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Relation between architectural problems...

¢ ... and code anomalies
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public class SearchData{

//other methods
void doPost(..) {//complex}
void doGet(..){//complex}

catch(Persistence p){-
//14 lines of code removed
catch(Repository r){.}
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public void updateComplaint(..){..}
public Complaint searchComplaint(..){..}
public void insertComplaint(..){..}

public void insertEmployee(..){..}
public Employee searchEmployee(..){..}
public void updateEmployee(.){..}

public void insertSymptom(..){..}
public Symptom searchSymptom(.){..}
public void updateSymptom(..){..}
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public int insert(..){..}

public void update(..){..}

public int getlndex(..){..}

public boolean exists(..){..}
public Complaint search(..){..}
public void reset(..){..}

public Object next(.. ){..}

public void remove(..){..}

public List getList(..){..}

public boolean hasNext(..){..}
public void updateTimestamp(..){..}
public int searchTimestamp(..){..}
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Three Questions

1 Are anomalous code elements and
architecture problems related?

If so, which characteristics of the code
2 anomaly are relevant for the architecture
design?

3 To what extent the applied refactorings
actually addressed architecturally-
relevant code anomalies?

Target systems

MIDAS Mobile Media

PDP Health Watcher
Aspectual Watcher
Aspectual Mobile
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Target Systems

C++ Java Java CH
76 KLOC 54 KLOC 49 KLOC 22 KLOC
111 anomalies 170 anomalies 252 anomalies 175 anomalies

+ 6 different systems
+ 40 revisions
+ Architecture information available

Analysis
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Analyzing the Impact of Code Anomalies

Downstream Analysis

+ Which architecture problems are related to code
anomalies
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Analyzing the Impact of Code Anomalies

Downstream Analysis
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= Analyzing the Impact of Code Anomalies

¢ Upstream Analysis

+ Which code anomalies are related to architecture
problems

BUSINESS GUI

Analyzing the Impact of Code Anomalies

¢ Upstream Analysis
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Analyzing the Impact of Code Anomalies

¢ Upstream Analysis

40% of analyzed code anomalies
OT related to architecture anomalies

Three Questions

1 Are anomalous code elements and
architecture problems related?

If so, which characteristics of the code
2 anomaly are relevant for the architecture
design?

3 To what extent the applied refactorings
actually addressed architecturally-
relevant code anomalies?
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Identifying Relevant Code Anomalies

+ The following characteristics were analyzed:

+ Code anomaly type
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Identifying Relevant Code Anomalies

+ The following characteristics were analyzed:
+ Change density
+ Error density
+ Anomaly density
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Studying prioritization models

+ Which other characteristics could be explored for
detecting architecturally-relevant code anomalies ?
+ Change density
+ Error density

+ Anomaly density
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R. Arcoverde et al - RSSE/ICSE 2012: Automatically Detecting Architecturally-Relevant Code
Anomalies

R. Arcoverde et al - SBES 2013: Prioritization of Code Anomalies Based on Architecture
Sensitiveness. SBES'13) Brasilia, Brazil, September 2013.
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=% Prioritization heuristics

Change HW 14 10 71%

density MM 10 7 70%
PDP 10 10 100%

Error HW 14 12 85%

. 10 8 70%

density PDP 10 8 70%

density MM 10 9 70%

PDP 10 8 70%

MIDAS 10 6 90%

w

Priorization Factors

1. There is no ‘universal’ prioritization model

2. Prioritization models: satisfactory results too late
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Prioritization heuristics

density “™ 10 ’
PDP 10 10 100%
Error HW 14 12 85%
. 10
density PDP 10 8 @
Anomaly HW 2 J
density 10 ?
PDP 10 8
MIDAS 10 6 90%

w

Earliness of Anomaly

+ Early anomaly: appears in the 15t version of
each system

18%

Of all architecturally-relevant
code anomalies were identified

as -
early anomalies
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Earliness of Anomaly

+ Early anomaly: appears in the 15t version of
each system

o and were related to more than
18% 379/,

Of all architecturally-relevant .
code anomalies were identified of all architecture problems

as -
early anomalies

However, we observed that...

¢ ... architecturally-relevant code anomalies tend
to “flock together” even in the 1st version of
each system:
+ anomaly agglomerations within a class or

syntatically-related classes can be used as good
indicator

+ Continuous detection of emerging anomaly
agglomerations?
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Three Questions

1 Are anomalous code elements and
architecture problems related?

If so, which characteristics of the code
2 anomaly are relevant for the architecture
design?
3 To what extent the applied refactorings
actually addressed architecturally-

relevant code anomalies?

Refactoring of Relevant Anomalies

+ 658 refactorings
+ 33% high-level

+ Move member (16%)

+ Extract class or superclass (12%)

+ 67% low-level
+ Rename (32%)
+ Extract local variable (16%)

ings?
y-relevant refactorings*

architectura\\

+ 37% of all architecture-relevant anomalies were
refactored

+ Isolated versions concentrated most of the refactoring
efforts
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Concluding Remarks

Most architecture problems are
related to anomalous code

elements

Concluding Remarks

Most architecture problems are

related to anomalous code
elements

Ano
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ated to archite
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Concluding Remarks

Most architecture problems are
related to anomalous code

elements

?nomaly agglomerations are more
requently related to architecture problems

Architecturally-relevant anomalies
are not frequently refactored

Concluding Remarks

Most architecture problems are

related to anomalous code
elements

?nomaly agglomerations are more
requently related to architecture problems

Architecturally-relevant anomalies

i liesisa
are not frequently refactored Detecting early code gqoma
i ' needed asset for assisting developers

when prioritizing refactoring efforts
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