

CENTRO UNIVERSITÁRIO CTC DEPARTAMENTO DE INFORMÁTICA

Ano e semestre: 2025.2

INF2541	Introdução à Computação Móvel e Ubíqua – Algoritmos Distribuídos para Agentes Móveis	
	CARGA HORÁRIA TOTAL: 45	CRÉDITOS: 3 (optativa: Graduação)
	Prof. Markus Endler Quarta feira; 13-16 hs, (4°. ou 5°. andar	r RDC)

OBJETIVOS	O objetivo é possibilitar no aluno uma compreensão dos princípios e práticas dos algoritmos distribuídos aplicados a agentes móveis, com ênfase em enxames de drones que tenham uma missão comum. Os alunos aprenderão a projetar, implementar/simular e avaliar algoritmos distribuídos para a coordenação e colaboração entre múltiplos drones em ambientes dinâmicos. Serão abordados desde os fundamentos teóricos até a aplicação prática através de simulações usando a ferramenta GrADyS Sim NG.	
EMENTA	 Compreender os conceitos fundamentais de algoritmos distribuídos e sistemas multiagente. Estudar as características e desafios dos agentes móveis, especialmente em contextos de enxames (swarms) de agentes voadores (drones). Desenvolver algoritmos distribuídos para coordenação e comunicação entre drones visando uma missão comum (e.g. visitar certo numero de pontos em uma região) Implementar algoritmos, simula-los avaliar desempenho e corretude dos mesmos em ambientes simulados. Estudar a literatura e discutir casos de uso práticos e aplicações de enxames de drones em diferentes domínios. 	
PROGRAMA	Módulo 1: Introdução a Algoritmos Distribuídos	

	 Exemplos de aplicações de agentes móveis 	
	 Exemplos de aplicações de agentes moveis Módulo 3: Coordenação de Enxames de Drones 	
	Aula 5: Teorias de Enxames	
	Comportamento coletivo e emergente	
	 Algoritmos de enxame (ex: PSO, ACO) 	
	Aula 6: Comunicação entre Drones	
	 Protocolos de comunicação 	
	Desafios de comunicação em ambientes dinâmicos	
	Módulo 4: Desenvolvimento de Algoritmos Distribuídos	
	 Aula 7: Projetando Algoritmos para Enxames de Drones 	
	 Estratégias de coordenação 	
	 Algoritmos de busca e mapeamento 	
	Aula 8: Implementação Prática	
	 Ferramentas e ambientes de simulação (ex: GrADyS SIM NG) 	
	Desenvolvimento de código em Python	
	Módulo 5: Avaliação e Implementação em Ambientes Diversos	
	Aula 9: Testes e Validação de Algoritmos	
	Métodos de avaliação Apólico do decemposto o eficiência	
	Análise de desempenho e eficiência Auto 40: Anilise 2 Prétique	
	Aula 10: Aplicações Práticas Estudo de casos em diferentes setores (agricultura, vigilância, entrega) Módulo 6: Outros Tópicos Aula 11: Aprendizado de Máguina para Enverse de Drance	
	 Aula 11: Aprendizado de Máquina para Enxame de Drones Integração de algoritmos de aprendizado 	
	 Adaptação e evolução de comportamentos 	
	Aulas 12, 13 e 14: Apresentaçções pelos alunos	
AVALIAÇÃO	Através de:	
	 dois projetos práticos, de desenvolvimento e avaliação de um algoritmo 	
	distribuído) utilizando o simulador GrADyS-SIM, NG,	
	uma monografia sobre o algoritmo desenvolvido e seu desempenho.	
	3. apresentação de um seminário.	
	(obs: não haverá prova)	
BIBLIOGRAFIA	"Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence" - G.	
PRINCIPAL	Weiss (Ed.)	
FRINGIFAL	Uma coletânea que discute sistemas multiagente e suas aplicações.	
	"Swarm Intelligence: From Natural to Artificial Systems" - Eric Bonabeau, Marco	
	Dorigo, Guy Theraulaz	
	Uma introdução aos conceitos de inteligência de enxame e suas aplicações.	
	"Robotics: Modelling, Planning and Control" - Bruno Siciliano et al.	
	Um livro que cobre os fundamentos da robótica, incluindo controle de agentes	
	móveis.	
	"GrADyS SIM NG Documentation" – Thiago Lamenza	
DIDL IOOD 4 514	"Distributed Systems: Principles and Paradigms" - Andrew S. Tanenbaum, Maarten	
BIBLIOGRAFIA	· · · · · · · · · · · · · · · · · · ·	
COMPLEMENTAR	Van Steen	
	Um livro que fornece uma visão geral dos princípios de sistemas distribuídos.	
	GrADyS SIM NG showcase -	