
Conclusão

Parte 1 – Qualidade de

Software por Construção

Alessandro Garcia

© Alessandro Garcia, 2016

Departamento de

Informática

Avisos
• envio de resumo da proposta de trabalho até 30

de abril
– falta receber de alguns alunos

• apresentações (aprox. 50 mins) do estudo: 15,
22 e 27 de junho
– vide critérios nos slides de introdução da disciplina

– motiva-se: envie slides com antecedência

– assume-se: já deve estar trabalhando no tema agora

• website do curso no ar, com:
http://www.inf.puc-rio.br/~inf2007/

– slides das aulas

http://www.inf.puc-rio.br/~inf2007/

Introduction to AOSD

(conclusion)

Alessandro Garcia

© Alessandro Garcia, 2016

Departamento de

Informática

So Far…

• Recovering Contextual Information
– This

– Target

– Capturing arguments (args)

• advice
– after returning

– after throwing

• making pointcuts more generic
– Wildcards: .. , *

• reflective features in AspectJ
– static and run-time information

Exercise

Using wildcards: .., *,

• Open your TracingExample project and write
one pointcut to:
– Trap calls to constructors of Loan and Account

– Trap all calls to getter methods

– Trap all calls to setter methods

– Print the message “Entering” added to the signature
of the method before the calls

– Print the message “Leaving” added to the signature of
the method after the calls

– Note: You might want to write a few pointcuts and
then combine them into a single one using the
boolean operators

– 15..20 minutes

A Possible Solution - 1
public aspect Tracing {

pointcut constructorCalls(): call(Account.new(..)) || call(Loan.new(..));

pointcut getterCalls(): call(* get*(..)) && (target(Account) || target(Loan));

pointcut setterCalls(): call(* set*(..)) && target(Account) || target(Loan);

pointcut tracer(): constructorCalls() || getterCalls() || setterCalls();

before(): tracer() {

System.out.println("Entering..." + thisJoinPointStaticPart.getSignature());

}

after(): tracer() {

System.out.println("Leaving..." + thisJoinPointStaticPart.getSignature());
System.out.println(" ");

}
}

in order to make it sure

certain undesirable

getters aren’t picked

out

A Possible Solution - 2
public aspect Tracing {

pointcut constructorCalls(): call(Account.new(..)) || call(Loan.new(..));

pointcut getterCalls(): call(* get*(..));

pointcut setterCalls(): call(* set*(..));

pointcut tracer(): (within(!Tracing)) && (constructorCalls() || getterCalls() || setterCalls();

before(): tracer() {

System.out.println("Entering..." + thisJoinPointStaticPart.getSignature());

}

after(): tracer() {

System.out.println("Leaving..." + thisJoinPointStaticPart.getSignature());
System.out.println(" ");

}
}

in order to make it sure

certain undesirable

getters aren’t picked

out

Context-based Pointcuts in

AspectJ

Alessandro Garcia

© Alessandro Garcia, 2011

Departamento de

Informática

Today

• More advanced pointcut designators

– context-based pointcuts

• Abstract aspects

• Inter-type declarations

Compile-time vs Runtime Context

• Compile-time

– Determined from the source code

– Based on scoping information that can be
extracted statically

• within

• withincode

• Runtime

– Based on runtime information from the object
call graph

• cflow

• cflowbelow

Compile-time Context

• Consider the following simple piece of code

class Foo {

ClassA a = new ClassA();

ClassB b = new ClassB();

ClassC cFoo = new ClassC();

// some code

public void bar() {

b.methodOfB();

a.methodOfA();

cFoo.methodOfC();

}

}

class B {

ClassC cB = new ClassC();

// some code

public void methodOfB() {

cB.methodOfC();

}

}

// In some other piece of code

Foo foo = new Foo();

foo.bar();

Using within

• within(<type pattern>)

• Suppose we are interested in all calls to

methodOfC() that happen when it is

called from any code within ClassB

call(* methodOfC())

&& target(ClassC)

&& within(ClassB);

call(* ClassC.methodOfC())

&& within(ClassB);

Either one would work fine!

Using within

call(* ClassC.methodOfC())

&& within(!ClassA);

call(* ClassC.meth*())

&& within(comp.lancs.*);

call(* *.*(..))

&& within(ClassB);

Using withincode

• withincode(<method signature>)

• Similar to within but the context is

specified as a method signature rather

than a type pattern

– Again, the method signature is a pattern and

can use wild cards

call(* ClassC.methodOfC())

&& withincode(* ClassB.methodOf*(..));

Compile-time vs Runtime Context

• Compile-time

– Determined from the source code

– Based on scoping information that can be
extracted statically

• within

• withincode

• Runtime

– Based on runtime information from the object
call graph

• cflow

• cflowbelow

Understanding the Join Point

Model (1)

class Account {

private int balance;

public Account(int startingBalance) {

this.balance = startingBalance;

}

public void setBalance(int newBalance) {

this.balance = newBalance;

}

public int getBalance() {

return this.balance;

}

}

class Test {

public static void main(String args[]) {

Account a = new Account(200);

int x = a.getBalance();

a.setBalance(x+100);

}

}

The Call Graph in Our Example
Test.main() Methods in Account Fields in Account

Account a = new Account(200);

Constructor call

Account constructor execution balance value set

start of

end of

Constructor execution

start of

end of

Set Field

start of

end of

int x = a.getBalance()

Method call

getBalance() execution get balance value

start of

end of

Method execution

start of

end of

Get Field

start of

end of

a.setBalance(x+100)

Method call

setBalance() execution balance value set

start of

end of

Method execution

start of

end of

Set Field

start of

end of

control flow of the constructor call

The Call Graph in Our Example
Test.main() Methods in Account Fields in Account

Account a = new Account(200);

Constructor call

Account constructor execution balance value set

start of

end of

Constructor execution

start of

end of

Set Field

start of

end of

int x = a.getBalance()

Method call

getBalance() execution get balance value

start of

end of

Method execution

start of

end of

Get Field

start of

end of

a.setBalance(x+100)

Method call

setBalance() execution balance value set

start of

end of

Method execution

start of

end of

Set Field

start of

end of

control flow of the main

Runtime Context

• Consider the following simple piece of code

class B {

ClassC cB = new ClassC();

// some code

public void methodOfB() {

cB.methodOfC();

}

}

// In some other piece of code

Foo foo = new Foo();

foo.bar();

class Foo {

ClassA a = new ClassA();

ClassB b = new ClassB();

ClassC cFoo = new ClassC();

// some code

public void bar() {

b.methodOfB();

a.methodOfA();

cFoo.methodOfC();

}

}

A Simple Call Stack

foo.bar()

b.methodOfB()

cB.methodOfC()

a.methodOfA()cFoo.methodOfC()

// In some other piece of code

Foo foo = new Foo();

foo.bar();

class B {

ClassC cB = new ClassC();

// some code

public void methodOfB() {

cB.methodOfC();

}

}

class Foo {

ClassA a = new ClassA();

ClassB b = new ClassB();

ClassC cFoo = new ClassC();

// some code

public void bar() {

b.methodOfB();

a.methodOfA();

cFoo.methodOfC();

}

}

• control flow of foo.bar()

Using cflow
• Suppose we are interested in all calls to

ClassC.methodOfC() that happen in the context of

the bar() method in Foo

– In our example these are calls to… ?

// In some other piece of code

Foo foo = new Foo();

foo.bar();

class B {

ClassC cB = new ClassC();

// some code

public void methodOfB() {

cB.methodOfC();

}

}

class Foo {

ClassA a = new ClassA();

ClassB b = new ClassB();

ClassC cFoo = new ClassC();

// some code

public void bar() {

b.methodOfB();

a.methodOfA();

cFoo.methodOfC();

}

}

Using cflow

• cflow(<pointcut specification>)

• cflow pointcut descriptor takes as

argument other pointcut descriptors

We are interested in calls to

methodOfC in objects of ClassC

We know that we want to

restrict to bar() in Foo

execution(void bar())

&& this(Foo)

&& cflow(

);

call(* methodOfC())

&& target(ClassC)

We want to specify that

happens during

Using cflow

• We could equally well use cflow to help us

capture all calls to methodOfC() in

objects of ClassC except the calls that

happen in the context of Foo.bar()

call(* methodOfC())

&& target(ClassC)

&& cflow(

execution(void bar())

&& this(Foo)

);

! ?

Using cflow

• You can of course use wild cards to

provide a wider range of cflow matches

call(* Iterator.next*(..))

&& cflow(

call(* get*(..))

&& this(com.lancs.Fred)

);

cflowbelow

• A variant of cflow

• Matches all join points except the one

where the control flow begins

• Refer to AspectJ website documentation

for a discussion of distinction between

cflow and cflowbelow

The Call Graph in Our Example
Test.main() Methods in Account Fields in Account

Account a = new Account(200);

Constructor call

Account constructor execution balance value set

start of

end of

Constructor execution

start of

end of

Set Field

start of

end of

int x = a.getBalance()

Method call

getBalance() execution get balance value

start of

end of

Method execution

start of

end of

Get Field

start of

end of

a.setBalance(x+100)

Method call

setBalance() execution balance value set

start of

end of

Method execution

start of

end of

Set Field

start of

end of

below the control flow of the constructor call

Comparison: within, withincode,

cflow, cflowbelow

27

public class Example

{

int x;

public static void main(String[] args)

{

Example ex = new Example();

ex.func();

}

public Example()

{

x = 10;

}

public int func()

{

return x;

}

}

public class Example

{

int x;

public static void main(String[] args)

{

Example ex = new Example();

ex.func();

}

public Example()

{

x = 10;

}

public int func()

{

return x;

}

}

3

6

78

9
10

4 5

11

12

13

1. Before execution(void Example.main(String[]))

2. Before call(Example())

3. Before execution(Example())

4. Before set(int Example.x)

5. After set(int Example.x)

6. After execution(Example())

7. After call(Example())

8. Before call(int Example.func())

9. Before execution(int Example.func())

10. Before get(int Example.x)

11. After get(int Example.x)

12. After execution(int Example.func())

13. After call(int Example.func())

14. After execution(void Example.main(String[]))

within(Example)

withincode(int Example.func())

cflow(execution(Example.new()))

1-14

10-11

3-6

cflowbelow(execution(int Example.func()))10-11

1

2

14

Comparison: within, withincode,

cflow, cflowbelow

28

public class Example

{

int x;

public static void main(String[] args)

{

Example ex = new Example();

ex.func();

}

public Example()

{

x = 10;

}

public int func()

{

return x;

}

}

public class Example

{

int x;

public static void main(String[] args)

{

Example ex = new Example();

ex.func();

}

public Example()

{

x = 10;

}

public int func()

{

return x;

}

}

3

6

78

9
10

4 5

11

12

13

1. Before execution(void Example.main(String[]))

2. Before call(Example())

3. Before execution(Example())

4. Before set(int Example.x)

5. After set(int Example.x)

6. After execution(Example())

7. After call(Example())

8. Before call(int Example.func())

9. Before execution(int Example.func())

10. Before get(int Example.x)

11. After get(int Example.x)

12. After execution(int Example.func())

13. After call(int Example.func())

14. After execution(void Example.main(String[]))

within(Example)

withincode(int Example.func())

cflow(execution(Example.new()))

1-14

10-11

3-6

cflowbelow(execution(int Example.func()))10-11

1

2

14

Abstract Aspects and Pointcuts

• Aspects can inherit from each other

• Abstract aspects and pointcuts help us

write more reusable aspects

abstract aspect MyAbstractAspect {

abstract pointcut pc1();

before(): pc1() {

// do something

}

after(): pc1() {

// do something more

}

}

aspect MyConcreteAspect

extends MyAbstractAspect {

pointcut pc1():

call(* get*(..))

&& target(Account);

}

Note: You can only extend an

abstract aspect and not a concrete

aspect.

Abstract Transactional Aspect
• Make certain methods to be executed as a

transaction

public abstract aspect TransactionalMethods {

abstract public pointcut MethodToBeMadeTransactional();

void around() : MethodToBeMadeTransactional() {

ProceduralInterface.beginTransaction();

boolean aborted = false;

try {

proceed();

} catch (TransactionException e) {

ProceduralInterface.abortTransaction();

aborted = true;

throw e;

} finally {

if (!aborted) {

ProceduralInterface.commitTrasaction();

}

}

 }

 }

Concrete Transactional Aspects

• Make the calls to “Account” methods to be

executed as transactions

aspect MakeAccountMethodsTransactional extends TransactionalMethods {

public pointcut MethodToBeMadeTransactional() :

call (public * Account.*(..));

}

Inter-type Declarations

• Also known as introductions

• Means to inject additional code into

classes

– The introduced fields, methods, etc. belong to

the class though are declared in an aspect

Inter-type Field Declarations

public Customer Account.owner;

Visibility: public, or

private. Cannot be

protected.

Type of the

introduced

field

Type in which

the field is

injected

The name of

the field being

introduced

public Customer Account.owner =

new Customer(“John Doe”);

Can also initialise the introduced field

Inter-type Method Declarations

private void Account.addMoney(int amount) { // code }

Visibility: public, or

private. Cannot be

protected.

Type in which

the method is

injected

Signature of

the method.

May include a

throws clause

Note: this here will be bound to the

Account instance on which the

method is being executed and not

to the aspect from which the

introduction is done.

Inter-type Constructor Declarations

• Similar to inter-type method declarations

public Account.new(int accoutID) { // code }

Visibility: public,

private or default.

Cannot be

protected.

Type in which

the constructor

is injected

Signature of the

constructor. May

include a throws

clause

Note: Would probably be good to introduce a field

to capture the account ID supplied as an argument

to the constructor.

Declaring Parents

• You can also use inter-type declarations to

add extends or implements relationships

to your classes

• Takes the form
– declare parents: <type pattern> extends <type>;

– declare parents: <type pattern> implements <type>;

Declaring Parents

declare parents: AnInterface extends AnotherInterface;

declare parents: com.lancs.* implements Serializable;

declare parents:

(CheckingAccount || SavingsAccount) extends Account;

?

Declaring Warnings

• A compile-time mechanism to warn

developers of constraints on a program

• Takes the form:

– declare warning: <pointcut expression>:

“<warning message>”;

declare warning:

call(String *.toString(..)):

“Not a good idea to call toString() methods”;

Declaring Errors

• A compile-time mechanism to ensure that

developers don’t violate certain constraints

• Takes the form:

– declare error: <pointcut expression>:

“<error message>”;

declare error:

call(String *.toString(..)):

“Not allowed to call toString() methods”;

Declaring Warnings and Errors

• A very good way to find relevant code for

refactoring

– Suppose you wanted to factor out all calls to

addListener() methods from your code

aspect HelpRefactor {

declare warning: call(* *.addListener(..)):

“Point out all calls to addListener methods”;

}

When you build the project with Eclipse the compiler will warn you of all the place

where the above warning applies. You can navigate to those points and factor out the

calls into an aspect. Later you can declare it as an error so that other developers only

put calls to addListener in an aspect.

Declaring Errors and Warnings

• Only suitable with pointcuts specification

that can be evaluated at compile-time

– Cannot be used with this(), args(), target(),

cflow(), etc.

• Depend on dynamic context

Aspect Interaction

aspect Security {

pointcut getCalls(): call(* get*(..)) && target(Account);

before(): getCalls() {

// do security

}

}

aspect ShowBalance {

pointcut getCalls(): call(* get*(..)) && target(Account);

before(): getCalls() {

// show remaining balance

}

}

There is no guarantee

which advise is going to be

executed first!

Declaring Precedence

• We would want the Security check to happen

before the balance is shown by the

ShowBalance aspect

• We can declare such precedence explicitly

– Takes the form:

• declare precedence: <type pattern list>;

– Can have a declare precedence statement in any

aspect

– Good practice to have it as a separate aspect

• Precedence cuts across aspects!

Declaring Precedence

aspect AspectPrecedence {

declare precedence: Security, ShowBalance;

}

aspect AspectPrecedence {

declare precedence: Security, *;

}

Always do Security

check before anything

else.

In Summary

• We have looked at a range of features of

the AspectJ language

– Notion of join point

– Pointcuts and the various pointcut designators

– Advice

– Aspect inheritance

– Inter-type declarations

– Aspect interaction resolution

In Summary

• There are a number of features of AspectJ we
have not covered
– Some pointcut designators

• Advice execution, etc.

– Aspect instantiation models
• Our aspects have been singletons

• Aspects can be instantiated based on join point matching

– Exception softening

– Etc…

Contributions and Adoption of AOP

• IBM Websphere Application Server (WAS) uses AspectJ

• The core of JBoss Application Server (JBoss AS) is integrated with

the JBoss AOP; used to deploy services such as security and

transaction management

• Dependency injection (in Spring, e.g.) was recognizably an influence

of AOP

• IBM, Motorola, SAP, Siemens, and Sun Microsystems, ASML have

used AspectJ

• Glassbox is a troubleshooting agent for Java applications that

automatically diagnoses common problems. The Glassbox inspector

monitors the activity of the Java virtual machine using AspectJ

• .NET 3.5 supports Aspect Oriented concepts through the Unity

container

• Etc…

http://en.wikipedia.org/wiki/AspectJ

Conclusão

Parte 1 – Qualidade de

Software por Construção

Alessandro Garcia

© Alessandro Garcia, 2016

Departamento de

Informática

