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Abstract — The production of high-quality commercial games 

requires the work of a few hundred individuals, including 

designers, artists, and story writers, to produce game content, 

such as 3D models, textures, and narratives. Over the last 

decade, the production of game content has grown to the point 

of becoming a bottleneck in companies’ schedules and 

budgets. In this context, procedural content generation 

techniques are increasingly being applied to reduce the work 

overload of the development teams. Although game 

developers and academic researchers have extensively 

explored procedural content generation, there is a lack of 

techniques to handle procedural generation of quests.  In this 

paper, we present a new quest generation method based on 

genetic algorithms and automated planning. By combining 

planning with an evolutionary search strategy guided by story 

arcs, the proposed method can generate coherent quests based 

on a specific narrative structure. Preliminary results show 

that quests created with our method are nearly at par with 

those created by game design professionals. 

Keywords – quest generation; genetic algorithms; planning; 

interactive storylling; 

I.  INTRODUCTION 

In the game industry, the production of high-quality 
commercial games requires the effort of a few hundred 
individuals, including artists, designers, programmers, and 
story writers, many of whom work mainly to produce game 
content, such as 3D models, textures, environments, stories, 
and quests [10]. Over the last decade, the production of 
game content has grown to the point that it has become a 
bottleneck in companies’ schedules and budgets [11]. As a 
solution to this problem, many game development 
companies are employing Procedural Content Generation 
techniques (PCG) to reduce the work overload of the 
development teams. PCG involves the use of algorithms for 
the generation of game content with limited or no human 
contribution [12]. In this way, game content is not generated 
manually by human designers, but by computers executing 
well-defined procedures that can be adjusted to match the 
vision and objectives of artists and designers. 

With more than three decades of research, PCG methods 
have been applied for the generation of many types of game 
content (see [10] and [13] for extensive surveys of PCG 
techniques). Today, PCG techniques are even presented as 
key features and selling points of some games, such as No 
Man Sky (2016), which featured a procedurally generated 
open world universe composed of over 18 quintillion 
planets with their own ecosystems and unique forms of 
fauna and flora. Tools for PCG are also very common 
nowadays, such as the SpeedTree system, which has been 

used for the generation of trees, grass and other types of 
vegetation in hundreds of commercial games, such as 
Horizon Zero Dawn (2017), Far Cry 5 (2018), and Forza 
Horizon 4 (2018).  

Although PCG has been extensively explored by game 
developers and academic researchers, there is a lack of 
techniques to handle procedural generation of quests. 
Computer Role-Playing Games (RPGs) usually employ 
quests as a fundamental mechanism for narrative 
progression, which provides players with concrete goals 
that guide the gameplay. The computational generation and 
adaptation of narratives is the objective of a specific type of 
PCG oriented towards Interactive Storytelling, a promising 
research area dedicated, since the 1970s, to exploring 
narrative generation (see [14] for a survey on narrative 
generation methods). However, most of the existing 
narrative generation methods are not designed to handle 
dynamic game environments. Although it is fair to 
recognize that narrative generation methods have 
significantly evolved in the last decades, we are still far 
from having algorithms capable of producing complex and 
creative stories with the quality of those created by 
professional writers. 

Quest generation for games involves several challenges, 
especially regarding the dynamic interaction between 
player, environment, and story, where the logical coherence 
must be a primary concern. Indeed, even relatively 
unimportant sidequests (quests that usually have no effects 
in the main storyline of the game), must affect future 
sidequests or game events that involve the same characters, 
objects or places (e.g. if a character dies in one quest, he 
cannot appear alive in a future quest without any 
justification). Another essential requirement for a quest 
generation system is related to its ability to generate 
diversified plots. The repetition of gameplay elements is 
known for causing frustration on players [16]; therefore, it 
is important to guarantee the right level of variety among 
the generated quests.   

In this work, we aim at some of the challenges faced by 
quest generation methods, especially how to achieve the 
ability to handle dynamic game environments, guarantee the 
logical coherence of the story, and generate diversified 
plots. To accomplish this goal, we propose a new quest 
generation method based on genetic algorithms and 
automated planning. By combining planning with an 
evolutionary search strategy guided by story arcs, the 
proposed method can generate coherent quests based on a 
specific narrative structure. The main objective of this paper 
is to present our method and to validate the produced results 
by analyzing how close the generated quests are to those 
created by human game designers. 
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The paper is organized as follows. Section II describes 
related work. Section III introduces the proposed method for 
quest generation and describes the implementation details 
of the genetic algorithm. Section IV describes an application 
of the method in a game prototype. Section V presents an 
evaluation of the method. Section VII offers concluding 
remarks. 

II. RELATED WORK 

There are several works on quest generation in the 
literature, such as the generic framework presented by 
Sullivan et al. [7]. In their system, a game manager uses the 
player history and the current state of the world to 
dynamically generate and alter the structure of quests. Their 
rule-based system works on a library of quests and can 
dynamically recombine them upon generation. Another 
recent framework for quest generation was proposed by 
Breault et al. [9], who present a quest engine that relies only 
on automated planning to create quests. Their system takes 
in a world description represented as a set of facts and 
generates quests according to the state of the world using a 
deterministic planning algorithm. A more dynamic solution 
is presented by Lima et al. [8], who propose a method to 
generate quests based on hierarchical task decomposition 
and planning under non-determinism. Their approach 
combines planning, execution, and monitoring to handle 
nondeterministic events and support quests with multiple 
endings that affect the game’s narrative and create 
interactive and dynamic story plots. 

Although, to the best of our knowledge, no previous 
work has directly explored the use of genetic algorithms for 
quest generation, we can find some related works that use 
genetic algorithms for general narrative generation. An 
example is the work of McIntyre and Lapata [2], which 
describes a story generator system that employs an 
evolutionary search strategy where each plot is represented 
by an ordered graph of dependency trees (corresponding to 
sentences of the narrative text). Since their algorithm works 
directly with text sentences, the genetic operations were 
designed to handle the syntax and semantics of the 
sentences, such as the mutation, which can occur on any 
verb, noun, adverb, or adjective in the sentence. If a noun, 
adverb or adjective is chosen to undergo mutation, it will be 
replaced with a new lexical item that is sufficiently similar. 
Their algorithm uses a fitness function that scores 
candidates based on their coherence. 

The use of story templates and graphs to provide 
information to a genetic algorithm was also explored in 
previous works [1][4]. Ong and Leggett [1] present a system 
for narrative generation that uses a genetic algorithm to 
recombine story components created from a set of story 
templates. In their algorithm, the fitness of a given story is 
determined by the events, which must be previously rated 
by the author. The basic structure of the narrative is ensured 
by rules and conditions described in pre-determined 
templates. In a similar context, Giannatos et al. [4] present 
a system that uses an evolutionary algorithm to suggest new 
story events that, if added to an existing story graph, would 
improve the quality of traversals of the story space. Their 
algorithm constructs story graphs with candidate plot points 
and then samples 100 possible playthroughs from the story 
graph. The sampled stories are then rated according to three 
criteria: spatial locality, thought flow and motivation. The 

final fitness is computed as the average of the fitness values 
obtained from evaluating all playthroughs. 

A different approach is explored by Nairat et al. [5][6], 
where, instead of following a plot-based approach, they 
integrate evolutionary methods in a character-based system. 
They propose a method for generating stories that integrates 
an agent-based system where the characters are created 
using an interactive genetic algorithm. In their method, each 
individual of the population is represented by internal states 
(resources and emotions) and actions rules that define the 
personality and behavior of the agent. The author is 
responsible for observing and selecting the agents whose 
behaviors are relevant for the intended story. When the 
author decides that the characters are interesting enough to 
develop further, the system performs the reproduction 
process to create a new generation.  

The combination of genetic and planning algorithms 
was also previously explored by Giannatos et al. [3], who 
proposed a method that uses genetic algorithms to generate 
plan operators representing possible story actions. As is 
common in planning-based storytelling systems, they 
represent the story world using predicates and action 
operators (defined by pre and post-conditions). The goal of 
their genetic algorithm is to generate plan operators as 
narrative units for constructing new story plots. In order to 
evaluate the solutions, they use a fitness function that 
estimates the operator’s contribution to generate 
suspenseful stories. Although the work of Giannatos et al. 
[3] explores the combination of genetic and planning 
algorithms as proposed in this work, they use genetic 
algorithms only to create new operators (parameters, 
preconditions, and effects), without changing the initial 
state and goals as we do in the present paper. In the context 
of a game, it would not always be feasible to change existing 
operators, as each operator results in a different mechanism 
that must be implemented in the game. An evident difficulty 
of their approach is that it does not generate meaning for the 
operators. Their algorithm only generates preconditions and 
effects that are logically valid, but it is not explicit what kind 
of action/event the operator represents.  

Although quest and narrative generation has been 
extensively explored by academic researchers in game and 
non-game contexts, most of the methods require a library of 
existing quests (e.g.: [1][7]) or highly detailed descriptions 
of planning problems with predefined goal states (e.g.: 
[8][9]), which demands extra authorial work and restricts 
the space of possible quests. In such context, the use of 
genetic algorithms has been limited to non-game 
applications, where event structures are not necessary (e.g. 
[2][5][6]) or other methods are responsible for the actual 
narrative generation (e.g. [3][4]).  

III. QUEST GENERATION 

In traditional literature, a quest represents a journey 
towards a specific mission or goal, where multiple 
adventures can occur. According to Propp’s analysis of 
folktales [17], the main adventure begins when a villainy is 
committed or a lack is recognized, after which the hero 
departs on a perilous journey, culminating with a struggle 
against some sort of adversary. But other adventures often 
occur, typically in a preliminary phase wherein the villain 
makes preparations, and even after the hero’s victory the 
quest may not terminate.  
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In computer games, quests also represent missions or 
objectives to be accomplished by avatars (i.e. game 
characters controlled by human players). However, 
differently from the well-established theory about quests in 
literature, there is no general quest theory in computer 
games, mainly because the concept of narrative in 
videogames is not properly defined. There are many 
contradictory opinions about the videogame’s narrative: 
Aarseth [18] describes it as a “post-narrative discourse”; 
Tosca [19] claims that games are not narratives (and only 
after the quest has been completed, it can be narrated as a 
story); and Jenkins [20] defends a hybrid concept between 
games and narratology. 

In this paper, we consider that a quest is defined by a set 
of tasks to be accomplished by the player (e.g. gathering and 
delivering items, killing enemies, protecting and saving 
characters). This set of tasks represents the plot of the quest 
(i.e. storyline). Although each quest has its own plot (with 
beginning, middle, and end), all quests take place in the 
same world; therefore, changes in the world state can have 
implications in the plot of future quests (e.g. if the player 
opens the gate to a secrete place as part of the tasks of one 
quest, there is reason to make it a recurring task in future 
quests – except if there was an intermediary quest that 
required the player to close the gate). 

Game worlds are often populated by dozens of non-
player characters, amid thousands of objects, items, enemies 
and places. In addition, players can interact with the world 
by performing dozens of different actions, which increases 
the complexity of finding a “good” sequence of tasks for a 
quest. In this type of problem, the search space would 
normally contain thousands of nodes that could produce 
tens of thousands of possible quests. Searching in this 
complex space is a difficult optimization problem that must 
satisfy several constraints, typically related to the logical 
coherence of the events, the overall narrative structure, and 
the length of the quest. In this context, we argue that a 
genetic algorithm is advantageous as it can search and find 
good solutions in a more efficient way than traditional 
search methods. 

As illustrated in Figure 1, the architecture of the 
proposed quest generator system is composed of two 
subsystems: (1) the Offline Quest Generator (OQG), which 
is responsible for running the genetic algorithm and 
handling the results (generated quests); and (2) the Game 
Manager (GM), which handles the execution of quests while 
the player interacts in real-time. The OQG runs in a 
preprocessing phase (offline) and provides the GM with the 
full set of quests generated for the game. As part of the 
OQG, the Genetic Algorithm module implements all 
methods of a traditional genetic algorithm and handles the 
execution of Quest Planners to validate the generated 
quests. Quests are generated based on information stored in 
a Domain Database, which includes the definition of valid 
quest events, characters, places and objects that are part of 
the game world. While players interact with the game, their 
actions are used to update the World State, which is used in 
turn by the Quest Manager to keep track of the player 
progression as he/she performs quests. Meanwhile, the 
Player receives help from the Player’s Assistant, who 
provides tips about the next objectives of the current quest. 

 
1 http://www.gutenberg.org/files/1228/1228-h/1228-h.htm   

 

Figure 1.  Architecture of the quest generator system. 

A. Genetic Algorithm 

The theory of evolution by natural selection proposed by 
Charles Darwin in his famous book “On the Origin of 
Species”1 states that all life forms that exist today are the 
result of millions of years of adaptation caused by demands 
of the environment (cf. [22]). According to this theory, at 
any given time, several different organisms may co-exist 
and compete for the same resources in an ecosystem. The 
organisms that are more capable of acquiring resources and 
successfully reproducing will have more descendants in the 
future [15]. Organisms that are less capable, will tend to 
have few or no descendants (less chance to survive). Over 
time, the entire population of the ecosystem will evolve to 
contain organisms that are more fit and adapted to their 
environment than those of previous generations (promoting 
the survival of the fittest). 

A genetic algorithm abstracts these evolutionary 
principles into computational processes that can be used to 
search for optimal solutions of a problem. In a traditional 
implementation, an initial population of individuals (also 
called chromosomes) is randomly generated, where a 
genetic structure represents each individual. This structure 
is usually defined by a fixed-length bit string (but many 
problems – including ours – require more complex 
structures), where each position in the string represents a 
feature of the individual (an analogy to the genes found in 
DNA of biological organisms). Each individual of the 
population is evaluated according to a fitness function.   
After being evaluated, a certain number of individuals are 
selected to be parents (according to their fitness) and 
undergo crossover (also called reproduction or 
recombination) and mutation processes in order to produce 
a new and evolved population (the new chromosomes are 
called offsprings). Since offsprings usually combine genes 
from good individuals, they are expected to be better than 
their parents. Therefore, offsprings are inserted into the new 
population to replace the inferior individuals of the previous 
generation. This process is repeated until a given 
termination criterion triggers (usually a given number of 
generations). The repetition leads to the evolution of the 
population. At the end, the fittest individuals represent the 
best solution to the problem.  

Offline Quest Generator (OQG)
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As illustrated in Figure 2, our method involves the main 
steps of a traditional genetic algorithm (initialize 
population, evaluation, selection, crossover, mutation) with 
the addition of an extra control loop to manage the 
generation of sequential quests. By updating the world state 
(that is stored in the Domain Database) with information 
extracted from the final state of the a previously generated 
quest, the algorithm can guarantee the logical coherence of 
sequences of quests.  

 

 

Figure 2.  Overview of the proposed genetic algorithm, where Φ is the 

maximum number of generations and Θ is the number of sequential 

quests to be generated. 

In our genetic algorithm, each individual (i.e., each 
chromosome) represents a quest, which is encoded as a 
planning problem:2 
 

𝑄 = (𝑃, 𝑆0, 𝐺, 𝑂), 
 

where 𝑃 is a set of atomic formulas (or atoms, for short), 𝑂 
is a set of planning operators, 𝑆0  is the initial state of the 
quest, and 𝐺 is the goal state, such that: 

• An atom is an expression of the form 
𝑝𝑟𝑒𝑑(𝑟1, ⋯ , 𝑟𝑘), where pred is a predicate symbol 

and 𝑟1 ,⋯ , 𝑟𝑘  are variable terms (e.g. CH1 and IT) 
or ground terms (e.g. player and antidote); 

•  A literal is an atom 𝑝 or the negation of an atom, 
¬𝑝, letting negation represent the deletion of the 
proposition from the current world state S (i.e. we 
use the closed-world assumption: a proposition 
that is not explicitly specified in a state does not 
hold in that state); and 

• 𝑆0 ⊆ 𝑃 and 𝐺 ⊆ 𝑃 are sets of ground literals. 
An operator 𝑜 ∈ 𝑂 is denoted by 

 

𝑜 = (𝑛𝑎𝑚𝑒(𝑜), 𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑜), 𝑒𝑓𝑓𝑒𝑐𝑡(𝑜)), 
 

where: 

• 𝑛𝑎𝑚𝑒(𝑜) is the name of the operator, which is an 
atom 𝑜𝑝(𝑥1, 𝑥2, … , 𝑥𝑘) , where 𝑜𝑝  is a unique 
symbol called an operator symbol, and 𝑥𝑖  is a 
variable symbol that occurs anywhere in o; 

 
2 Notation closely adapted from planning theory [21]. 

• 𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑜)  is a set of literals that define the 
preconditions of 𝑜  (i.e. the positive and/or 
negative literals that must be true in order to use 
the operator 𝑜); and 

• 𝑒𝑓𝑓𝑒𝑐𝑡(𝑜) is a set of literals that define the effects 

of 𝑜 (i.e. the positive and/or negative literals the 

operator 𝑜 will cause to hold).  
The genetic structure of an individual comprises 

schematic and reactive elements. Both 𝑃  and 𝑂  are 
schematic and defined as part of the conceptual schema of 
the domain (game world). While 𝑂 defines possible types of 
events that can occur in the course of a quest, 𝑃 establishes 
valid atoms to be used to describe states, goals, and 
operators. These domain elements are schematic and used 
to compose the planning problems of all individuals. On the 
other hand, 𝑆0  and 𝐺  (initial state and goal state) are 
reactive and can vary from one individual to another, 
expressing different ways to perceive a situation and the 
impulse to change it according to character-dependent 
preferences. Therefore, 𝑆0  and 𝐺  are the elements that 
define the distinguishing features of each individual and, 
consequently, they are the elements submitted to the 
crossover and mutation operations. Considering that these 
elements are sets of ground literals with no fixed length, 
they are represented in the genetic structure of the 
individuals by two linked lists (in contrast to more 
traditional implementations that use fixed-length bit strings).  

The following example illustrates the representation of 
an individual in our genetic algorithm (for the sake of 
simplicity, we omitted operators and atoms that were not 
relevant for this example):  
 
Schematic: 

P: at(C, P), has(C, P), hero(C), healthy(C),  

   isantidote(I), alive(C), infected(C),  

   cured(C), path(L1, L2) 

o1:  

  name: go(CH, PL1, PL2) 

  precond: character(CH), place(PL1),  

           place(PL2), at(CH, PL1),  

           alive(CH), hero(CH), 

           path(PL1, PL2) 

  effect: at(CH, PL2), ¬at(CH, PL1) 

o2:  

  name: get(CH, IT, PL) 

  precond: character(CH), item(IT),  

           place(PL), at(CH, PL), alive(CH),  

           hero(CH), at(IT, PL) 

  effect: has(CH, IT), ¬at(IT, PL) 

o3:  

  name: attack(ZO, CH, PL) 

  precond: zombie(ZO), character(CH),  

           place(PL), at(CH, PL),  

           at(ZO, PL), alive(CH), 

           healthy(CH) 

  effect: infected(CH), ¬healthy(CH) 

o4:  

  name: cure(CH1, CH1, IT, PL) 

  precond: character(CH1), character(CH3),  

           item(IT), place(PL), at(CH1, PL),  

           at(CH2,PL), alive(CH1), hero(CH1)  

           alive(CH2), infected(CH2),  

           has(CH1, IT), isantidote(IT)  

  effect: cured(CH2), healthy(CH2),  

          ¬infected(CH2), ¬has(CH1, IT) 

Initialize Population
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Selection
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Add Best 

Quest to  

 =  

 
=
 
 
 

  Φ
𝑛𝑜 𝑒 

𝑛  Θ
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Reactive (S0 with 20 genes and G with 4): 

S0: character(john), character(anne),  

    place(village), place(johnhome),  

    place(store), item(antidote1),  

    isantidote(antidote1), hero(john),  

    alive(john), alive(anne), healthy(john),  

    healthy(anne), enemy(zombie),  

    path(johnhome, village),  path(village,  

    johnhome), path(store, village), 

    path(village, store),at(john, johnhome),  

    at(anne, johnhome),at(antidote1, store)      

G: cured(anne), healthy(anne),  

   at(john, johnhome), alive(john) 

 

In the above example, the schematic elements define the 
domain of the planning problem, which includes the 
vocabulary of atoms used to describe the problem (𝑃) and 
four operators based on the well-known STRIPS formalism 
that represent possible events for the quest (go, get, 
attack, cure). In the reactive part of the individual, we 

can notice that the initial state of the quest (𝑆0) defines that 
john and anne are characters; john is the hero of the story; 
johnhome, village and store are places; john and 

anne are both at johnhome, alive and healthy; antidote1 

is an item that is at the store; there is a zombie that is an 

enemy; and there is a path connecting johnhome with the 
village (amongst other paths connecting places). The goal 

state (𝐺) establishes that anne must be cured and healthy, 

and john must be alive and at johnhome. 
When the planning problem of an individual is solved 

by a planner, the plot for the quest is established as a linear 
sequence of events or tasks to be accomplished by the 
player. In the above example, the plot comprises:  
 
attack(zombie, anne, johnhome), go(john, 

johnhome, village), go(john, village, 

store), get(john, antidote1, store), 

go(john, store, village), go(john, village, 

johnhome), cure(john, anne, antidote1, 

johnhome). 

 
Individuals for the initial population of the genetic 

algorithm are randomly generated according to the 
information defined in the Domain Database (𝐷𝐵), 3 which 
is a set:  

𝐷𝐵 = {Α, Β, Γ, Δ, Ε}, 
 

where: 

• Α is a set of pairs 𝛼𝑖 = (𝑜𝑏𝑗𝑖 , 𝑜𝑏𝑗𝑇 𝑝𝑒𝑖) that defines 
all objects of the game world (𝑜𝑏𝑗𝑖) and associate 
them with a specific object type (𝑜𝑏𝑗𝑇 𝑝𝑒𝑖). For 
example, Α= {(john, character), (home(john), 
place), (antidote1, item)} defines that john is a 

character, home(john) is a place, and antidote1 is an 
item. Currently, for the sake of simplicity, we 
represent function symbols as constants (e.g., we use 
johnhome instead of home(john)); 

• Β is a set of ground literals that describe properties 
and relations of objects that exist in the game world, 
e.g.: Β = { path(johnhome, village), alive( 
john), at(john, johnhome), isantidote( 

antidote1)}; 

 
3  In our implementation, 𝐷𝐵  is defined in an XML file. An 
example of database used in our prototype is available at: 
http://www.icad.puc-rio.br/~logtell/geneticquest_db.xml    

• Γ  is a set of semantic integrity constraints on 
predicates 𝑝𝑟𝑒𝑑𝑖, which plays a central role in the 
chromosome generation process of our algorithm. 
Currently, we have three constraints types: variable 
types, contradictory or opposite relations, and 
existential uniqueness quantification. That is, each 

member of the set Γ  is 𝛾𝑖 = (𝑝𝑟𝑒𝑑𝑖 , 𝑜𝑝𝑝𝑖 ,
(𝑢1𝑡1,⋯ , 𝑢𝑛𝑡𝑛)) , where 𝑝𝑟𝑒𝑑𝑖  is a predicate 

symbol with n terms (e.g. at, has, cured), 𝑜𝑝𝑝𝑖 is 

the opposite predicate of 𝑝𝑟𝑒𝑑𝑖 , 𝑡𝑗  denotes the 

object type (𝑜𝑏𝑗𝑇 𝑝𝑒) that is required for the 𝑗-th 
ground term of 𝑝𝑟𝑒𝑑𝑖 to produce a valid instance of 

the predicate, and 𝑢𝑗  indicates a uniqueness 

quantification ∃! 𝑡𝑗  𝑝𝑟𝑒𝑑𝑖  (i.e., there exists exactly 

one 𝑡𝑗  such that 𝑝𝑟𝑒𝑑𝑖  is true). For example, 𝛾𝑖 =

(𝑐𝑢𝑟𝑒𝑑, (𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟))  indicates that the predicate 

cured has a single term that must be of type 
character. An example of opposite relation is 𝛾𝑖 =
(ℎ𝑒𝑎𝑙𝑡ℎ , 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑, (𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟)), which denotes 

that either healthy(john) holds or 

infected(john) holds, but not both. An example 

of uniqueness of a term is 𝛾𝑖 = (𝑎𝑡, (𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟,

∃! 𝑝𝑙𝑎𝑐𝑒)) , which denote that each character can 

only be at one place at a time. In this later case, the 
predicate at(john,…) can appear only once in a 

state for the character john; 

• Δ defines a set of planning operators based on the 
STRIPS formalism (with preconditions and effects) 
that represents all possible events that can occur in 
the course of a quest; and 

• Ε  is a set of pairs 𝜀𝑖 = (𝑜𝑖 , 𝑡𝑒𝑛 𝑖𝑜𝑛𝑖)  that 
establishes how each operator 𝑜𝑖 affects the overall 
tension of the quest ( 𝑡𝑒𝑛 𝑖𝑜𝑛𝑖 ), which can be 
increased (+), decreased (-), or maintained (=). For 
example, the attack operator creates tension and 

the cure represents a resolution that reduces the 

tension, therefore: Ε= {(attack, +), (cure, -), …}. 
In order to create the initial population for the genetic 

algorithm, planning problems are generated to represent the 
individuals of the population. For the schematic elements of 
each planning problem, 𝑃 is defined by the unique atoms 
found in Α ⊆ 𝐷𝐵  and Β ⊆ 𝐷𝐵, and 𝑂 is created with the 
planning operators defined in Δ ⊆ 𝐷𝐵 . For the reactive 
elements, first the initial state of the quest (𝑆0) is initialized 
with the schematic elements of the game world (Α ⊆ 𝐷𝐵), 
and then a number of new ground literals are randomly 
generated (according to the semantic integrity constraints 
established in Γ ⊆ 𝐷𝐵 ) and added to 𝑆0 . Similarly, a 
random number of ground literals are generated for the goal 
state (𝐺). The process to generate random ground literals 
automatically avoids adding repeated ground literals to the 
same state and ensures the uniqueness of literals that contain 
specific terms that must appear only once in a state 
(according to Γ ⊆ 𝐷𝐵). The number of individuals of the 
population and the total number of ground literals to be 
added to 𝑆0  and 𝐺  are defined through parameters of the 
genetic algorithm. In our experiments, we use populations 
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of 100 individuals and random values in the range [1, 30] to 
define the number of ground literals of 𝑆0 and [1, 10] for 𝐺. 

After generating the initial population, individuals are 
evaluated according to the story arcs of their plots (see 
subsection B for details about the fitness function). Then, to 
select individuals for reproduction, we used the fitness 
proportionate selection method (also known as roulette 
wheel selection [22]), which uses the individuals’ fitness to 
calculate a selection probability, allowing candidates to be 
selected randomly but with a bias towards those with a 
larger proportion of the population’s combined fitness. In 
addition, to avoid decreasing the quality of solutions from 
one generation to the next, we also applied the elitist 
selection strategy [15], where a limited number of 
individuals with the best fitness values are copied directly 
to the next generation (in our experiments, we use an elitism 
factor of 2%). 

Once the individuals are selected for reproduction, the 
next step of the algorithm is the crossover process, which 
combines the genetic information of two parents to generate 
new offspring. As illustrated in Figure 3, we use a single 
point crossover on each reactive element of the individuals 
(𝑆0 and 𝐺). Therefore, two crossover points are randomly 
selected, one along the length of the initial state of the 
parents (𝑆0) and another one along the length of goal state 
(𝐺). When the length of the states does not match, the point 
is selected along the smallest length. Then, ground literals 
of the parents’ states on each side of the crossover points are 
swapped and copied to two different children (Figure 3). 
While copying ground literals to a new child, the algorithm 
automatically removes repeated literals and ensures the 
uniqueness of ground literals according to Γ ⊆ 𝐷𝐵. At the 
end, two different children are created, each one carrying 
genetic information from both parents (Figure 3). 

 

 

Figure 3.  Crossover process (vertical dashed lines are the crossover 

points and shadowed variables are the parent X’s genes). 

After crossover, offspring are submitted to mutation, 
which prevents the algorithm from being trapped in a local 
minimum and maintains the diversity of the population. 
Considering that the reactive elements of individuals are 
represented by sets of ground literals, traditional mutation 
methods, such as flipping and interchanging genes, cannot 
be directly applied. Therefore, we employed a mutation 
procedure that randomly removes or adds ground literals 
from the initial state (𝑆0), goal state (𝐺), or both. Given a 
mutation probability 𝑀𝑝, a random mutation type 𝑀𝑡 (add, 

remove, or add & remove), and a random target 𝑀𝑠 (𝑆0, 𝐺, 

or both), the mutation is performed with probability 𝑀𝑝 

 
4 https://archive.org/details/freytagstechniqu00freyuoft/page/n4  

over state 𝑀𝑠 , changing it according to 𝑀𝑡 . When 
performing an add mutation type, a new ground literal is 
randomly generated according to the rules established in 
Γ ⊆ 𝐷𝐵. In our experiments, we used 𝑀𝑝 = 20%. 

All offspring created through the crossover process, 
which may or may not be affected by mutation, are inserted 
into a new population. When the size of the new population 
reaches the maximum number of individuals (100 in our 
experiments), the current population is replaced by the new 
population, establishing a new generation. The new 
generation is then evaluated and the whole process is 
repeated for a given number of generations (Figure 2).   

B. Fitness Function 

In a genetic algorithm, the fitness function takes an 
individual as input and returns a numeric value representing 
the evaluation of the indicated individual. In our method, the 
utility/quality of a quest is estimated by how well its plot 
resembles a desired story arc. 

The concept of story arc dates back to 1863, when 
Gustav Freytag, inspired by the ideas of Aristotle about epic 
poetry and tragedy, proposed a simple plot pattern that 
represents the narrative structure of a classical five-act 
tragedy (Freytag, 19004). This structure was enhanced by 
subsequent theorists towards a more general model, known 
today as Freytag's Pyramid or Freytag's Triangle. Although 
modern literary narrative has been increasingly hostile to 
normative notions of structure, the new entertainment media 
(e.g. films, comic books, and videogames), have special 
needs and challenges, because they deal with audiences 
engaged in short episodes (e.g. 80 min films), visually 
intensive discourses and short narrative cycles (e.g. comics 
and graphic novels), and/or interactive experiences (e.g. 
videogames and interactive storytelling). In these cases, 
normative notions of dramatic structure are very helpful. 
This may explain the enormous success of simple variants 
of the Freytag's Pyramid that are known in the film and 
videogame industry as story arcs. 

The most famous story arc is the three-act structure used 
by the film industry (Figure 4), which is divided into Setup 
(1/4 of the story time), Confrontation (2/4 of the story time), 
and Resolution (1/4 or less of the story time). This structure 
has 3 notable turning points: Plot Point 1 (Inciting Incident), 
Plot Point 2 (the stirring turning point, with uncertain 
outcome – e.g. will the protagonist win, lose, or die?), and 
Crisis (the climax, the final and dramatic confrontation, 
which is followed by the denouement). As illustrated in 
Figure 4, the horizontal axis represents time and the vertical 
axis represents emotional tension. 

 

 

Figure 4.  Story arc as a three-act structure. 
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Considering that story arcs are composed of falls and 
rises in the tension axis, we represent a story arc of a plot 𝑝 

as a sequence of symbols 𝑝𝑎𝑟𝑐
𝑠 𝑚

= { 1,  2, … ,  𝑛} , where 
each Si can be: “ ” to represent rise; or “−” to represent 
fall; or “=” to represent the maintenance of the tension 
level. The number of symbols in the sequence represents the 
discretized time axis. For example, the three-act story arc 

illustrated in Figure 4 can be expressed as: 𝑝𝑎𝑟𝑐
𝑠 𝑚

= { , ,
 , −}, where: 1/4 of the story time is dedicated to the Setup 
(first "  " symbol); 2/4 is dedicated to the Confrontation 
(second and third "  " symbols); and 1/4 of the remaining 
story time is reserved for the Resolution (last " − " symbol).  

The symbolic representation of a story arc can also be 
converted into a numeric representation 𝑝𝑎𝑟𝑐

𝑛𝑢𝑚 =
{𝑣1, 𝑣2, … , 𝑣𝑛} , where each 𝑣𝑖  of 𝑝𝑎𝑟𝑐

𝑠 𝑚
 is a number 

indicating the current tension value in the vertical axis of the 
story arc. Letting 𝑣0 = 0, the tension value for each element 
of 𝑝𝑎𝑟𝑐

𝑛𝑢𝑚 is given by: 
 

𝑣𝑖 = {
𝑣𝑖−1        𝑖𝑓  𝑖 = "  "
𝑣𝑖−1 −       𝑖𝑓  𝑖 = " − "
𝑣𝑖−1             𝑖𝑓  𝑖 = " = "

 

 

For example, the symbolic story arc 𝑝𝑎𝑟𝑐
𝑠 𝑚

= { , , , −} 
yields 𝑝𝑎𝑟𝑐

𝑛𝑢𝑚 = { , 2, 3, 2}. 
In our method, the fitness function takes as input a 

desired story arc (provided by the user using the symbolic 
notation) and an individual of the population. Then, to 
calculate the fitness of the individual, the function preforms 
three steps: (1) solves the planning problem of the 
individual to generate the plot of the quest; (2) estimates the 
story arc of the quest plot using the information defined in 
Ε ⊆ 𝐷𝐵, which describes how each event affects the overall 
tension of the quest; and (3) calculates the fitness of the 
individual by comparing the story arc of the quest plot with 
the desired story arc.   

The process to solve planning problems can be 
performed by any classical planner. In our implementation, 
we used the HSP2 planner provided by Bonet and Geffner 
[23], which is fully compatible with our STRIPS-like 
formalism. It is important to notice that not all genetic 
structure characterizations of individuals can be treated as a 
planning problem leading to proper solutions. Therefore, the 
planner must handle situations where there is no valid 
sequence of actions that leads from the initial state to the 
goal state; or when the searching process exceeds a 
prescribed time limit (indicating an infinite loop or an 
excessively complex problem). In these cases, the plot of the 
quest will be empty.   

After obtaining the plot of the quest, the story arc is 
calculated according to the events that occur along the plot. 
For example, considering a plot 𝑝 with the events:  
 

attack(zombie, anne, home), go(john, 

johnhome, village), go(john, village, 

store), get(john, antidote1, store), 

go(john, store, village), go(john, village, 

johnhome), cure(john, anne, antidote1, 

johnhome), 
 

and assuming that Ε ⊆ 𝐷𝐵  defines the effects of the 
operators as Ε = { attack:"+", get:"+", go:"=", 

cure:"-",…},  the story arc for plot 𝑝 can be expressed in 

the symbolic notation as 𝑝𝑎𝑟𝑐
𝑠 𝑚

= { ,=,=,  ,=,=, −} and 

converted to its numeric representation: 𝑝𝑎𝑟𝑐
𝑛𝑢𝑚 =

{ ,  ,  , 2, 2, 2,  }.  
In order to estimate how well the story arc of a plot 

resembles a desired story arc, we calculate the difference of 
the two arcs. However, considering that story arcs can have 
different time scales, first we rescale them both to a 
common time interval. In our experiments, all story arcs are 
scaled to the interval [1, 10]: 
 

∀𝑖  ∈ { ,… ,  0}   𝑝𝑎𝑟𝑐𝑖
𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑝𝑎𝑟𝑐

⌈
𝑖−1
10
 (𝑝𝑎𝑟𝑐
𝑛𝑢𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −1)⌉+1

𝑛𝑢𝑚  

 

where 𝑝𝑎𝑟𝑐
𝑛𝑢𝑚̅̅ ̅̅ ̅̅ ̅ represents the length of 𝑝𝑎𝑟𝑐

𝑛𝑢𝑚 . For example, 
the three-act story arc 𝑣𝑎𝑟𝑐

𝑛𝑢𝑚 = { , 2, 3, 2}  is scaled to 

𝑣𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = { ,  , 2, 2, 2, 3, 3, 2, 2, 2}. In the same way, the 

plot of the example presented above 𝑝𝑎𝑟𝑐
𝑛𝑢𝑚 = { ,  ,  , 2, 2,

2,  } is scaled to 𝑝𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 = { ,  ,  ,  , 2, 2, 2, 2,  ,  }. With 

both story arcs scaled to the same time interval, their 
differences can be comparted (as shown in Figure 5).  
 

 

Figure 5.  Visual comparasion of two scaled story arcs. 

In order to calculate the difference between two scaled 
story arcs (𝑑 and 𝑝), we use the mean squared error: 
 

𝑚 𝑒(𝑝, 𝑑) =
 

𝑛
∑(𝑝𝑎𝑟𝑐𝑖

𝑠𝑐𝑎𝑙𝑒𝑑 − 𝑑𝑎𝑟𝑐𝑖
𝑠𝑐𝑎𝑙𝑒𝑑)

2
𝑛

𝑖=1

 

 

The final fitness of an individual is calculated as: 
 

𝑓𝑖𝑡𝑛𝑒  (𝑝, 𝑑) =
𝑝̅

𝑚 𝑒(𝑝𝑎𝑟𝑐
𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑑𝑎𝑟𝑐

𝑠𝑐𝑎𝑙𝑒𝑑)
 

 

where 𝑝 is the plot of an individual of the population, 𝑑 is 
the desired story arc provided by the user, and 𝑝̅ represents 
the length of 𝑝 (i.e., the number of events in the plot). 

C. Optimizations 

The process to evaluate the individuals of the population 
is the most computationally expensive part of our genetic 
algorithm, especially because it involves the execution of a 
planner to generate the quest plot of each individual. 
Although a genetic algorithm is naturally an offline process, 
fast responses are important in our context to allow users to 
try out different parameters or modifications in the game 
world. Therefore, we implemented two optimizations for 
the evaluation process: parallel evaluation and cached plots.  

Considering that each individual represents an 
independent planning problem, we can take advantage of 
multi-core processors to evaluate multiple individuals in 
parallel. For this optimization, we use a thread pool that 
maintains multiple threads waiting for tasks (evaluation of 
individuals) to be allocated for concurrent execution. As 
will be described in section V, the use of threads noticeably 
improves the overall performance of our genetic algorithm. 
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Another characteristic of the populations of our genetic 
algorithm is the occurrence of individuals with equal 
planning problems along the same or different generations, 
especially when the game world is small. In these cases, the 
same planning problem would need to be solved multiple 
times, wasting time and CPU resources. In order to optimize 
this process, we implemented a memoization (a.k.a. 
memoisation) technique to store the plots generated from 
previous planning problems. When a similar planning 
problem is about to be solved, the cached plot is retrieved 
and reutilized. The cache uses a hash table structure to 
efficiently map keys (calculated according to the initial state 
and goal state of the planning problems) to values (plots).  

IV. APPLICATION 

In order to test and validate our method, we adapted a 
2D RPG developed for a previous project [8][24][25] 
(Figure 6), in which we incorporated the proposed 
architecture to use quests generated by our genetic 
algorithm. The game pertains to a zombie survival genre, 
telling the story of a family that lives in a world dominated 
by a zombie plague. The game world comprises 15 different 
places: a village; a forest; a hospital; a store; the main 
character’s house; a neighbor’s house; an island, which 
includes east, west and central regions; a mountain area that 
equally includes east, west and central regions; a bridge 
connecting the village with the island; and another bridge 
connecting the island with the mountain area. The world is 
inhabited by 7 characters: the brave husband John 
(controlled by the player); Anne (John’s wife); Maggie 
(John’s daughter); Rick (a shop attendant); Bob (a doctor); 
Matt (a wood cutter); and Robin (a survival specialist). 
Several collectable items are scattered through the world, 
including keys to open locked doors, antidotes to cure 
infected characters, food to feed starving characters, and 
piles of wood that can be used in combination with a tool kit 
to fix broken bridges. In addition, the game world includes 
several zombies that can attack and infect other characters.  

 

 

Figure 6.  Scene of the prototype game, where the player’s avatar (John) 

is surrounded by zombies. 

The gameplay is designed to be driven by the story 
quests, wherein it is the player’s responsibility to collect 
items, interact with non-player characters, kill zombies, 
open locked doors, fix broken bridges, cure infected 
characters, and feed starving characters. In order to fight 
against the zombies, the player has a gun with a limited 

 
5 https://love2d.org/  
6 For the sake of simplicity, we condensed sequences of go 

events by describing only the initial and final locations (for 

amount of ammunition, which is reloaded when the player 
collects ammunition kits. When the player is attacked by 
zombies, he/she loses an amount of life (i.e. of the life 
energy initially attributed to the player), which is only 
restored when he/she collects medic kits. The game was 
implemented in Lua using the Löve 2D framework. 5 

In order to generate the quests for the game, we used our 
quest generation method. To test the genetic algorithm, we 
employed a fixed population size of 100 individuals, and 
each run of the algorithm comprised 100 generations. At the 
end of a run, only the best individual’s quest was selected to 
be included in the game. For all runs, the three-act structure 
was used as the desired story arc. A total of 3 quests were 
generated for the game: 6 
 

Q1 = starve(maggie, home), go(john, 

johnhome, store), ask(john, rick, food2, 

store), give(rick, john, food2, store), 

go(john, store, johnhome),  feed(john, 

maggie, food2, johnhome). 
 

Q2 = attack(zombie, anne, johnhome), 

go(john, johnhome, neighborhouse), 

kill(john, zombie2, neighborhouse), 

get(john, hospitalkey, neighborhouse), 

go(john, neighborhouse, hospitaldoor), 

opendoor(john, hospitalkey, hospitaldoor), 

go(john, hospitaldoor, hospital), ask(john, 

bob, antidote2, hospital), give(bob, john, 

antidote2, hospital), go(john, hospital, 

johnhome), cure(john, anne, antidote2, 

johnhome). 
 

Q3 = attack(zombie, bob, hospital), go(john, 

johnhome, forest), kill(john, bigzombie, 

forest), get(john, wood1, forest), go(john, 

forest, store), get(john, toolkit, store), 

go(john, store, villageislandbridge), 

fixbridge(john, toolkit, wood1, 

villageislandbridge), go(john, 

villageislandbridge, islandeast), ask(john, 

matt, antidote3, islandeast), give(matt, 

john, antidote3, islandeast), go(john, 

islandeast, hospital), cure(john, bob, 

antidote3, hospital). 
 

Although our game world supports more quests, we 
generated only 3 quests to give human designers more 
freedom to design their own quests for the user evaluation 
test (a Turing-like Test) described in section V.      

V. EVALUATION 

To evaluate the results produced by the proposed 
method, we performed two tests: (1) a technical test to check 
the performance and the evolution progress of our genetic 
algorithm; and (2) a user evaluation test to compare the 
quests automatically generated by our system with quests 
manually produced by a human game designer. 

A. Techinical Evaluation 

The technical evaluation of our method comprised two 
experiments. First, we analyzed the evolution progress of 
the genetic algorithm and compared it with a random quest 
generation strategy. For the second experiment, we 
evaluated the computational performance of the algorithm.  

example, “go(john, home, village), go(john, 

village, forests)” is represented as “go(john, home, 
forest)”). 
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To evaluate the evolution progress, we performed 25 
runs of the genetic algorithm to generate a single quest. For 
this experiment, we used the world of the game described in 
section IV and the following settings in the genetic 
algorithm: population size of 100 individuals; elitism factor 
of 2%; single point crossover (following the process 
described in section III (A)); mutation probability of 20%; 
termination condition of 100 generations; and the three-act 
structure as the desired story arc. These settings were chosen 
in the course of preliminary experiments. 

In order to compare the results with a random quest 
generation strategy, we created another version of our 
system that uses our method to generate a random initial 
population for the genetic algorithm, but, instead of 
applying the evolutionary strategy, each new generation is 
initialized as a new population. As the genetic algorithm, the 
process is repeated for 100 generations with the population 
size set to 100 individuals (testing a total of 10.000 random 
quests). At each generation, the best random quest is 
selected to be compared to the best, average and worst 
individuals of the genetic algorithm.     

Figure 7 shows the results of this experiment. As can be 
noticed, the genetic algorithm clearly overcomes the 
random strategy with just a few generations. In addition, 50 
generations proved to be enough for the individuals to 
converge to the optimal solution for this problem (that is, 
for this game world configuration and using the three-act 
structure as the desired story arc).    
 

 

Figure 7.  Average evolution progress of the best, average, and worst 

(valid) individuals of the population during 25 runs of the genetic 

algorithm in comparsion with the best random quests created with a 

random strategy. 

To evaluate the computational performance of our 
method, including de efficiency of the optimizations 
described in Section III (C), we calculated the average time 
required to process a population of 100 individuals during 
one generation of the genetic algorithm (using the same 
settings of the previous experiment). Three versions of our 
algorithm were tested: (1) a version without optimizations 
(Base Version); (2) an optimized version with multiple 
threads for the evaluation process (Parallel Version); and (3) 
a fully optimized version using multiple threads and cached 
plots (Optimized Version). The computer used to run the 
experiments was an Intel Core i7 7820HK, 2.9 GHZ CPU, 
16 GB of RAM. Each version was tested for 25 full runs of 
the genetic algorithm, each one testing 100 generations 
(generating a total of 2500 time samples per version). Table 
I shows the results of the tests, which indicate that the 
optimized version is more than 6 times faster than the base 

version. Although the optimized version still needs a 
considerable amount of time to generate a quest plot 
(average time of 3.59 minutes to run the algorithm for 50 
generations), the quality of the solution (in comparison with 
those generated by a random strategy) fairly compensates 
the processing time.   

TABLE I.  AVERAGE TIME TO PROCESS A POPULATION OF 100 

INDIVIDUALS DURING ONE GENERATION IN THREE VERSIONS OF OUR 

GENETIC ALGORITHM: (1) BASE VERSION WITHOUT OPTIMIZATIONS; (2) 

PARALLEL VERSION USING MULTIPLE THREADS; AND (3) OPTIMIZED 

VERSION USING MULTIPLE THREADS AND CACHED PLOTS 

 Base 
Version 

Parallel 
Version 

Optimized 
Version 

Time (sec) 27.56 10.45 4.31 
Standard 
Deviation 

13.21 7.11 3.72 

B. User Evaluation 

In order to compare quests automatically generated by 
our system with those manually produced by game design 
professionals, we conducted a simplified Turing-like Test to 
evaluate if human players would be able to differentiate 
quests produced by our algorithm from those created by a 
human game designer.  

For this experiment, we asked a professional game 
designer with over 10 years of game industry experience to 
design 3 new quests for our game, allowing him to freely 
add new characters, places, items and actions, but without 
interfering in the logic and structure of the existing quests 
previously generated by our algorithm. The quests created 
by the game designer are: 
 

DQ1 = go(john, home, store), ask(rick, john, 

killvillagezombies), go(john, store, 

village), kill(john, villagezombies, 

village), go(john, village, store), 

thank(rick, john). 
 

DQ2 = getlost(george, forest), go(john, 

home, forest), kill(john, zombie4, forest), 

find(john, george, forest), take(john, 

george, forest, hospital). 
 

DQ3 = attack(zombie, maggie, home), go(john, 

home, islandeast), kill(john, zombie5, 

islandeast), get(john, wood2, islandeast), 

go(john, islandeast, islandmountainbridge), 

fixbridge(john, toolkit, wood2,  

islandmountainbridge), go(john, 

islandmountainbridge, mountainwest),  

attack(zombie, robin, mountainwest), 

die(robin, mountainwest), steal(john, 

robin, antidote4, mountainwest), go(john, 

mountainwest, home), cure(john, maggie, 

antidote4, home)., 
 

which were integrated with those resulting from our 
algorithm in the order: {Q1, DQ1, Q2, DQ2, Q3, DQ3}. 

After integrating the designer’s quests into the game, we 
asked 34 students (28 male and 6 female, aged 18 to 23) to 
play our game and classify quests according to whether they 
were created by a human designer or by a machine. Before 
the test, we explained to subjects that some quests were 
created by an algorithm and others by a game designer, but 
did not tell them how many quests were created by each one. 
After completing each quest, the game was automatically 
paused, and the subjects were prompted to judge if the quest 
was created by a human designer or by a machine. All 
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participants were able to complete all quests. On average, 
each session lasted 32.4 minutes (standard deviation of 8.3).  

Over the entire test set of 204 data points (34 players, 
each evaluating 6 quests), the “machine” version was 
correctly identified in 48 cases (out of a total of 102) and the 
“human” version was correctly identified in 52 cases (out of 
a total of 102), leading to an overall accuracy of 49.02%.  

An ideal Turing Test is represented by the case where 
the computer and the human versions are indistinguishable, 
leading therefore to a random choice of 50% accuracy. The 
small difference between the achieved accuracy (49.02%) 
and the ideal Turing Test value (50%) suggests that the 
computer-generated and the human-designed quests are 
hardly distinguishable, which is an indication of the 
capacity of the proposed quest generation method to achieve 
quest plots closely similar to those created by professional 
game designers.  

VI. CONCLUSION REMARKS 

We described in this paper a new quest generation 
method, combining planning with an evolutionary search 
strategy guided by story arcs, which can generate coherent 
and diversified quests based on a specific narrative 
structure. Our method provides game designers with new 
ways of imagining and creating narratives for games. Also, 
game developers can take advantage of this technique to 
automate the process of designing new quests for games, 
and, therefore, to reduce the work overload of the 
development teams.  

In our experiments, the proposed method revealed 
encouraging results. The genetic algorithm showed good 
overall evolution progress that easily overcomes a random 
quest generation strategy with just a few generations. 
Another suggestive evidence comes from the fact that 
players were not able to distinguish quests created by our 
method from those created by a professional game designer.  

In terms of performance, although some optimizations 
in our method were already implemented, users still need to 
wait a few minutes to visualize the results (as described in 
section V (A)). Accordingly, one of our next research goals 
is to find alternatives to improve the overall performance of 
our method, for instance by replacing the planning algorithm 
by faster methods (e.g., hierarchical task networks) or by 
implementing a cloud computing architecture. 

As another research objective, to be pursued while 
exploring alternatives to improve performance, we plan to 
extend the proposed method to support the generation of 
narratives with branching storylines. The alternative paths 
can be created by using the final states of the best 
individuals as initial states for new runs of the genetic 
algorithm. This form of branching storylines may provide 
game designers with new ways to expand traditional quests 
towards new forms of interactive storytelling. 
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