
OPUS Research GroupLES | DI |PUC-Rio - Brazil

Alessandro Garcia – afgarcia@inf.puc-rio.br

Willian Oizumi – woizumi@inf.puc-rio.br

Continuous Detection of Code Anomalies:

Synthesis of Code Anomalies
Towards Revealing Design Problems in Source Code

Challenges

� Continuous Anomaly Detection

� How to reduce information overload to developers?

� How to inform “meaningful” anomalies in the source code?

� How to accurately report all the information they need?

� A first step is to synthesize code anomalies that represent

(more critical) design problems to developers

22015

Software Design

� Software design represents the overall organization of the

system into design components, interfaces and

relationships among them (Bass et al. 2003)

32015 woizumi@inf.puc-rio.br

Software Design Problem

42015 woizumi@inf.puc-rio.br

� Design decision that either violates:

1) Intended Design, or

2) Modularity Principle

Why should I Care about Design Problems?

� When design problems are allowed to persist in a system:

� It may have to be fundamentally reengineered (Godfrey

2000; Gurp 2002; Schach 2002)

� It may even be discontinued (MacCormack 2006)

52015 woizumi@inf.puc-rio.br

How to Identify Design Problems?

� Design documentation is often informal or nonexistence

� Therefore, many developers have to rely on source code

analysis

62015 woizumi@inf.puc-rio.br

Code Anomalies

� A code anomaly is a symptom of a bad decision, such as a

design problem, observed in a program's low-level

structure (Fowler 1999; Lanza & Marinescu 2006)

� Different techniques for code anomaly detection have

been proposed and studied (Emden & Moonen 2002;

Lanza & Marinescu 2006; Wong et al. 2011)

� However, a high proportion of them may not help

programmers to identify design problems

72015 woizumi@inf.puc-rio.br

Limitations of Code Anomalies

� We observed that there is no direct relation between

specific types of Anomalies and Design Problems

� Example:

82015 woizumi@inf.puc-rio.br

Long Method

“Método Longo”

Fat Interface

Concern Overload

Nothing!

Detection of Code Anomalies

� The impact of code anomalies has been largely studied

(Khomh et al. 2009; Kim et al. 2005; Lozano &

Wermelinger 2008; Olbrich et al. 2010; D'Ambros et al.

2010; Sjobert et al. 2013; Macia 2013)

� However, existing techniques and tools for code anomaly

detection (Emden & Moonen 2002; Ratzinger et al. 2005;

Wong et al. 2011; Marinescu 2004) are not enough to

help developers in the identification of design problems

92015 woizumi@inf.puc-rio.br

Code Anomalies

102015 woizumi@inf.puc-rio.br

0%

20%

40%

60%

80%

100%

HW MM S1 S2 S3 S4 OODT

% Related to Design Problems

A considerable proportion of code anomalies do not represent

design problems (Oizumi et al. 2014)

SBES

2014

How to provide better support?

112015 woizumi@inf.puc-rio.br

Synthesis of Code Anomalies

Step 1
• Detect Code Anomalies

Step 2

• Search for Coherent Groups of Code

Anomalies

Step 3
• Summarize Relevant Information

122015 woizumi@inf.puc-rio.br

WMod

2014

Example of Design Problem

132015 woizumi@inf.puc-rio.br

Fat Interface

142015 woizumi@inf.puc-rio.br

createDataStoreReferences(Product product, Metadata metadata)

Code Anomaly Detection

� Detection of code anomalies using detection

strategies (Marinescu 2004)

� Detection strategies based on source code metrics

152015 woizumi@inf.puc-rio.br

Step 1

Detection of Feature Envies

162015 woizumi@inf.puc-rio.br

Example of Feature Envy

172015 woizumi@inf.puc-rio.br

public void createDataStoreReferences(Product product, Metadata metadata)

throws VersioningException {

String productName = product.getProductName();

String productRepoPath = product.getProductType().getProductRepositoryPath();

...

if (product.getProductStructure().equals(Product.STRUCTURE_HIERARCHICAL)) {

if (product.getProductReferences() == null

|| (product.getProductReferences() != null &&

product.getProductReferences().size() == 0)) {

...

} else if (product.getProductStructure().equals(Product.STRUCTURE_FLAT)) {

...

} else {

...

Information Scattered in the Source Code

� Information about the design problem is often scattered

in several code elements

182015 woizumi@inf.puc-rio.br

Code Anomaly Detection

� Techniques for code anomaly detection do not

explore relationships between anomalies

� However, design problems are often scattered in

the source code

� Therefore, they are not enough to help developers

diagnosing design problems

192015 woizumi@inf.puc-rio.br

Step 1

Grouping of Code Anomalies

202015 woizumi@inf.puc-rio.br

Step 2
� After detecting code anomalies, the synthesis

technique uses different topologies to search for

agglomerations

� A code anomaly-agglomeration is a coherent

group of code anomalies that may contribute to

the realization of a design problem

Example: Hierarchical Topology

212015 woizumi@inf.puc-rio.br

Code anomalies related through hierarchical

relationships

Grouping with Hierarchical Topology

� Code Anomalies of the same type (e.g. Feature Envy)

� Occurring in the same hierarchy

� Inheritance tree

� Interface Implementation

� Satisfying a threshold

222015 woizumi@inf.puc-rio.br

Examples of Other Topologies

� Cross-component

� Concern-based

232015 woizumi@inf.puc-rio.br

Summarization of Relevant Information

� Existing techniques provide few information about

each code anomaly

242015 woizumi@inf.puc-rio.br

Step 3

Few information

about each group

Contextual Information

� We provide contextual information about each

group of code anomalies

� Relation with surrounding code elements

252015 woizumi@inf.puc-rio.br

Step 3

History Information

� Providing history information about groups of

anomalies:

262015 woizumi@inf.puc-rio.br

V1 V2 V3 V4 Vn

Step 3

Growing Problem in OODT

272015 woizumi@inf.puc-rio.br

Growing Problem in OODT

282015 woizumi@inf.puc-rio.br

Growing Problem in OODT

292015 woizumi@inf.puc-rio.br

History Information

� Allows developers to identify different changing patterns:

� Growing

� Shrinking

� Idle

� Waving

302015 woizumi@inf.puc-rio.br

Synthesis of Code Anomalies

312015 woizumi@inf.puc-rio.br

Step 1
• Detect Code Anomalies

Step 2

• Search for Coherent Groups of Code

Anomalies

Step 3
• Summarize Relevant Information

Synthesis Technique

322015 woizumi@inf.puc-rio.br

Synthesis Technique

332015 woizumi@inf.puc-rio.br

Synthesis Technique

342015 woizumi@inf.puc-rio.br

Synthesis Technique

352015 woizumi@inf.puc-rio.br

Synthesis Technique

362015 woizumi@inf.puc-rio.br

Evaluation

� RQ1: Which is the most accurate technique regarding the

identification of design problems?

� Synthesis or Conventional?

� RQ2: What are the most useful agglomeration topologies?

372015 woizumi@inf.puc-rio.br

Evaluation

� We conducted two empirical studies:

� Multi-case study with 7 systems

� Quasi-experiment with 6 industry professionals and 2 PhD

students

382015 woizumi@inf.puc-rio.br

RQ1: Synthesis vs Conventional

392015 woizumi@inf.puc-rio.br

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

HW MM S1 S2 S3 S4 OODT

% Related to Design Problems

Synthesis Conventional

Multi-case study

RQ1: Synthesis vs Conventional

0

2

4

6

1 2 3 4 5 6 7 8

False Positives

True Positives

402015 woizumi@inf.puc-rio.br

0

2

4

6

1 2 3 4 5 6 7 8

False Positives

True Positives

Conventional Technique

Synthesis Technique

- Higher number of guesses (26)

- More false positives (53%)

- Lower number of guesses (21)

- Less false positives (33%)

Quasi-experiment

RQ1: Strong evidence that

Synthesis is better than

Conventional

RQ2: Which is the better topology?

412015 woizumi@inf.puc-rio.br

� Concern-based topology presented the lower number of false

positives (i.e., agglomerations unrelated to design problems)

0

20

40

60

80

100

120

Unrelated

Related

Multi-case study

RQ2: Which is the better topology?

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

Ag and Dp

No-Ag and No-Dp

422015 woizumi@inf.puc-rio.br

Multi-case study

Number of Code Elements

� All of them help developers to discard irrelevant anomalies

RQ2: Which is the better topology?

432015 woizumi@inf.puc-rio.br

� Each topology reveals problems not revealed by other topologies

� Example:

0

50

100

150

200

250

300

350

400

450

Intra-component Cross-component Concern-based

OODT

Design Problems

Exclusively Related

Multi-case study

RQ2: Which is the better topology?

0 1 2 3 4 5 6

Intra-method

Concern-based

Intra-class

Intra-component

Hierarchical

of Mentions

of Mentions

442015 woizumi@inf.puc-rio.br

Quasi-experiment

RQ2: Agglomeration

topologies are

complementary to each

other

Conclusion

� Design problems are caused by design decisions that

negatively impact the resulting system’s quality

� They may be responsible for the reengineering or even

the discontinuation of a system

� However, state-of-art techniques are not effective

452015 woizumi@inf.puc-rio.br

Contributions

� Synthesis Technique

� Detects code anomalies using detection strategies

� Searches for code-anomaly agglomerations

� Summarizes contextual and history information

� Tool Support

� Organic: Eclipse plugin for java programs

� Empirical Evaluations

� Synthesis technique is better than conventional techniques

� Agglomeration topologies are complementary to each other

462015 woizumi@inf.puc-rio.br

Publications

� Oizumi, Willian, et al. "Towards the synthesis of architecturally-

relevant code anomalies.“, WMod, 2014 [(1st) Best Paper Awards]

� Oizumi, Willian, et al. "When Code-Anomaly Agglomerations

Represent Architectural Problems? An Exploratory Study." SBES,

2014 [(3rd) Best Paper Awards]

� Oizumi, Willian, et al. "On the relationship of code-anomaly

agglomerations and architectural problems.”, JSERD, 2015

� Oizumi, Willian et al. “Code Anomalies Flock Together: Exploring

Code Anomaly Agglomerations for Locating Design Problems”, ICSE,

2016 (Accepted)

472015 woizumi@inf.puc-rio.br

Future Work

� Propose a semi-automated technique for the removal of

design problems

� Tips of possible design problems

� Prioritization of agglomerations

� Proposal of refactoring strategies

� Improve the visualization mechanism provided by

Organic

� Improve techniques for the identification of concerns

482015 woizumi@inf.puc-rio.br

OPUS Research GroupLES | DI |PUC-Rio - Brazil

Alessandro Garcia – afgarcia@inf.puc-rio.br

Willian Oizumi – woizumi@inf.puc-rio.br

Continuous Detection of Code Anomalies:

Synthesis of Code Anomalies
Towards Revealing Design Problems in Source Code

