TÓPICOS INTELIGENCIA ARTIFICIAL I: (Deep Reinforcement Learning)

Ano e semestre 2025.2

INF2070	Tópicos em Inteligência Artificial I Deep Reinforcement Learning Prof. Alberto Sardinha		
Dia: 5ª feira	CARGA HORÁRIA TOTAL:	CRÉDITOS: 3	
Horário: 10 – 12h +1SHF	PRÉ-REQUISITOS: Não há		

OBJETIVOS	Esta disciplina tem o objetivo de apresentar os principais modelos e métodos computacionais de Deep Reinforcement Learning.	
EMENTA	Modelos de decisão sequenciais com incerteza, introdução ao aprendizado por reforço, aprendizado por reforço profundo.	
PROGRAMA	Introdução aos modelos de decisão sequencias com incerteza Reinforcement Learning	
AVALIAÇÃO	O desempenho do aluno será avaliado por meio de trabalhos (individuais ou em grupo), que poderão envolver a redação de um artigo técnico e sua apresentação em sala.	

BIBLIOGRAFIA PRINCIPAL	S. Albrecht, F. Christianos, L. Schäfer. Multi-Agent Reinforcement Learning: Foundations and Modern Approaches, 1st Ed., MIT Press, 2023.	
	R. Sutton, A. Barto. Reinforcement Learning: An Introduction, 2nd Ed., MIT Press, 2018.	
BIBLIOGRAFIA COMPLEMENTAR		