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<2 Challenges

+ Continuous Anomaly Detection
+ How to reduce information overload to developers?

|”

+ How to inform “meaningful” anomalies in the source code?

+ How to accurately report all the information they need?

o A first step is to synthesize code anomalies that represent
(more critical) design problems to developers
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«2e Software Design

+ Software design represents the overall organization of the
system into design components, interfaces and
relationships among them (Bass et al. 2003)
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<% Software Design Problem

+ Design decision that either violates:
1) Intended Design, or
2) Modularity Principle
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«2» Why should | Care about Design Problems?

+ When design problems are allowed to persist in a system:

+ It may have to be fundamentally reengineered (Godfrey
2000; Gurp 2002; Schach 2002)

+ It may even be discontinued (MacCormack 2006)
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<2 How to Identify Design Problems?

+ Design documentation is often informal or nonexistence

+ Therefore, many developers have to rely on source code
analysis
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<2 Code Anomalies

+ A code anomaly is a symptom of a bad decision, such as a
design problem, observed in a program's low-level
structure (Fowler 1999; Lanza & Marinescu 2006)

+ Different techniques for code anomaly detection have
been proposed and studied (Emden & Moonen 2002;
Lanza & Marinescu 2006; Wong et al. 2011)

+ However, a high proportion of them may not help
programmers to identify design problems
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<2 Limitations of Code Anomalies

+ We observed that there is no direct relation between
specific types of Anomalies and Design Problems

/
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Nothing!

+ Example:
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«2» Detection of Code Anomalies

+ The impact of code anomalies has been largely studied
(Khomh et al. 2009; Kim et al. 2005, Lozano &
Wermelinger 2008; Olbrich et al. 2010; D'Ambros et al.
2010; Sjobert et al. 2013; Macia 2013)

+ However, existing techniques and tools for code anomaly
detection (Emden & Moonen 2002; Ratzinger et al. 2005;
Wong et al. 2011; Marinescu 2004) are not enough to
help developers in the identification of design problems
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«2» Code Anomalies
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A considerable proportion of code anomalies do not represent
design problems (Oizumi et al. 2014)
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«2» How to provide better support?
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<2 Synthesis of Code Anomalies

e Detect Code Anomalies J

Step 1

e Search for Coherent Groups of Code
Step 2| Anomalies

e Summarize Relevant Information J
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<% Example of Design Problem

SingleFileBasicVersioner » MetadataBasedFileVersioner

4 Fat Interface:
Interface incorporates too many operations on some data into an interface,
only to find that most of the objects cannot perform the given operations.
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@ SingleFileBasicVersioner @

2015

- Fat Interface

Product ‘

createDataStoreReferences(Product product, Vietadata metadata)

@ Versioner

/VA\

@ BasicVersioner @
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14



<% Code Anomaly Detection

\/ + Detection of code anomalies using detection
Step 1|  strategies (Marinescu 2004)

N

+ Detection strategies based on source code metrics
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<2 Detection of Feature Envies

Apache OODT
€ Versioner
€ SingleFileBasicVersioner @ & MetadataBasedFileVersioner @
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<2 Example of Feature Envy

€ BasicVersioner @

public void createDataStoreReferences(Product product, Metadata metadata)
throws VersioningException {

String productName = product.getProductName();

String productRepoPath = product.getProductType().getProductRepositoryPath();

if (product.getProductStructure().equals(Product.STRUCTURE_HIERARCHICAL)) {
if (product.getProductReferences() == null
|| (product.getProductReferences() != null &&
product.getProductReferences().size() == 0)) {

} else if (product.getProductStructure().equals(Product.STRUCTURE_FLAT)) {

;ébe{
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<2 Information Scattered in the Source Code

+ Information about the design problem is often scattered

in several code elements
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<% Code Anomaly Detection

\/ + Techniques for code anomaly detection do not
Step 1| explore relationships between anomalies

\/ + However, design problems are often scattered in
the source code

+ Therefore, they are not enough to help developers
diagnosing design problems
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<2 Grouping of Code Anomalies

\/ + After detecting code anomalies, the synthesis
Step 2 technique uses different topologies to search for

\/ agglomerations

+ A code anomaly-agglomeration is a coherent
group of code anomalies that may contribute to
the realization of a design problem
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<2 Example: Hierarchical Topology

Apache OODT
@ Versioner

D

& SingleFiIeBasicVersione@ S MetadataBasedFiIeVersione@

BasicVersionel@

I Code anomalies related through hierarchical :
relationships
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<2 Grouping with Hierarchical Topology

+ Code Anomalies of the same type (e.g. Feature Envy)
¢ Occurring in the same hierarchy

¢ Inheritance tree

+ Interface Implementation

+ Satisfying a threshold
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<% Examples of Other Topologies

¢ Cross-component

+ Concern-based
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<& Summarization of Relevant Information

\/ + Existing techniques provide few information about
Step 3|  cach code anomaly
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«2» Contextual Information

\/ + We provide contextual information about each
Step 3|  5roup of code anomalies

N
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<2 History Information

\/ + Providing history information about groups of
Step3| snhomalies:

N

V1 V2 V3 V4 Vn
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<2 Growing Problem in OODT

Version 0.1.0

@ Versioner

_— M

& DateTimeVersioner O

€ BasicVersioner @
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<2 Growing Problem in OODT

VerSion 0.1.1 .Versioner
& DateTimeVersioner O € BasicVersioner @

€ SingleFileBasicVersioner @
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<2 Growing Problem in OODT

VerSion 0.1.2 .Versioner
& DateTimeVersioner O € BasicVersioner @

€ SingleFileBasicVersioner @

€ MetadataBasedFileVersioner @
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<% History Information

+ Allows developers to identify different changing patterns:

+ Growing

+ Shrinking

.....................
""""""
K i »

+ Idle

+ Waving
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<2 Synthesis of Code Anomalies

e Detect Code Anomalies J

Step 1

e Search for Coherent Groups of Code
Step 2| Anomalies

e Summarize Relevant Information
Step 3

2015 woizumi@inf.puc-rio.br 31



«2» Synthesis Technique
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«2» Synthesis Technique
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«2» Synthesis Technique
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«2» Synthesis Technique
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«2» Synthesis Technique
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«2¢ Evaluation

+ RQ1: Which is the most accurate technique regarding the
identification of design problems?

+ Synthesis or Conventional?

+ RQ2: What are the most useful agglomeration topologies?
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«2¢ Evaluation

+ We conducted two empirical studies:
+ Multi-case study with 7 systems
+ Quasi-experiment with 6 industry professionals and 2 PhD

students

ID Experience Education DD Knowledge

(in years) 00oDT Java CR Eclipse
1 5 PhD Yes  None Advanced Advanced Advanced
2 5 Graduate Yes None Infermediary Intermediary Intermediary
3 6 Graduate Yes  None Advanced Basic Advanced
4 12 Graduate  Yes  None Expert Advanced Expert
5 5 Graduate Yes  None Advanced Advanced Advanced
6 10 Graduate  Yes  None Intermediary Intermediary Intermediary
7 8 Master Yes  None Advanced  Intermediary  Advanced
8 4 PhD Yes  None Advanced  Intermediary  Advanced

DD = Has experience with Design Decisions?
CR = Code Anomalies and Refactoring
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«2» RQ1: Synthesis vs Conventional

- Multi-case stud

% Related to Design Problems
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<2 RQ1: Synthesis vs Conventional

- Quasi-experiment

Conventional Technique

- Higher number of guesses (26) 4
- More false positives (53%) M False Positives

2 —] M True Positives
O _|

1121314 \|5 6 7 8

Synthesis Technique

- Lower number of guesses (21) 4

- Less false positives (33%) W False Positives

I B True Positives

Synthesis is better than 112131415 6 7 8
Conventional

RQ1: Strong evidence that
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«% RQ2: Which is the better topology?

- Multi-case stud

+ Concern-based topology presented the lower number of false
positives (i.e., agglomerations unrelated to design problems)
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«% RQ2: Which is the better topology?

- Multi-case stud

+ All of them help developers to discard irrelevant anomalies
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«% RQ2: Which is the better topology?

- Multi-case stud

+ Each topology reveals problems not revealed by other topologies

o Example:
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<2 RQ2: Which is the better topology?

- Quasi-experiment

# of Mentions

Hierarchical

Intra-component

Concern-based

H # of Mentions

RQ2: Agglomeration

topologies are
Intra-method complementary to each
other

0 1 2 3 4
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<2 Conclusion

+ Design problems are caused by design decisions that
negatively impact the resulting system’s quality

+ They may be responsible for the reengineering or even
the discontinuation of a system

+ However, state-of-art techniques are not effective
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«2» Contributions

+ Synthesis Technique
+ Detects code anomalies using detection strategies
+ Searches for code-anomaly agglomerations
+ Summarizes contextual and history information

+ Tool Support
+ Organic: Eclipse plugin for java programs
+ Empirical Evaluations

+ Synthesis technique is better than conventional techniques
+ Agglomeration topologies are complementary to each other
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<2 Publications

¢ Oizumi, Willian, et al. "Towards the synthesis of architecturally-
relevant code anomalies.”, WMod, 2014 [(1%) Best Paper Awards]

¢ Oizumi, Willian, et al. "When Code-Anomaly Agglomerations
Represent Architectural Problems? An Exploratory Study." SBES,
2014 [(3™) Best Paper Awards]

¢ Oizumi, Willian, et al. "On the relationship of code-anomaly
agglomerations and architectural problems.”, JSERD, 2015

¢ Oizumi, Willian et al. “Code Anomalies Flock Together: Exploring
Code Anomaly Agglomerations for Locating Design Problems”, ICSE,
2016 (Accepted)
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«% Future Work

+ Propose a semi-automated technique for the removal of
design problems
+ Tips of possible design problems
¢ Prioritization of agglomerations

+ Proposal of refactoring strategies

+ Improve the visualization mechanism provided by
Organic

+ Improve techniques for the identification of concerns
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