
5/10/2016

1

Robustness Anomalies:
A Catalogue

Eiji Adachi Barbosa

Alessandro Garcia

OPUS Research GroupLES | DI | PUC-Rio – Brasil

Robustness anomalies

• Robustness is the ability of a program to

continue operating even in the presence of

erroneous conditions (exceptions)

• Robustness anomalies are structures in the

program that hamper proper handling of

erroneous conditions

– they might also simultaneously represent bugs,

architectural violations (erosion), etc...

5/10/2016

2

Exceptions

Exceptions

May - 2013 ebarbosa@inf.puc-rio.br 3

Unexpected conditions or events

that occur at runtime and prevent

programs to continue their normal

execution flow

Press any key to continue _

Exception Handling Mechanisms

• Intended to improve software robustness

– Ease the design and implementation of the

exception handling in software systems

• Provided in most mainstream programming

languages

– Try – Catch – Throw

10/05/2016 Eiji Adachi M. Barbosa 4

5/10/2016

3

Problems with Exception Handling

• Developers often neglect exception handling

• The lack of proper handling actions is very common

in real software systems

– 40%-72% of handling actions are only-logging or empty

handlers

• Exception handling code is more error prone and

concentrates more defects than normal code

• Developers introduce faults in exception handling

code even when they try to improve it

What are the causes of

faults (bugs) related to

exception handling?
i.e., faults related to the definition, throwing, propagation,

handling and documentation of exceptions, as well as faults

related to termination actions in case of exceptions.

5/10/2016

4

Study design

• Goal:

– Gather deeper knowledge about the causes of

faults related to exception handling reported in

software systems

• To achieve our research goal, we performed a

longitudinal evaluation in the context of two

large software projects

Target systems

• Open-source projects

– Publicly available bug reports and source code

• Possibility to map bug reports to

corresponding fixing patches

– Bug-Report-Id-patterns on commit logs

• Selected candidates:

– Tomcat and Hadoop

5/10/2016

5

Data collection

Target system

source code repository

Step 1 – Gather complete history of revisions

Data collection

Target system

source code repository Complete history of revisions

Step 1 – Gather complete history of revisions

5/10/2016

6

Data collection

Complete history

of revisions

Step 2 – Identify revisions potentially related to exceptional faults

Revision comment

Fix

https://issues.apache.org/bugzilla/s

how_bug.cgi?id=52591 Skip

attributes where getters throw

UnsupportedOperationException

Data collection

Complete history

of revisions

Step 2 – Identify revisions potentially related to exceptional faults

Revision comment

Fix

https://issues.apache.org/bugzilla/s

how_bug.cgi?id=52591 Skip

attributes where getters throw

UnsupportedOperationException

Comment contains

Report_Id

&& keyword

“Exception”?

5/10/2016

7

\

Data collection

Complete history

of revisions

Step 2 – Identify revisions potentially related to exceptional faults

Revision comment

Fix

https://issues.apache.org/bugzilla/s

how_bug.cgi?id=52591 Skip

attributes where getters throw

UnsupportedOperationException

Comment contains

Report_Id

&& keyword

“Exception”?
Revisions potentially related

to exceptional faults

Data collection

Step 3 – Manual triage

Revisions potentially

related to

exceptional faults

Bug report

Source code diff

Revision comment

5/10/2016

8

Data collection

Step 3 – Manual triage

Revisions potentially

related to

exceptional faults

Bug report

Source code diff

Revision comment

Revisions related to

exceptional faults

Raw data

5/10/2016

9

Analysis method

Step 1 – Diff description

V2 V1

Analysis method

Step 1 – Diff description

V2 V1

“Changed the argument

of a catch from

InvalidProtocolBufferExce

ption to Throwable. Also

changed parameters of

exception instantiation

within catch block.”

Diff description

5/10/2016

10

Analysis method

Step 2 – Extraction of text fragments

Bug report

Revision comment

Analysis method

Step 2 – Extraction of text fragments

Bug report

Revision comment

Fragments explaining

the cause or the correction

5/10/2016

11

Analysis method

Step 2 – Extraction of text fragments

So, two conclusions:

1. The failure occurs above

response.encodeURL("j_security_check")" call.

2. I suspect that _jspx_page_context is null. In

that case the Throwable in the catch block is

silently swallowed.

Example of fragment extracted from bug report

Analysis method

Step 3 – Explaining the cause

Diff description

Fragments explaining

the cause or the correction

What caused the

observed fault?

5/10/2016

12

Analysis method

Step 3 – Explaining the cause

Diff description

Fragments explaining

the cause or the correction

\
What caused the

observed fault?

Cause of

observed fault

Categories of exceptional faults

5/10/2016

13

Categories of exceptional faults

2

2

1

2

7

1

2

1

8

0 2 4 6 8 10 12 14 16

Uninforma ve generic type thrown

Destruc ve wrapping

Missing log

Suppressed excep on

Swallowed excep on

Uninforma ve or wrong error message

Informa on swallowed sub-categories

Tomcat Hadoop

Category - Suppressed exception

public void copyBytes() throws IOException{

try{

//manipulate bytes

}

finally {

closeStream(out);

}

}

5/10/2016

14

Category - Suppressed exception

public void copyBytes() throws IOException{

try{

//manipulate bytes

}

finally {

closeStream(out);

}

}

Category - Suppressed exception

public void copyBytes() throws IOException{

try{

//manipulate bytes

}

finally {

closeStream(out);

}

}

5/10/2016

15

Category - Suppressed exception

public void copyBytes() throws IOException{

try{

//manipulate bytes

}

finally {

closeStream(out);

}

}

Category - Suppressed exception

public void copyBytes() throws IOException{

try{

//manipulate bytes

}

finally {

closeStream(out);

}

}

5/10/2016

16

Category - Suppressed exception

public void copyBytes() throws IOException{

try{

//manipulate bytes

}

finally {

closeStream(out);

}

}

Category - Suppressed exception

public void copyBytes() throws IOException{

try{

//manipulate bytes

}

finally {

closeStream(out);

}

}

Original exception does not flow

out of the method

AND

Exception raised on the finally

block does not contain information

about the original exception

5/10/2016

17

Category – Destructive remapping

public void foo(){

try{

// do something

}

catch (IOException e){

String s = e.getMessage();

throw new BusinessException(s);

}

}

Category – Destructive remapping

public void foo(){

try{

// do something

}

catch (IOException e){

String s = e.getMessage();

throw new BusinessException(s);

}

}

Extracted from bug report:

“(The error is) the fact that the catch block

that logs the exception is swallowing

the original exception and (its) stack trace.”

5/10/2016

18

Other categories

• Premature termination

– Catch block terminates without retrying

• “I now think the best solution is catch all IOExceptions

and then retry once.”

• Overly protective try-block

– Try-block is very long and inadvertently guards the

occurrence of many different exceptions.

• “I believe the scope for which the

FileNotFoundException' block applies is too great.”

Other categories

• Excessive Throwing Condition

– Exception is thrown by a condition that is not

actually an exceptional condition

• “There is no need to throw an exception and then

immediately catch it and log it. The 'else throw' can be

removed.”

• Wrong Location of Execution Resumption

– Occurs when the statements after the catch-block

should not be executed if an exception occurs

5/10/2016

19

Final remarks

• Limitations of this study:

– Sample

• Small size

• Both systems implemented in Java

– Data source

• Bugs are also reported on mail lists

– Analysis method

• May have missed an unknown number of faults related

to exception handling

Final remarks

• RQ: What are the causes of faults related to
exception handling?

– 10 different macro-categories of faults related to
exception handling

• 18 different categories, if sub-categories are considered

• Most faults were caused by insufficient information
provided with the exception

• These categories can be used to:

– Train developers

– Improve existing static analysis tools

5/10/2016

20

Final remarks

• Future:

– Replicate this study with other systems,

programming languages, etc

• We invite you to replicate our study and contribute

with new fault categories

– Study how faults are corrected

