Modularity Anomaly Types —

Part Il

LES | DI |PUC-Rio - Brazil

Alessandro Garcia

LES ‘§>>>

OPUS Group

Relation between architectural problems...

¢ ... and code anomalies

CONCERN
_-7 \\QVERLOAD

-,
.

System Architectiire |

DATA BUSINESS

| —
E »[cgj
t,p bt,p 2,0,1,0

I
I
1
1
I
I
!
"\,
\

public class SearchData{

//other methods
void doPost(..) {//complex}
void doGet(..){//complex}

catch(Persistence p){-
//14 lines of code removed
catch(Repository r){.}

Source Code “\‘
Legend
gGul b Business —> Expected flow

p Persistence t Transaction - = 9 Architectural Violation

DPackage Architedure module

May 16

5/10/2016

=5 Relevance of Code Anomalies

ety
(\ Re\e"a/@/ HWFacade{

public void updateComplaint(..){..}
public Complaint searchComplaint(..){..}
public void insertComplaint(..){..}

public void insertEmployee(..){..}
public Employee searchEmployee(..){..}
public void updateEmployee(.){..}

public void insertSymptom(..){..}
public Symptom searchSymptom(.){..}
public void updateSymptom(..){..}

cu

<<subsystem>>

\

Sympgtom

mp
o
HY)'F;T% -Ha- Business

Emgloyee

Compjaint

<<subsystem>>

\

Architectural Interface Bloat

Relevance of Code Anomalies

o aly)
) /P: ¢ ch'\tecmfa .
\\-re\e Va“t/ =S ComplaintRepof

public int insert(..){..}

public void update(..){..}

public int getlndex(..){..}

public boolean exists(..){..}
public Complaint search(..){..}
public void reset(..){..}

public Object next(..){..}

public void remove(..){..}

public List getList(..){..}

public boolean hasNext(..){..}
public void updateTimestamp(..){..}
public int searchTimestamp(..){..}

3 pata

<<subsystem>>

EmployeeArray
omplaintRepo
Repository
ArrayRepository
Factory

5/10/2016

5/10/2016

Three Questions

1 Are anomalous code elements and
architecture problems related?

If so, which characteristics of the code
2 anomaly are relevant for the architecture
design?

3 To what extent the applied refactorings
actually addressed architecturally-
relevant code anomalies?

Target systems

MIDAS Mobile Media

PDP Health Watcher
Aspectual Watcher
Aspectual Mobile

Architectural anomalies

l
i Y]

Intensive Coupling Ambiguous Interface | Extraneous Connector

Code anomalies

~ o>

Long Method iti nnector Envy

.
'r’};‘\
\\
God Pointcut

—
&0
—

/:' ~
[==]
&=

a .
,
T A >
Redundant Interface C. Concern Overload

Target Systems

C++ Java Java CH
76 KLOC 54 KLOC 49 KLOC 22 KLOC
111 anomalies 170 anomalies 252 anomalies 175 anomalies

+ 6 different systems
+ 40 revisions
+ Architecture information available

Analysis

[—

Ehe=

Detecting Code Anomalies / % _X— /%]7
Gul

DATA BUSINESS

Analyzing the Impact of Code Anomalies

lements and
S re\ated?

e anomalous code e
architecture problem

Ar

5/10/2016

b~

A.A
AN
~

2

Analyzing the Impact of Code Anomalies

Downstream Analysis

+ Which architecture problems are related to code
anomalies

2

100
90
80
70
60
50
40
30
20
10

0

Analyzing the Impact of Code Anomalies

Downstream Analysis

HW MM PDP

H Not Caused by Code
Anomalies

M Caused by Code
Anomalies

MIDAS

5/10/2016

= Analyzing the Impact of Code Anomalies

¢ Upstream Analysis

+ Which code anomalies are related to architecture
problems

BUSINESS GUI

Analyzing the Impact of Code Anomalies

¢ Upstream Analysis

100
90
80
70
60
50
40
30
20
10
0 \ \ \
HW MM PDP

M Irrelevant
M Relevant

MIDAS

5/10/2016

Analyzing the Impact of Code Anomalies

¢ Upstream Analysis

40% of analyzed code anomalies
OT related to architecture anomalies

Three Questions

1 Are anomalous code elements and
architecture problems related?

If so, which characteristics of the code
2 anomaly are relevant for the architecture
design?

3 To what extent the applied refactorings
actually addressed architecturally-
relevant code anomalies?

5/10/2016

Identifying Relevant Code Anomalies

+ The following characteristics were analyzed:

+ Code anomaly type

*

*

*

ies
istics of code anomalie

i ter
hich charac 2
@ Ware arch’ltectura\\y—re\evan

Bands of Code Aunmalies AW HW AR I
Dhverg — 3 3 5 5
I-"'rz:amz:“ Nc_)ne. of the code anomalies was the best '.E
God C] indicator across a|| analyzed system 2
Inappropriate Infimacy 5 ‘ S i
Long Method 7 8 4]
1 ong Parameter List 7 2 5 3
Misplaced Class i - 3
Shotom Surgery 3 2 - i
Smmall Class < 7 3 &

5/10/2016

Identifying Relevant Code Anomalies

+ The following characteristics were analyzed:
+ Change density
+ Error density
+ Anomaly density

alies

st anom
which characteristics of COd?\t’?
@ are arch’ltectura\\y—re\eva ?

Studying prioritization models

+ Which other characteristics could be explored for
detecting architecturally-relevant code anomalies ?
+ Change density
+ Error density

+ Anomaly density

lies
eristics of code anoma

ich charact ’
@ W\’:\are architectura\\y-re\evant

R. Arcoverde et al - RSSE/ICSE 2012: Automatically Detecting Architecturally-Relevant Code
Anomalies

R. Arcoverde et al - SBES 2013: Prioritization of Code Anomalies Based on Architecture
Sensitiveness. SBES'13) Brasilia, Brazil, September 2013.

5/10/2016

=% Prioritization heuristics

Change HW 14 10 71%

density MM 10 7 70%
PDP 10 10 100%

Error HW 14 12 85%

. 10 8 70%

density PDP 10 8 70%

density MM 10 9 70%

PDP 10 8 70%

MIDAS 10 6 90%

w

Priorization Factors

1. There is no ‘universal’ prioritization model

2. Prioritization models: satisfactory results too late

May 16 20

5/10/2016

10

Prioritization heuristics

density “™ 10 ’
PDP 10 10 100%
Error HW 14 12 85%
. 10
density PDP 10 8 @
Anomaly HW 2 J
density 10 ?
PDP 10 8
MIDAS 10 6 90%

w

Earliness of Anomaly

+ Early anomaly: appears in the 15t version of
each system

18%

Of all architecturally-relevant
code anomalies were identified

as -
early anomalies

5/10/2016

11

Earliness of Anomaly

+ Early anomaly: appears in the 15t version of
each system

o and were related to more than
18% 379/,

Of all architecturally-relevant .
code anomalies were identified of all architecture problems

as -
early anomalies

However, we observed that...

¢ ... architecturally-relevant code anomalies tend
to “flock together” even in the 1st version of
each system:
+ anomaly agglomerations within a class or

syntatically-related classes can be used as good
indicator

+ Continuous detection of emerging anomaly
agglomerations?

May 16 Alessandro Garcia @ OPUS Group 24

5/10/2016

12

Three Questions

1 Are anomalous code elements and
architecture problems related?

If so, which characteristics of the code
2 anomaly are relevant for the architecture
design?
3 To what extent the applied refactorings
actually addressed architecturally-

relevant code anomalies?

Refactoring of Relevant Anomalies

+ 658 refactorings
+ 33% high-level

+ Move member (16%)

+ Extract class or superclass (12%)

+ 67% low-level
+ Rename (32%)
+ Extract local variable (16%)

ings?
y-relevant refactorings*

architectura\\

+ 37% of all architecture-relevant anomalies were
refactored

+ Isolated versions concentrated most of the refactoring
efforts

5/10/2016

13

Concluding Remarks

Most architecture problems are
related to anomalous code

elements

Concluding Remarks

Most architecture problems are

related to anomalous code
elements

Ano
rog Lrjr:::]lt)l/yarg‘;egl;lc:merations are more
ated to archite
cture proble
ms

5/10/2016

14

Concluding Remarks

Most architecture problems are
related to anomalous code

elements

?nomaly agglomerations are more
requently related to architecture problems

Architecturally-relevant anomalies
are not frequently refactored

Concluding Remarks

Most architecture problems are

related to anomalous code
elements

?nomaly agglomerations are more
requently related to architecture problems

Architecturally-relevant anomalies

i liesisa
are not frequently refactored Detecting early code gqoma
i ' needed asset for assisting developers

when prioritizing refactoring efforts

5/10/2016

15

