Continuous Detection of Code Anomalies:
Synthesis of Code Anomalies

Towards Revealing Design Problems in Source Code

Alessandro Garcia — afgarcia@inf.puc-rio.br
Willian Oizumi — woizumi@inf.puc-rio.br

b

LES | DI |PUC-Rio - Brazil OPUS Research Group

<2 Challenges

+ Continuous Anomaly Detection
+ How to reduce information overload to developers?

|”

+ How to inform “meaningful” anomalies in the source code?

+ How to accurately report all the information they need?

o A first step is to synthesize code anomalies that represent
(more critical) design problems to developers

2015 2

«2e Software Design

+ Software design represents the overall organization of the
system into design components, interfaces and
relationships among them (Bass et al. 2003)

C 2
Interi?aceB

B 2 |
InterfaceA

A 2 |

2015 woizumi@inf.puc-rio.br 3

<% Software Design Problem

+ Design decision that either violates:
1) Intended Design, or
2) Modularity Principle

‘--.‘ "-- ------------

' ‘S s ‘_ i v/ Y v/ 1 + ‘ N
|\ IA- 'Ol '\‘.P Ol l\.‘-.‘tl ‘\ﬁg'tl .\~Q‘Jl l*.E'l' l\‘g'} :\.G',l
Legend
'f-"r\‘ """"s‘ ’,--\ | .
' B ! Business % C_! Concurrency v A) Data Design Component
D,/ Distribution 4E,! Exception Handling 1 G, GUI <4 Unexpected Flow
:"-.\
“P Persistence <4— Expected Flow

2015 woizumi@inf.puc-rio.br 4

«2» Why should | Care about Design Problems?

+ When design problems are allowed to persist in a system:

+ It may have to be fundamentally reengineered (Godfrey
2000; Gurp 2002; Schach 2002)

+ It may even be discontinued (MacCormack 2006)

2015 woizumi@inf.puc-rio.br 5

<2 How to Identify Design Problems?

+ Design documentation is often informal or nonexistence

+ Therefore, many developers have to rely on source code
analysis

e
e
A
1

i
o ¥
. |

b

2015 woizumi@inf.puc-rio.br 6

<2 Code Anomalies

+ A code anomaly is a symptom of a bad decision, such as a
design problem, observed in a program's low-level
structure (Fowler 1999; Lanza & Marinescu 2006)

+ Different techniques for code anomaly detection have
been proposed and studied (Emden & Moonen 2002;
Lanza & Marinescu 2006; Wong et al. 2011)

+ However, a high proportion of them may not help
programmers to identify design problems

2015 woizumi@inf.puc-rio.br 7

<2 Limitations of Code Anomalies

+ We observed that there is no direct relation between
specific types of Anomalies and Design Problems

/
_
< >\ Concern Overload

Nothing!

+ Example:

2015 woizumi@inf.puc-rio.br 8

«2» Detection of Code Anomalies

+ The impact of code anomalies has been largely studied
(Khomh et al. 2009; Kim et al. 2005, Lozano &
Wermelinger 2008; Olbrich et al. 2010; D'Ambros et al.
2010; Sjobert et al. 2013; Macia 2013)

+ However, existing techniques and tools for code anomaly
detection (Emden & Moonen 2002; Ratzinger et al. 2005;
Wong et al. 2011; Marinescu 2004) are not enough to
help developers in the identification of design problems

2015 woizumi@inf.puc-rio.br 9

«2» Code Anomalies

100%
80%
60%
40%
20% I
. I B _ B =
HW MM S1 S2 S3 S4 OOoDT

W % Related to Design Problems

A considerable proportion of code anomalies do not represent
design problems (Oizumi et al. 2014)

2015 woizumi@inf.puc-rio.br 10

«2» How to provide better support?

2015 woizumi@inf.puc-rio.br 11

<2 Synthesis of Code Anomalies

e Detect Code Anomalies J

Step 1

e Search for Coherent Groups of Code
Step 2| Anomalies

e Summarize Relevant Information J

WMod
2014
12

Step 3

2015 woizumi@inf.puc-rio.br

<% Example of Design Problem

SingleFileBasicVersioner » MetadataBasedFileVersioner

4 Fat Interface:
Interface incorporates too many operations on some data into an interface,
only to find that most of the objects cannot perform the given operations.

2015 woizumi@inf.puc-rio.br 13

@ SingleFileBasicVersioner @

2015

- Fat Interface

Product ‘

createDataStoreReferences(Product product, Vietadata metadata)

@ Versioner

/VA\

@ BasicVersioner @

woizumi@inf.puc-rio.br

@ MetadataBasedFileVersioner @

14

<% Code Anomaly Detection

\/ + Detection of code anomalies using detection
Step 1| strategies (Marinescu 2004)

N

+ Detection strategies based on source code metrics

2015 woizumi@inf.puc-rio.br 15

<2 Detection of Feature Envies

Apache OODT
€ Versioner
€ SingleFileBasicVersioner @ & MetadataBasedFileVersioner @

2015 woizumi@inf.puc-rio.br 16

<2 Example of Feature Envy

€ BasicVersioner @

public void createDataStoreReferences(Product product, Metadata metadata)
throws VersioningException {

String productName = product.getProductName();

String productRepoPath = product.getProductType().getProductRepositoryPath();

if (product.getProductStructure().equals(Product.STRUCTURE_HIERARCHICAL)) {
if (product.getProductReferences() == null
|| (product.getProductReferences() != null &&
product.getProductReferences().size() == 0)) {

} else if (product.getProductStructure().equals(Product.STRUCTURE_FLAT)) {

;ébe{

2015 woizumi@inf.puc-rio.br 17

<2 Information Scattered in the Source Code

+ Information about the design problem is often scattered

in several code elements

GenericFileManagerObjectFactory ‘

XmIRpcFileManagerClient ‘
e vl XmIRpcFi ‘
otaats - -~ miRpcFileManager
__~ @ Versioner
Product \

€ MetadataBasedFileVersioner @

€ SingleFileBasicVersioner @
Y //
\\\ ,/
. @ BasicVersioner @ .
N i Pad
- s
& d

hY
hY s
7

Y
Ay
b
*

N <
AV
VersioningUtils

18

woizumi@inf.puc-rio.br

2015

<% Code Anomaly Detection

\/ + Techniques for code anomaly detection do not
Step 1| explore relationships between anomalies

\/ + However, design problems are often scattered in
the source code

+ Therefore, they are not enough to help developers
diagnosing design problems

2015 woizumi@inf.puc-rio.br 139

<2 Grouping of Code Anomalies

\/ + After detecting code anomalies, the synthesis
Step 2 technique uses different topologies to search for

\/ agglomerations

+ A code anomaly-agglomeration is a coherent
group of code anomalies that may contribute to
the realization of a design problem

2015 woizumi@inf.puc-rio.br 20

<2 Example: Hierarchical Topology

Apache OODT
@ Versioner

D

& SingleFiIeBasicVersione@ S MetadataBasedFiIeVersione@

BasicVersionel@

I Code anomalies related through hierarchical :
relationships

2015 woizumi@inf.puc-rio.br 21

<2 Grouping with Hierarchical Topology

+ Code Anomalies of the same type (e.g. Feature Envy)
¢ Occurring in the same hierarchy

¢ Inheritance tree

+ Interface Implementation

+ Satisfying a threshold

2015 woizumi@inf.puc-rio.br 22

<% Examples of Other Topologies

¢ Cross-component

+ Concern-based

2015 woizumi@inf.puc-rio.br 23

<& Summarization of Relevant Information

\/ + Existing techniques provide few information about
Step 3| cach code anomaly

N =

it Code Anomaly Patterns &5
L———L—— S T T =

= Replicated_External_Metwork (0] =
I & Mutant_Anomaly (2) ke
@ Cccurrence #1

a

]
5

N

ol
“w -
@ Occurrence #1
Few information > I #% ubc.midp.maobilephoto.core.util. MusicMediaUtil.getBytesFromMedialnfo
I,

@ Occurrence #2
Hereditary_Anomaly (3]

3

oo

b h @ -Occurrence#?.
about eac group @ Occurrence #3

Multiple-Anomaly_Syndrome (15)
I L Misplaced_Concern (1]
= External_Addictor_per_Method (2)

@& Edernal_Addicto r_per_Class (7)
I @ Euternal_Attracto r_per_Methaod (0]
@ Similar_Anomalous_Meighbors (0]
I @ FExiernal_Attracto r_per_Class (2]
& Concern_Overload (2)

4 m

|| [| || || [| ||
th

Lﬁ Ambiguous_Interface (0]
IS N IS IS IS IS IS B EE B .

” = -

2015 woizumi@inf.puc-rio.br 24

«2» Contextual Information

\/ + We provide contextual information about each
Step 3| 5roup of code anomalies

N

XmIRpcFileManagerClient ‘

GenericFileManagerObjectFactory ‘

S i XmiIRpcFileManager ‘
Metadata S f N prid %1
___ @ \Versioner

Product é'_/ \

€ MetadataBasedFileVersioner @

€ SingleFileBasicVersioner @
Y //
\\\ ,/
. @ BasicVersioner @ //
\\ i Vv
- s
& d

hY
hY s
b 7
Ay
b
*

N\ <
Ay] 7
AV E
VersioningUtils

woizumi@inf.puc-rio.br

2015

25

<2 History Information

\/ + Providing history information about groups of
Step3| snhomalies:

N

V1 V2 V3 V4 Vn

2015 woizumi@inf.puc-rio.br 26

<2 Growing Problem in OODT

Version 0.1.0

@ Versioner

_— M

& DateTimeVersioner O

€ BasicVersioner @

2015

woizumi@inf.puc-rio.br

27

<2 Growing Problem in OODT

VerSion 0.1.1 .Versioner
& DateTimeVersioner O € BasicVersioner @

€ SingleFileBasicVersioner @

2015 woizumi@inf.puc-rio.br 28

<2 Growing Problem in OODT

VerSion 0.1.2 .Versioner
& DateTimeVersioner O € BasicVersioner @

€ SingleFileBasicVersioner @

€ MetadataBasedFileVersioner @

2015

woizumi@inf.puc-rio.br

29

<% History Information

+ Allows developers to identify different changing patterns:

+ Growing

+ Shrinking

.....................
""""""
K i »

+ Idle

+ Waving

2015 woizumi@inf.puc-rio.br 30

<2 Synthesis of Code Anomalies

e Detect Code Anomalies J

Step 1

e Search for Coherent Groups of Code
Step 2| Anomalies

e Summarize Relevant Information
Step 3

2015 woizumi@inf.puc-rio.br 31

«2» Synthesis Technique

<q considers 0.* i 1
Strategy Topology
Quses
LA
Tur il 5 i Jollows a
1 0,.* 1. 0.. 0..
Element Type Relationship Type Relationship Agglomeration 1 1 History
< uses has a P> -
s 43 <Qinstance of 1
* l
| | i
Hierarchical Concern Anomaly Strategy
contains
LA
Dependenc Component is
P 3 P has an
. T
i 0..* gro #S 1 *
Code Element Type Type of Anomaly \ B
N N 1 Version
1 instanfe of
is related to P> <ginstance of
Class Method 0.4 0. ’_\l 0.* 1.% [g =
1 0..*
1.# | Code Element Code Anomaly

el_,/“"" - < affects
Component A L.

<qis encompassed by is realized by i

Design Problem

2015 woizumi@inf.puc-rio.br 32

«2» Synthesis Technique

<q considers 0.* i 1
Strategy Topology
Quses
LA
1.* Tk s " Jollows a
1 o Lix o 0.
Element Type Relationship Type Relationship Agglomeration 1 1 History
< uses has a P> -
s 43 <Qinstance of 1
| | g.* "\
Hierarchical Concern Anomaly Strategy
1 contains
A .
Dependenc Component is
P 3 P has an
i 0..* 1 groups
B f) 1%
Code Element Type Type of Anomaly \
N N 1 Version
1
is related to P> <ginstance of
Class Method 0. ’_\l 0._* 1.*% |p *
1 0..*
1.# | Code Element Code Anomaly

/ - < affects
Component A L.

<qis encompassed by is realized by i

Design Problem

2015 woizumi@inf.puc-rio.br 33

«2» Synthesis Technique

<q considers 0.* i 1
Strategy Topology
Quses
LA
1.* Tk s " Jollows a
1 o Li* | o2 0.
Element Type Relationship Type Relationship Agglomeration 1 1 History
g ugks has a B> -
s 43 <Qinstance of AN 1
[| g
Hierarchical Concern Anomaly Strategy
contains
LA
Dependenc Component is
3 o J has an
. 1
i 0..* gro #S 1 *
Code Element Type Type of Anomaly \ B
if'i. N 1 Version
is related to P> <ginstance of
Class Method 0. ’_\l 0._* 1.*% |p *
1 0..*
1.# | Code Element Code Anomaly

/ - < affects
Component A L.

<qis encompassed by is realized by i

Design Problem

2015 woizumi@inf.puc-rio.br 34

«2» Synthesis Technique

<q considers 0.* i 1
Strategy Topology
Quses
LA
1.* Tk s " Jollows a
1 o it d2 0.
Element Type Relationship Type Relationship %'I Agglomeration M History
< uses has a P> -
s 43 <Qinstance of 1
| | 0.% \!
Hierarchical Concern Anomaly Strategy I
1 contains
A ,
Dependenc Component is
P 3 P has an
i 0..* L groups
B f) 1%
Code Element Type Type of Anomaly \
if'i. N 1 Version
is related to P> <ginstance of
Class Method 0. ’_\l 0._* 1.*% |p *
1 0..*
1.# | Code Element Code Anomaly

/ - < affects
Component A L.

<qis encompassed by is realized by i

Design Problem

2015 woizumi@inf.puc-rio.br 35

«2» Synthesis Technique

<q considers 0.* i 1
Strategy Topology
<Quses
I A
T ¥ T 1 Jollows a
3 * #*
1 0,.* 1. 0.. 0..
Element Type Relationship Type Relationship Agglomeration 1 1 History
< uses has a P> -
s 43 <Qinstance of 1 1
| | it
Hierarchical Concern Anomaly Stratgegy
1 contains
A ,
Dependenc Component is
P 3 P has fan
i 0..* 1 groups
B f) 1%
Code Element Type Type of Anomaly \
R N Version
1 instaffce o
is related to P> <ginstanckat
Class Method ol & 0. ’_\l 0.* 1.% [g =
1 0..#
1.# | Code Element Code Anomaly
el_,/""_ . < affects
Component A 1.
< is encompassed by is realized by .

Design Problem

2015 woizumi@inf.puc-rio.br 36

«2¢ Evaluation

+ RQ1: Which is the most accurate technique regarding the
identification of design problems?

+ Synthesis or Conventional?

+ RQ2: What are the most useful agglomeration topologies?

2015 woizumi@inf.puc-rio.br 37

«2¢ Evaluation

+ We conducted two empirical studies:
+ Multi-case study with 7 systems
+ Quasi-experiment with 6 industry professionals and 2 PhD

students

ID Experience Education DD Knowledge

(in years) 00oDT Java CR Eclipse
1 5 PhD Yes None Advanced Advanced Advanced
2 5 Graduate Yes None Infermediary Intermediary Intermediary
3 6 Graduate Yes None Advanced Basic Advanced
4 12 Graduate Yes None Expert Advanced Expert
5 5 Graduate Yes None Advanced Advanced Advanced
6 10 Graduate Yes None Intermediary Intermediary Intermediary
7 8 Master Yes None Advanced Intermediary Advanced
8 4 PhD Yes None Advanced Intermediary Advanced

DD = Has experience with Design Decisions?
CR = Code Anomalies and Refactoring

2015 woizumi@inf.puc-rio.br 38

«2» RQ1: Synthesis vs Conventional

- Multi-case stud

% Related to Design Problems

100%
90%
80%

70%

60%

50%

40%

30%

20%

=i
0%

OODT

MW Synthesis ™M Conventional

2015 woizumi@inf.puc-rio.br 39

<2 RQ1: Synthesis vs Conventional

- Quasi-experiment

Conventional Technique

- Higher number of guesses (26) 4
- More false positives (53%) M False Positives

2 —] M True Positives
O _|

1121314 \|5 6 7 8

Synthesis Technique

- Lower number of guesses (21) 4

- Less false positives (33%) W False Positives

I B True Positives

Synthesis is better than 112131415 6 7 8
Conventional

RQ1: Strong evidence that

2015 woizumi@inf.puc-rio.br 40

«% RQ2: Which is the better topology?

- Multi-case stud

+ Concern-based topology presented the lower number of false
positives (i.e., agglomerations unrelated to design problems)

120
100
80
60
40
20

m Unrelated
M Related

2015 woizumi@inf.puc-rio.br 41

«% RQ2: Which is the better topology?

- Multi-case stud

+ All of them help developers to discard irrelevant anomalies

Number of Code Elements

5000
4500
4000
3500
3000
2500
2000
1500 ® Ag and Dp
1000
500 B No-Ag and No-Dp
O] [[
N
@Q& Q/Q\' .\(? C)Q,b
& o~ & o°
K /
Q Q > W\
< < & S
oy & X &
\&’b 0)(9 (JO
& (}O

2015 woizumi@inf.puc-rio.br 42

«% RQ2: Which is the better topology?

- Multi-case stud

+ Each topology reveals problems not revealed by other topologies

o Example:

450
400
350
300
250
200
150
100

50

2015

OOoDT

M Design Problems

I E Exclusively Related

Intra-component Cross-component Concern-based

woizumi@inf.puc-rio.br 43

<2 RQ2: Which is the better topology?

- Quasi-experiment

of Mentions

Hierarchical

Intra-component

Concern-based

H # of Mentions

RQ2: Agglomeration

topologies are
Intra-method complementary to each
other

0 1 2 3 4

2015 woizumi@inf.puc-rio.br 44

<2 Conclusion

+ Design problems are caused by design decisions that
negatively impact the resulting system’s quality

+ They may be responsible for the reengineering or even
the discontinuation of a system

+ However, state-of-art techniques are not effective

2015 woizumi@inf.puc-rio.br 45

«2» Contributions

+ Synthesis Technique
+ Detects code anomalies using detection strategies
+ Searches for code-anomaly agglomerations
+ Summarizes contextual and history information

+ Tool Support
+ Organic: Eclipse plugin for java programs
+ Empirical Evaluations

+ Synthesis technique is better than conventional techniques
+ Agglomeration topologies are complementary to each other

2015 woizumi@inf.puc-rio.br 46

<2 Publications

¢ Oizumi, Willian, et al. "Towards the synthesis of architecturally-
relevant code anomalies.”, WMod, 2014 [(1%) Best Paper Awards]

¢ Oizumi, Willian, et al. "When Code-Anomaly Agglomerations
Represent Architectural Problems? An Exploratory Study." SBES,
2014 [(3™) Best Paper Awards]

¢ Oizumi, Willian, et al. "On the relationship of code-anomaly
agglomerations and architectural problems.”, JSERD, 2015

¢ Oizumi, Willian et al. “Code Anomalies Flock Together: Exploring
Code Anomaly Agglomerations for Locating Design Problems”, ICSE,
2016 (Accepted)

2015 woizumi@inf.puc-rio.br 47

«% Future Work

+ Propose a semi-automated technique for the removal of
design problems
+ Tips of possible design problems
¢ Prioritization of agglomerations

+ Proposal of refactoring strategies

+ Improve the visualization mechanism provided by
Organic

+ Improve techniques for the identification of concerns

2015 woizumi@inf.puc-rio.br 48

Continuous Detection of Code Anomalies:
Synthesis of Code Anomalies

Towards Revealing Design Problems in Source Code

Alessandro Garcia — afgarcia@inf.puc-rio.br
Willian Oizumi — woizumi@inf.puc-rio.br

b

LES | DI |PUC-Rio - Brazil OPUS Research Group

