainment

Conference (AIIDE 2012), AAAI, 2012, pp. 8–13.

[4] S. Giannatos, M. J. Nelson, Y.-G. Cheong, and G. N. Yannakakis,
“Suggesting new plot elements for an interactive story,” Proceedings

of the Workshop on Intelligent Narrative Technologies, Artificial
Intelligence and Interactive Digital Entertainment Conference

(AIIDE 2011), AAAI, 2011, pp. 25–30.

[5] M. Nairat, P. Dahlstedt, and M. G. Nordahl, “Character evolution
approach to generative storytelling,” Proceedings of the 2011 IEEE

Congress of Evolutionary Computation, 2011, pp. 1258–1263.

[6] M. Nairat, P. Dahlstedt, and M. G. Nordahl, “Story Characterization
Using Interactive Evolution in a Multi-Agent System, ” In: P.

Machado, J. McDermott, and A. Carballal (eds), Evolutionary and

Biologically Inspired Music, Sound, Art and Design, Springer, 2013.

[7] A. Sullivan, M. Mateas, and N. Wardrip-Fruin, “Rules of

engagement: Moving beyond combat-based quests,” Proceedings of
the Intelligent Narrative Technologies III Workshop (INT3 '10),

Article No. 11, ACM, 2010, doi: 10.1145/1822309.1822320.

[8] S. Lima, B. Feijó, and A. L. Furtado, “Hierarchical Generation of
Dynamic and Nondeterministic Quests in Games,” Proceedings of

the 11th International Conference on Advances in Computer
Entertainment Technology, ACM, 2014, Article N. 24, doi:

10.1145/2663806.2663833.

[9] V. Breault, S. Ouellet, and J. Davies, “Let CONAN tell you a story:

Procedural quest generation,” arXiv:1808.06217, 2018.

[10] M. Hendrikx, S. Meijer, J. V. D. Velden, and A. Iosup, "Procedural
content generation for games: A survey," ACM Transactions on

Multimedia Computing, Communications, and Applications, Vol. 9

(1), Article No. 1, 2013, doi: 10.1145/2422956.2422957.

[11] A. Amato, “Procedural Content Generation in the Game Industry,”

In: O. Korn, N. Lee (eds) Game Dynamics, Springer, 2017.

[12] J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas, A. Paiva,
M. Preuss, and K. O. Stanley, "Procedural Content Generation:

Goals, Challenges and Actionable Steps," Artificial and

Computational Intelligence in Games, vol. 6, 2013.

[13] J. Freiknecht, and W. Effelsberg, "A Survey on the Procedural

Generation of Virtual Worlds," Multimodal Technologies and

Interaction, vol. 1 (4), 27, 2017, doi:10.3390/mti1040027.

[14] B. Kybartas, and R. Bidarra, "A Survey on Story Generation

Techniques for Authoring Computational Narratives," IEEE
Transactions on Computational Intelligence and AI in Games, Vol.

9 (3), 2017, pp. 239-253, doi: 10.1109/TCIAIG.2016.2546063.

[15] S. N. Sivanandam, and S. N. Deepa, “Introduction to Genetic

Algorithms,” Springer Berlin Heidelberg, New York, 2008.

[16] D. Johnson, “Animated Frustration or the Ambivalence of Player

Agency,” Games and Culture, vol. 10 (6), pp. 593–612, 2015.

[17] V. Propp, “Morphology of the Folktale,” University of Texas Press,

Austin, USA, 1968.

[18] E. Aarseth, “Quest Games as Post-Narrative Discourse,” In Marie-
Laure Ryan (ed.): Narrative Across Media. University of Nebraska

Press, pp. 361-76, 2004.

[19] S. Tosca, “The quest problem in computer games,” Proceedings of
the Technologies for Interactive Digital Storytelling and

Entertainment (TIDSE), Fraunhofer IRB Verlag Press, 2003.

[20] H. Jenkins, “Henry Jenkins responds in turn: riposte to Game Design

as Narrative Architecture,” Electronic Book Review, 2004.

[21] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory

and Practice, Morgan Kaufmann Publishers, United States, 2004.

[22] D. E. Goldberg, Genetic Algorithms in Search, Optimization and

Machine Learning. Addison-Wesley Longman Publishing Co.,

Boston, 1989.

[23] B. Bonet, and H. Geffner, Planning as Heuristic Search, Artificial

Intelligence, vol. 129 (1), pp. 5-33, 2001.

[24] E. S. Lima, B. Feijó, and A. L. Furtado, “Player Behavior and
Personality Modeling for Interactive Storytelling in Games,”

Entertainment Computing, Vol. 28, December 2018, pp. 32-48,

2018, doi: 10.1016/j.entcom.2018.08.003.

[25] E. S. Lima, B. Feijó, and A. L. Furtado, “Player Behavior Modeling

for Interactive Storytelling in Games,” Proceedings of the XV
Brazilian Symposium on Computer Games and Digital

Entertainment (SBGames 2016), São Paulo, Brazil, p. 1-10, 2016.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 504

