
5/10/2016

1

LES | DI |PUC-Rio - Brazil OPUS Research Group

Luciano Sampaio - lsampaio@inf.puc-rio.br

Alessandro Garcia - afgarcia@inf.puc-rio.br

Security Anomalies and

Continuous Vulnerability Detection

Luciano Sampaio

� Secure programming is the practice of writing programs that

are resistant to attacks by malicious people or programs

� Security vulnerability or just vulnerability is a flaw that can be

exploited to allow an attacker to cause unintended operations

� 86% of audited websites has at least 1 serious security

vulnerability (WhiteHat - 2013)

Introduction

Check for Cookie Poisoning.

Check for XSS.

Check for SQL Injection.

…

2

5/10/2016

2

Luciano Sampaio

Top 10 vulnerabilities

� Open Web Application Security Project (OWASP)

� 2003, 2004, 2007, 2010, 2013

� OWASP Top 10 – 2013

� From 8 datasets from 7 companies with over 500,000 vulnerabilities

� 01 – (SQL/Command) Injection

� 02 – Broken Authentication and Session Management

� 03 – Cross-Site Scripting (XSS)

� 04 – Insecure Direct Object References

� 05 – Security Misconfiguration

� 06 – Sensitive Data Exposure

� 07 – Missing Function Level Access Control

� 08 – Cross-Site Request Forgery (CSRF)

� 09 – Using Known Vulnerable Components

� 10 – Unvalidated Redirects and Forwards

3

Luciano Sampaio

� SSVChecker, FindBug, ASIDE, Lapse+, CodePro Analytics,

CodeProfiler, JeSS and AppScan IBM

� Key characteristics

� Late detection

� Pattern matching

4

Static analysis can help

5/10/2016

3

Luciano Sampaio

How is usually done… Late detection

Runs

Developer

Plug-in

Report

Source code

5

Luciano Sampaio

request.setAttribute("login", login);request.setAttribute("login", login);

ResultSet resultSet = statement.executeQuery(sql);ResultSet resultSet = statement.executeQuery(sql);

Early detection can help

Developer Source code

String login = request.getParameter("login");

String sql = "SELECT * FROM USER WHERE LOGIN = '" + login + "'";

Statement statement = conn.createStatement();

Plug-in

Report

6

5/10/2016

4

Luciano Sampaio

Early detection requirements

� High accurate detection technique

� Rate of false positives

� The usage of time and resources can not disturb the

developer

7

Luciano Sampaio

Early detection using low accurate technique

8

5/10/2016

5

Luciano Sampaio

� Pattern matching is a technique for checking if a pattern

matches a given sequence of tokens (letters, numbers,

punctuation, and certain symbols)

� 20/30% of false positives - (Nadeem 2012)

9

Frequently used technique

Luciano Sampaio 10

Pattern matching example

Pattern Matching technique

5/10/2016

6

Luciano Sampaio

� Data-flow analysis (DFA) is a technique for gathering

information about the possible set of values calculated at

various points in a computer program

� Originally created and commonly used for implementing

optimizations on compilers

� Currently, there is only one solution that uses DFA to

detect security vulnerabilities (CodePro)

11

Data-flow analysis as an alternative

Luciano Sampaio 12

Data-flow analysis example

5/10/2016

7

Luciano Sampaio

Key limitations of the state-of-the-art

� Late detection does not support secure programming but

rather security analysis

� Frequently used vulnerability detection techniques

present a high rate of false positives

� False positives are even more critical in early detection

� Pattern matching or primitive DFA

13

Luciano Sampaio

� 01 - Can advanced DFA decrease the rate of false positives

when compared to other techniques ?

� 02 - Can the early detection approach help developers

produce more secure code when compared to late

detection ?

Research questions

14

5/10/2016

8

Luciano Sampaio

Proposed solutions

� Propose to support a change from the default behavior of late

detection to early detection

� Propose new heuristics using a technique named context-

sensitive data flow analysis

� Pattern matching

� Context-insensitive data flow analysis

� Designed and implemented a prototype

� Performed 2 empirical studies

15

Luciano Sampaio

� Entry-Point

� Sanitization-Point

� Exit-Point

How to identify something as unsafe/safe ?

16

Entry-Point

Exit-Point

Sanitization-Point

5/10/2016

9

Luciano Sampaio

Context Insensitive

17

printWriter = …

animal1 = …

ok = "ok"

bad = req…

animal2 = …

nameAnimal = ok= bad

Data Flow Analysis >>

Luciano Sampaio

Context Sensitive

18

doGet
printWriter = …

animal1 = …

ok = "ok"

bad = req…

printWriter

animal2 = …

animal1

nameAnimal

animal2

nameAnimal= ok = bad

Data Flow Analysis >>

Contexts

5/10/2016

10

Luciano Sampaio

Our proposed heuristics

19

…println(String)

String Literal

Safe

VariableMethod

Sanitization

Point

Unsafe

Entry

Point

System.out.println("abcd");
String a = "abcd";

System.out.println(a);
String a = getA();

System.out.println(a);
System.out.println(getA());String a = sanitize(request.getParameter(“a”));

System.out.println(a);

String a = request.getParameter(“a”);

System.out.println(a);

Luciano Sampaio

Supported vulnerabilities

� Vulnerabilities that stem from program input and output not being

properly validated are recognized as being the most common ones

� These vulnerabilities are not dependent on how they are implemented

20

� 07 - Path Traversal

� 08 - Reflection Injection

� 09 - Security Misconfiguration

� 10 - SQL Injection

� 11 - XPath Injection

� 01 - Command Injection

� 02 - Cookie Poisoning

� 03 - Cross-Site Scripting (XSS)

� 04 - HTTP Response Splitting

� 05 - LDAP Injection

� 06 - Log Forging

Data Flow Analysis >>

5/10/2016

11

Luciano Sampaio

New type of problems - Infinite Loop
Data Flow Analysis >>

21

Luciano Sampaio

� Containers

� InnerClasses

Current limitations of our implementation

ESVD

Dillig, I., Dillig, T. and Aiken, A. (2011). Precise reasoning for programs using containers. ACM SIGPLAN Notices

22

Data Flow Analysis >>

5/10/2016

12

Luciano Sampaio

Evaluation

� Rate of false positives

� Exploratory study - Benchmark on 5 open-source

projects and 1 custom-made project

� Early detection effectiveness

� Controlled experiment - Participants were asked to

create a code using our tool

23

Luciano Sampaio

Study 1: Accuracy Benchmarking

Blueblog Personalblog WebGoat Roller Pebble NCO

Version 1.0 1.2.6 5.4 0.9.9 2.6.4 1.0

Number of packages 22 10 24 70 100 49

Number of classes 38 38 159 283 743 84

Number of methods 227 253 1.453 2.704 3.445 517

Lines of Code 2.200 2.933 24.483 34.301 36.709 6.048

Number of Vulnerabilities 18 148 488 521 440 77

Analyzed projects

Evaluation >>

24

Pattern Matching Data Flow Analysis - CI Data Flow Analysis - CS

Lapse+ X

ASIDE X

CodePro X

ESVD X

Selected solutions

5/10/2016

13

Luciano Sampaio

Analyzed vulnerabilities

Pattern Matching DFA - CI DFA - CS

Nr Vulnerability ASIDE Lapse+ CodePro ESVD

1 Command Injection 0 1 1 1

2 Cookie Poisoning 1 1 1 1

3 Cross-Site Scripting (XSS) 1 1 1 1

4 HTTP Response Splitting 0 1 1 1

5 LDAP Injection 0 1 1 1

6 Log Forging 1 1 1 1

7 Path Traversal 0 1 1 1

8 Reflection Injection 0 0 1 1

9 Security Misconfiguration 0 0 1 1

10 SQL Injection 1 1 1 1

11 XPath Injection 0 1 1 1

Total 4 9 11 11

25

Study 1 >>

Luciano Sampaio

Summary

Precision Recall F1 Score % False Positive

ASIDE 0,48 0,39 0,43 51,78%

CodePro 0,62 0,07 0,13 37,62%

Lapse+ 0,55 0,36 0,43 44,73%

ESVD 0,88 0,66 0,75 11,70%

26

Study 1 >>

5/10/2016

14

Luciano Sampaio

Summary of False Positives

27

Study 1 >>

Blueblog Personalblog WebGoat Roller Pebble NCO

ASIDE 74% 13% 51% 70% 50% 29%

Lapse+ 20% 25% 50% 22% 29% 64%

CodePro 59% 17% 32% 59% 54% 61%

ESVD 0% 3% 21% 1% 5% 61%

Results of false positives per analyzed project

Luciano Sampaio

WebGoat - False Positive

28

Study 1 >>

5/10/2016

15

Luciano Sampaio

NCO - False Positive

29

Study 1 >>

Luciano Sampaio

Memory

30

Study 1 >>

The applications are ordered by size

5/10/2016

16

Luciano Sampaio

Time (Minutes)

31

Study 1 >>

The applications are ordered by size

Luciano Sampaio

Findings

� We achieved 11,70% of rate of false positives

� The best pattern-matching result was 44,73%

� There is a trade-off, better results mean more time and

memory usage

� This can be problem for large projects when using DFA-

CS

� RQ1 - Can DFA-CS decrease the rate of false positives

when compared to other techniques ? YES!

32

Study 1 >>

5/10/2016

17

Luciano Sampaio

Study 2: Late vs. Early DetecQon − A Quasi-Experiment

� 2 groups of participants (students and professionals), divided in 2

groups (Early Detection and Late Detection)

� Both using ESVD

� Asked them to develop some functionalities of a small system

� Initial project and basic jsp pages already created

� Login and logout

� Add, Update, Delete and List comments

� Recorded their screen, audio and Eclipse’s interactions

� ScreenFlow

� Rabbit-eclipse

33

Evaluation >>

Luciano Sampaio

Participants

Early Late Total Total

Student 10 10 20
34

Professional 7 7 14

Study 2 >>

34

5/10/2016

18

Luciano Sampaio

Early Late Total Total

Student 10 10 20
34

Professional 7 7 14

Early Late Total Total

Student 2 6 8
18

Professional 6 4 10

Participants - Final numbers

35

Study 2 >>

Luciano Sampaio

Programming timing and completed tasks

Programming time

Early Late

Professional 9:32:40 4:31:07 14:03:47

Student 1:44:18 2:46:15 4:30:33

Sum 11:16:58 7:17:22

Total 18:34:20

36

Study 2 >>

Task 1 Task 2 Task 3 Task 4 Task 5

18 8 4 2 2

5/10/2016

19

Luciano Sampaio

Number of vulnerabilities

Added Removed Left

Early Late Early Late Early Late

Professional 31 9 10 1 21 8

Student 4 13 2 1 2 12

57 14 43

Vulnerability Added Removed Left

HTTP Response Splitting 1 1 0

Cookie Poisoning 2 0 2

SQL Injection 3 1 2

Log forging 10 6 4

Cross-Site Scripting 14 3 11

Misconfiguration 27 3 24

Total 57 14 43

37

Study 2 >>

Luciano Sampaio

� During the experiment, 57 security vulnerabilities were

added

� Early detection group added 35 vulnerabilities and

removed 12 (or 34,2%) vulnerabilities

� Late detection group added 22 vulnerabilities and only

removed 2 (or 9,09%)

� RQ2 - Can the early detection approach help developers

produce more secure code when compared to late

detection ? YES!

Findings

38

Study 2 >>

5/10/2016

20

Luciano Sampaio

Conclusion

� Based on our two studies:

� Data flow analysis with context-sensitivity reduced the

rate of false positives when compared to other

techniques

� Early detection combined with DFA-CS helped

developers produce more secure code

39

Luciano Sampaio

Conclusions

� The heuristic strategies capable of finding 11 security

vulnerabilities that stem from input and output not being

properly sanitized

� Proposal and implementation of the algorithm of data flow

analysis with context sensitivity to find security

vulnerabilities

� The complete list with known security vulnerabilities

(ground truth) for each of the analyzed open-source

projects

40

5/10/2016

21

Luciano Sampaio

Future work

� Increase the number of supported vulnerabilities

� We currently support 11 types

� Add a ranking system for the found vulnerabilities

� Asked by several participants

� Allow developers to add, edit or remove methods from

the lists of entry-points, exit-points and sanitization-points

41

LES | DI |PUC-Rio - Brazil OPUS Research Group

Additional slides

5/10/2016

22

Luciano Sampaio

Entry-Point

� An entry-point, also referred as source, is a point in the

source code where external and untrusted input enters

the application

� We have 81 entry-points registered

43

Luciano Sampaio

Sanitization-Point

� A sanitization-point, also referred as sanitizer, is a point in

the source code where a method or class receives an

untrusted input and returns it as a trusted output

� We have 52 sanitization-points registered

44

5/10/2016

23

Luciano Sampaio

Accepted Rules

� 0 - Anything

� 1 - Sanitized

� 2 - Null

� 4 - Literal

� 8 - Concatenation (used for SQL Injection)

� …

45

Exit-Points >>

Luciano Sampaio

Pattern Matching vs Data Flow Analysis

46

Pattern Matching Data Flow Analysis

5/10/2016

24

Luciano Sampaio

Early Detection

ESVD
47

Data Flow Analysis >>

Luciano Sampaio

Searching for help

Link Nr Times

1 27

2 8

3 5

4 6

6 4

7 1

10 1

52

� You can learn from HelloWold, but should never use its source code.

48

Study 2 >>

5/10/2016

25

Luciano Sampaio

The plug-in

� ESVD - Early Security Vulnerability Detector - 0.3.9;

� Download at: (FREE)

� https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd/

� A project containing several security vulnerabilities:
� http://www.inf.puc-rio.br/~lsampaio/plugin/early_vulnerability_detector/latest/WebDemo.zip

� How to use ESVD: (Portuguese)

� https://www.youtube.com/watch?v=pNr38gMWvHQ

� More info at: http://thecodemaster.net/

49

Luciano Sampaio

Menu
The plug-in >>

50

5/10/2016

26

Luciano Sampaio

Preferences Page
The plug-in >>

51

Luciano Sampaio

Preferences Page
The plug-in >>

52

5/10/2016

27

Luciano Sampaio

Preferences Page
The plug-in >>

53

Luciano Sampaio

User Interface
The plug-in >>

54

5/10/2016

28

Luciano Sampaio

Provide possible solutions
The plug-in >>

55

Luciano Sampaio

Provide possible solutions
The plug-in >>

56

5/10/2016

29

Luciano Sampaio

The plug-in

57

