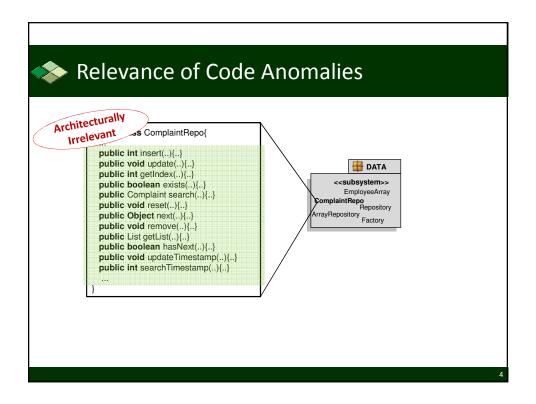
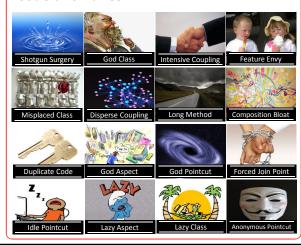

Modularity Anomaly Types – Part II


Alessandro Garcia


Three Questions

- Are anomalous code elements and architecture problems related?
- If so, which characteristics of the code anomaly are relevant for the architecture design?
- To what extent the applied refactorings actually addressed architecturally-relevant code anomalies?

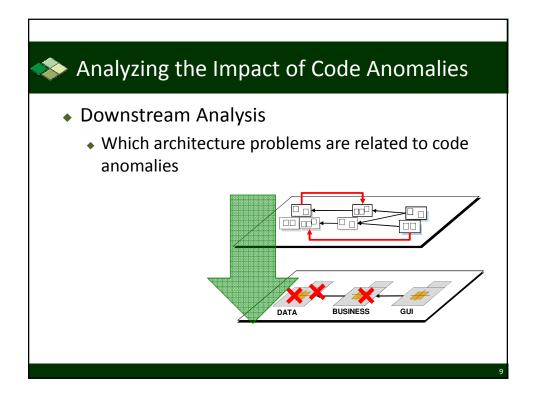
Target systems

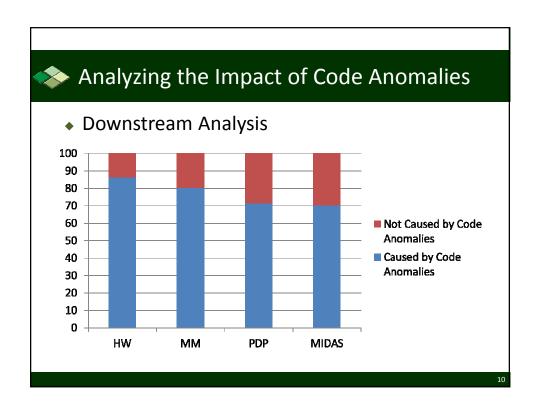
MIDAS PDP Mobile Media Health Watcher Aspectual Watcher Aspectual Mobile

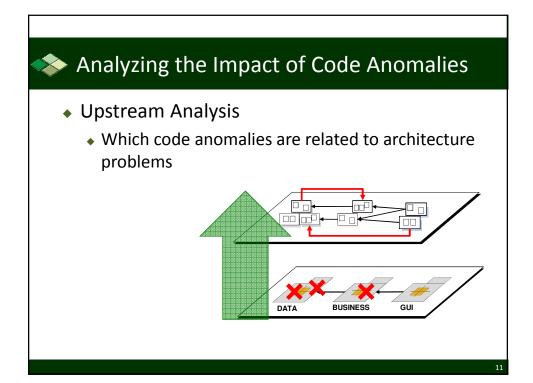
Code anomalies

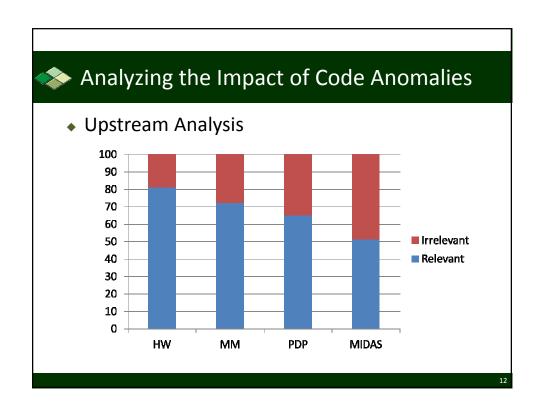
Architectural anomalies

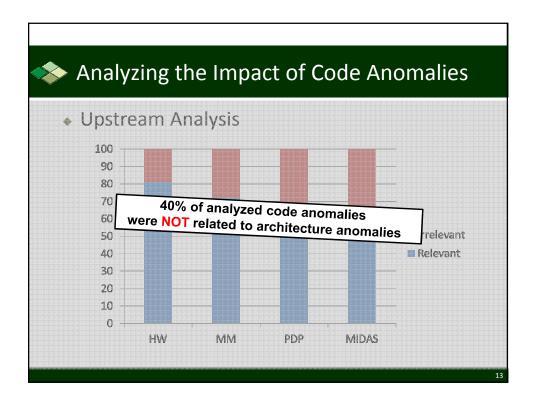
3

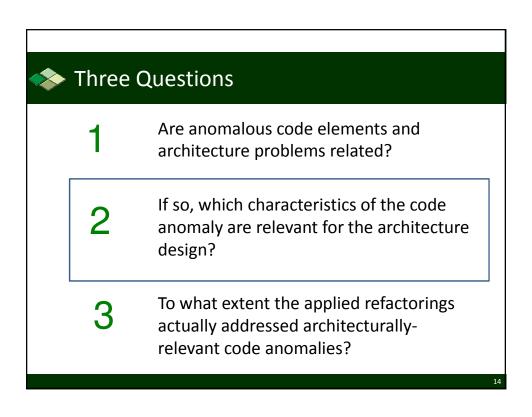


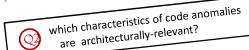

MIDAS	ММ	HW	PDP
C++	Java	Java	C#
76 KLOC	54 KLOC	49 KLOC	22 KLOC
111 anomalies	170 anomalies	252 anomalies	175 anomalies

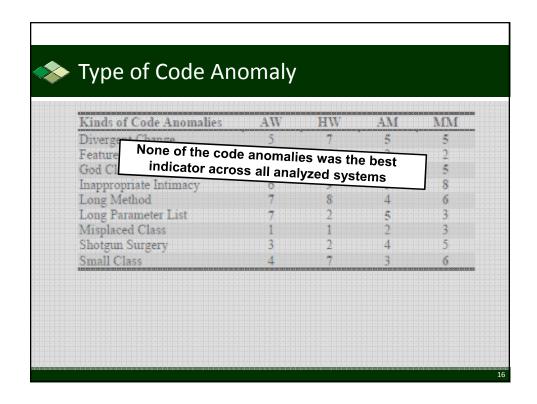

- 6 different systems
- 40 revisions
- Architecture information available


Recovering Actual Architecture
Identifying Architecture Anomalies
Detecting Code Anomalies
Analyzing the Impact of Code Anomalies


Are anomalous code elements and architecture problems related?







Identifying Relevant Code Anomalies

- The following characteristics were analyzed:
 - Code anomaly type
 - ◆ Change density
 - Error density
 - Anomaly density
 - And others...



8

Identifying Relevant Code Anomalies

- The following characteristics were analyzed:
 - Change density
 - Error density
 - Anomaly density

Studying prioritization models

- Which other characteristics could be explored for detecting architecturally-relevant code anomalies?
 - Change density
 - Error density
 - Anomaly density

which characteristics of code anomalies are architecturally-relevant?

R. Arcoverde et al – RSSE/ICSE 2012: Automatically Detecting Architecturally-Relevant Code

R. Arcoverde et al - SBES 2013: Prioritization of Code Anomalies Based on Architecture Sensitiveness. SBES'13) Brasília, Brazil, September 2013.

Prioritization heuristics						
Change density	System	# of Ranked CE	Arch. Relevant	%		
	HW	14	10	71%		
	MM	10	7	70%		
	PDP	10	10	100%		
	System	# of Ranked CE	Arch. Relevant	%		
Error density	HW	14	12	85%		
	MM	10	8	70%		
	PDP	10	8	70%		
Anomaly density	System	# of Ranked CE	Arch. Relevant	%		
	HW	10	7	60%		
	MM	10	9	70%		
	PDP	10	8	70%		
	MIDAS	10	6	90%		

> Priorization Factors

- .. 1. There is no 'universal' prioritization model
 - 2. Prioritization models: satisfactory results too late

Prioritization heuristics								
Change density	System	# of Ranked CE	Arch. Relevant	%				
	HW	14	10	Version 12				
	MM	10	7	VCISIOII 12				
	PDP	10	10	100%				
	System	# of Ranked CE	Arch. Relevant	%				
Error density	HW	14	12	85%				
	MM	10	8	Version 9				
	PDP	10	8	version 9				
	System	# of Ranked CE	Arch. Relevant	%				
Anomaly density	HW	10	7					
	MM	10	9	Version 10				
	PDP	10	8					
	MIDAS	10	6	90%				

Earliness of Anomaly

• Early anomaly: appears in the 1st version of each system

18%

Of all architecturally-relevant code anomalies were identified

early anomalies

Earliness of Anomaly

• Early anomaly: appears in the 1st version of each system

Of all architecturally-relevant code anomalies were identified

early anomalies

and were related to more than

of all architecture problems

However, we observed that...

- ... architecturally-relevant code anomalies tend to "flock together" even in the 1st version of each system:
 - anomaly agglomerations within a class or syntatically-related classes can be used as good indicator
- Continuous detection of emerging anomaly agglomerations?

Alessandro Garcia @ OPUS Group

Three Questions

- Are anomalous code elements and architecture problems related?
- If so, which characteristics of the code anomaly are relevant for the architecture design?
- To what extent the applied refactorings actually addressed architecturallyrelevant code anomalies?

Refactoring of Relevant Anomalies

- 658 refactorings
 - 33% high-level
 - Move member (16%)
 - Extract class or superclass (12%)
 - 67% low-level
 - Rename (32%)
 - Extract local variable (16%)

- 37% of all architecture-relevant anomalies were refactored
- Isolated versions concentrated most of the refactoring efforts

Concluding Remarks

Most architecture problems are related to anomalous code elements

Concluding Remarks

Most architecture problems are related to anomalous code elements

Anomaly agglomerations are more frequently related to architecture problems

Concluding Remarks

Most architecture problems are related to anomalous code elements

Anomaly agglomerations are more frequently related to architecture problems

Architecturally-relevant anomalies are not frequently refactored

Concluding Remarks

Most architecture problems are related to anomalous code elements

Anomaly agglomerations are more frequently related to architecture problems

Architecturally-relevant anomalies are not frequently refactored

Detecting early code anomalies is a needed asset for assisting developers when prioritizing refactoring efforts