
1

FeatureFeatureFeatureFeature----Oriented Approach forOriented Approach forOriented Approach forOriented Approach for
Software Product LineSoftware Product LineSoftware Product LineSoftware Product Line

Dr. Jaejoon Lee

School of Computing and Communications

Lancaster University

Copyright © Jaejoon Lee 2016

I am from …I am from …I am from …I am from …

2

Copyright © Jaejoon Lee 2016

InfoLab21InfoLab21InfoLab21InfoLab21

Copyright © Jaejoon Lee 2016

A Perfect Place to Focus on your Research!!!

3

Copyright © Jaejoon Lee 2016

Ph.D. Degree - POSTECH
Thesis: A Feature-Oriented Approach to Developing Dynamically
Reconfigurable Products in Product Line Engineering
- Advisor: Prof. Kyo-Chul Kang

- January 2008 to Current: Lecturer, School of Computing and

Communications, Lancaster University, Lancaster, UK.

- October 2005 to December 2007: Scientist, Fraunhofer Institute for

Experimental Software Engineering (IESE), Kaiserslautern, Germany

- March 2001 to August 2006: PhD candidate, POSTECH

- March 2000 to February 2001: Senior Member of Technical Staff,

POSTECH

- July 1993 to February 2000: Associate Researcher, LG Electronics

Who am I ?Who am I ?Who am I ?Who am I ?

Copyright © Jaejoon Lee 2016

FeatureFeatureFeatureFeature----Oriented Approach forOriented Approach forOriented Approach forOriented Approach for
Software Product Line:Software Product Line:Software Product Line:Software Product Line:

IntroductionIntroductionIntroductionIntroduction

Dr. Jaejoon Lee

School of Computing and Communications

Lancaster University

Some slides are from the book ‘Software Engineering’ by Ian Sommerville

4

Copyright © Jaejoon Lee 2016

What is software?

• Software: computer programs, configuration data computer programs, configuration data computer programs, configuration data computer programs, configuration data
and associated documentation and associated documentation and associated documentation and associated documentation (for end user and
maintenance).

• Application areas: commerce, industry,
government, medicine, education, entertainment,
etc.

• Software products may be developed for a
particular customerparticular customerparticular customerparticular customer or may be developed for a
general marketgeneral marketgeneral marketgeneral market.

Copyright © Jaejoon Lee 2016

Why is software engineering important?

• Airbus 320 accident (Air France Flight 296)

- Fly-by-wire airbus

- cause of the accident is disputed

- 3 passengers died

http://en.wikipedia.org/wiki/Air_France_Flight_296

5

Copyright © Jaejoon Lee 2016

What is software quality?What is software quality?What is software quality?What is software quality?

• Software quality = maintainability + efficiency + usability + dependability

• Maintainability

- Changing business environment � Software should be written in a way that is
easy to change

- Software, once put into operation, often has a lifetime of 20 - 30 years. Over
this time, requirements change and so the software must be easy to change.

• Efficiency

- Software should not make wasteful use of resources like memory and
processor time

• Usability

- Software must be usable, without undue effort, by the type of user for whom it is
designed (Example 3 Mile Island) � appropriate user interface / documentation

Copyright © Jaejoon Lee 2016

What is software quality?What is software quality?What is software quality?What is software quality?

• Dependability = reliability + availability + security + safety

- Reliability is the probability, over a given time, that the system behave
correctly.

- Availability is the probability that a system will be able to provide services at
any given time.

� E.g. eBay – 57 hours of downtime between December 1998 and June 1999 led
to an estimated $5m in refunds.

- Security is the ability for a system to protect itself from intrusion. e.g.
Internet shopping systems need to be secure.

- Safety is the ability of a system to operate without catastrophic failure. e.g.
nuclear power station control, fly-by-wire aircraft.

6

Copyright © Jaejoon Lee 2016

Software reuse
• In most engineering disciplines, systems are
designed by composing existing components that
have been used in other systems.

• Software engineering has been more focused on
original development but it is now recognised that to
achieve better software, more quickly and at lower
cost, we need a design process that is based on
systematic software reuse.

• There has been a major switch to reuse-based
development over the past 10 years.

Copyright © Jaejoon Lee 2016

Reuse-based software engineering

• Application system reuse

- The whole of an application system may be reused either by
incorporating it without change into other systems (COTS
reuse) or by developing application families.

• Component reuse

- Components of an application from sub-systems to single
objects may be reused.

• Object and function reuse

- Software components that implement a single well-defined
object or function may be reused.

7

Copyright © Jaejoon Lee 2016

Benefits of software reuse

Benefit Explanation

Increased dependability Reused software, which has been tried and tested in
working systems, should be more dependable than new
software. Its design and implementation faults should have
been found and fixed.

Reduced process risk The cost of existing software is already known, whereas the
costs of development are always a matter of judgment. This
is an important factor for project management because it
reduces the margin of error in project cost estimation. This
is particularly true when relatively large software
components such as subsystems are reused.

Effective use of specialists Instead of doing the same work over and over again,
application specialists can develop reusable software that
encapsulates their knowledge.

Copyright © Jaejoon Lee 2016

Benefits of software reuse

Benefit Explanation

Standards compliance Some standards, such as user interface standards, can be
implemented as a set of reusable components. For example,
if menus in a user interface are implemented using reusable
components, all applications present the same menu formats
to users. The use of standard user interfaces improves
dependability because users make fewer mistakes when
presented with a familiar interface.

Accelerated development Bringing a system to market as early as possible is often
more important than overall development costs. Reusing
software can speed up system production because both
development and validation time may be reduced.

8

Copyright © Jaejoon Lee 2016

Problems (Difficulties) with reuse

Problem Explanation

Increased maintenance
costs

If the source code of a reused software system or component is
not available then maintenance costs may be higher because
the reused elements of the system may become increasingly
incompatible with system changes.

Lack of tool support Some software tools do not support development with reuse. It
may be difficult or impossible to integrate these tools with a
component library system. The software process assumed by
these tools may not take reuse into account. This is particularly
true for tools that support embedded systems engineering, less
so for object-oriented development tools.

Not-invented-here
syndrome

Some software engineers prefer to rewrite components because
they believe they can improve on them. This is partly to do with
trust and partly to do with the fact that writing original software is
seen as more challenging than reusing other people’s software.

Copyright © Jaejoon Lee 2016

Problems (Difficulties) with reuse

Problem Explanation

Creating, maintaining, and
using a component library

Populating a reusable component library and ensuring the
software developers can use this library can be expensive.
Development processes have to be adapted to ensure that the
library is used.

Finding, understanding,
and adapting reusable
components

Software components have to be discovered in a library,
understood and, sometimes, adapted to work in a new
environment. Engineers must be reasonably confident of finding
a component in the library before they include a component
search as part of their normal development process.

9

Copyright © Jaejoon Lee 2016

The reuse landscape
• Although reuse is often simply thought of as the
reuse of system components, there are many
different approaches to reuse that may be used.

• Reuse is possible at a range of levels from simple
functions to complete application systems.

• The reuse landscape covers the range of possible
reuse techniques.

Copyright © Jaejoon Lee 2016

The reuse landscape

10

Copyright © Jaejoon Lee 2016

A software product line is a set of software-intensive

systems sharing a common, managed set of features

that satisfy the specific needs of a particular market

segment or mission and that are developed from a

common set of core assets in a prescribed way.

Lawrence G. Jones and Linda M. Northrop, Software Product Lines: Capitalizing on Your Process Improvement Investment,

European Software Engineering Process Group Conference, Amsterdam, Netherlands, June 2001 June 2001

What is a Software Product Line?

Copyright © Jaejoon Lee 2016

Product Line InfrastructureProduct Line InfrastructureProduct Line InfrastructureProduct Line Infrastructure

DomainDomainDomainDomain

Product Line Life Cycle

DomainDomainDomainDomain

Family EngineeringFamily EngineeringFamily EngineeringFamily Engineering

ProductProductProductProduct
LineLineLineLine

Artifact BaseArtifact BaseArtifact BaseArtifact Base

F
e
e
d
b
a
c
k

F
e
e
d
b
a
c
k

F
e
e
d
b
a
c
k

F
e
e
d
b
a
c
k

DocumentationDocumentationDocumentationDocumentation

IdentificationIdentificationIdentificationIdentification

ClassificationClassificationClassificationClassification EvolutionEvolutionEvolutionEvolution

CoordinationCoordinationCoordinationCoordination

EvaluationEvaluationEvaluationEvaluation

IntegrationIntegrationIntegrationIntegration

AdaptationAdaptationAdaptationAdaptation

Application EngineeringApplication EngineeringApplication EngineeringApplication Engineering

ProductProductProductProduct
ProductProductProductProduct

RequirementsRequirementsRequirementsRequirements

Requirements Requirements Requirements Requirements CCCC

Requirements Requirements Requirements Requirements BBBB

Product Product Product Product

Requirements Requirements Requirements Requirements AAAA

11

Copyright © Jaejoon Lee 2016

Product Line Economics –
Development Effort

Delivered System

1 2 3 4 5 6

Effort

Single
System

Investment

PL Instance

Single System
Development

Product Line
Approach

Rule of thumb:
Savings begin
between 2nd and
3rd product.

Rule of thumb:
Investment
ranges between
development
efforts for 1 and
2 systems.

[Böckle, Clements, McGregor, Muthig, Schmid in IEEE Software]

Copyright © Jaejoon Lee 2016

Success Story: Cummins, Inc. (1/2)

• World’s largest manufacturer of large diesel engines.

• Product family includes

- 9 basic engine types

- 4-18 cylinders

- 3.9 - 164 liters

- 12 kinds of electronic
control modules

- 5 kinds of processors

- 10 kinds of fuel systems

- diesel fuel or natural gas

12

Copyright © Jaejoon Lee 2016

Success Story: Cummins, Inc. (2/2)
• Cost

- Management estimates product line ROI of 10:1

• Time to Market

- Product cycle time: a year to a few days

• Productivity

- 20 product groups � 1000 separate applications

- 75% of all software comes from core assets

- Productivity improvement of 360%

• Enter new Markets

- Capability let Cummins enter and dominate industrial diesel engine market

• Quality

- Software quality is at an all-time high

- 15 of 15 projects are on track (was 3 of 10)

- Customer satisfaction is high.

Copyright © Jaejoon Lee 2016

Others
• Nokia – Mobile phones

- Market/Productivity: went from 4 different phones produced per year to 50
per year

• Hewlett Packard – Printer systems

- Time to Market: 2-7x cycle time improvement (some 10x)

- Productivity of Sample Project

� shipped 5x number of products

� that were 4x as complex

� and had 3x the number of features

� with 4x products shipped/person

http://www.splc.net/fame.html

13

Copyright © Jaejoon Lee 2016

• Proactive approach*

- The proactive approach to software product lines is like the waterfall
approach to conventional software. You analyze, architect, design, and
implement all product variations on the foreseeable horizon up front.

- This approach might suit organizations that can predict their product line
requirements well into the future and that have the time and resources for
a long waterfall development cycle.

Analyze

Architect

Design

Implement

AssetsAssets

* Charles Krueger, “Eliminating the Adoption Barrier”, IEEE Software, Jul/Aug, 2002, pp. 29-31

ProductsProducts

Product Line Approaches

Copyright © Jaejoon Lee 2016

• Reactive approach*

- The reactive approach is like the spiral or extreme programming approach
to conventional. You analyze, architect, design, and implement one or
several product variations on each development spiral.

- This approach works in situations where you cannot predict the
requirements for product variations well in advance.

AssetsAssets

*Charles Krueger, “Eliminating the Adoption Barrier”, IEEE Software, Jul/Aug, 2002, pp. 29-31

ProductsProducts
Implement

Design

Architect

Analyze

Analyze

Architect

Design
Implement

Analyze

Architect

Design

Implement

Product Line Approaches

14

Copyright © Jaejoon Lee 2016

• Extractive approach*

- The extractive approach reuses one or more existing software products for the
product line’s initial baseline.

- Require lightweight software product line technology and techniques that can reuse
existing software without much reengineering.

- Effective for an organization that wants to quickly transition from conventional to
software product line engineering

- This approach does not support the possibility of one organization developing the
core assets and a separate organization developing the products based on the core
assets.

existing software products

extract assets

BaselineBaselineproduct line 1

BaselineBaseline

BaselineBaseline

*Charles Krueger, “Eliminating the Adoption Barrier”, IEEE Software, Jul/Aug, 2002, pp. 29-31

product line 2

product line 3

product

product

product

product

Product Line Approaches

Copyright © Jaejoon Lee 2016

FeatureFeatureFeatureFeature----Oriented Approach forOriented Approach forOriented Approach forOriented Approach for
Software Product Line:Software Product Line:Software Product Line:Software Product Line:

FORM approach and Feature ModelingFORM approach and Feature ModelingFORM approach and Feature ModelingFORM approach and Feature Modeling

Dr. Jaejoon Lee

School of Computing and Communications

Lancaster University

15

Product Line Engineering Processes: Feature-Oriented Reuse
Method (FORM)

Conceptual

Architecture

Design

Object

Model

Deployment

Architecture

Domain Engineering Process

Application Engineering Process

Feature Selection

Product

Requirement

Analysis and

Feature Selection

Architecture

Selection &

Adaptation
Generation

Component

Adaptation

and/or Code

Generation

Product Line

Requirement

Analysis

* MPP: Marketing and Product Plan * PL: Product Line * Req.: Requirements

COTS,

Patterns

Name

Activity

Data

Flow

Legend

Feature

Modeling

Conceptual

Architecture

Design

Architecture

Refinement

Component

Design

Design

Object

Modeling

Product Line Assets

Feature

Model

PL

Req.

Process

Architecture

Feature

Model
PL

Req.

Conceptual

Architecture
MPP

Feature

Model

PL

Req.

MPP

Development

MPP

Refinement

MPP

Refined MPP

‘Draco’

by Neighbors

‘Faceted Classification’

by Prieto-Diaz

‘FODA’

by Kang et al.

‘ODM’

by Simos et al.

‘FeatuRSEB’

by Griss et al.

‘FODAcom’

by Griss et al.

‘FORM’

by Kang et al.

‘DEMRAL’

by Czarnecki et al.

‘KAPTUR’

by Bailin

‘DARE’

by Frake et al.

‘FAST’

by Weiss et al.

Application Domains
The Army Movement Control Domain [Cohen et al., 1991]

The Automated Prompt Response System Domain [Krut et al., 1996]

The Telephony Domain [Vici et al., 1998]

The Private Brach Exchange Systems Domain [Kang et al., 1999]

The Car Periphery Supervision Domain [Hein et al., 2000]

The Elevator Control Software Domain [Lee et al., 2000]

The E-Commerce Agents Systems Domain [Griss, 2000]

The Algorithmic Library Domain [Czarnecki et al., 2000]

…

Domain Analysis Technology Evolution

16

Concept of Domain Language

Navigation

Method

Position Fixing
Navigation System

Range and bearing
radio navigation aids

Hyperbolic radio
navigation systems

Terrain reference
navigation (TRN)

systems

Satellite Navigation
systems - GPS

(Global Position
System)

DR (Dead Reckoning)
Navigation System

Air data
based

DR
navigation

Doppler/heading
reference
systems

Doppler/inertial
navigation

systems

Inertial
navigation

systems

Conceptual World : Domain Terminology

Abstraction

by Naming

Position Fixing
Navigation System

DR (Dead Reckoning)
Navigation System

Real World : Navigation System

Capabilities

Operating Environment

Domain Technologies

Implementation Techniques

Feature Model

Identification of Features through Domain Language Analysis

User Group

System Analyst
/Architect Group

Developer Group

17

Copyright © Jaejoon Lee 2016

Various definitions of “feature”:

- Features are "abstractions" of user or developer visible characteristics of an

application domain [FODA90].

- A feature refers to an attribute or characteristics of a system that is meaningful to,

or directly affects, the users, developer, or other entity that interacts with a system

[NIST94].

- A feature is an essential “property” for its associated concept [ODM98].

What is Feature?

[FODA90] K. Kang, S. Cohen, J, Hess, W. Nowak, and S. Peterson, “Feature-Oriented Domain Analysis (FODA) Feasibility Study,” Technical Report, CMU/SEI-90-TR-21,

Software engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, November 1990.

[NIST94] National Institute of Standard and Technology Special Publication 500-222, MD 20899-001, Gaithersburg, December 1994.

[ODM98] M. Simos and J. Anthony. “Weaving the Model Web: A Multi-Modeling Approach to Concepts and Features in Domain Engineering,” Proceedings of the Fifth

International Conference on Software Reuse, IEEE Computer Society Press, 1998.

Copyright © Jaejoon Lee 2016

Feature : a prominent or distinctive user-visible aspects, quality, or characteristics of
a S/W system or systems.

Capabilities

Operating
Environment

Domain
Technologies

Implementation
Techniques

of applications from the end-user’s perspective.

in which applications are used and operated.
(H/W, S/W platform, O/S, interfaces with different types of devices)

that are commonly used in a domain (e.g., navigation methods in the avionics domain).

designer’s decision on algorithms and data structures.

Feature model

Alternative (+rationale)

Optional (+rule)

Mandatory

Different aspects

Common aspects

Overview of Feature and Feature Model

18

ElevatorControlSystem

Indication
Handling

Capacity Usage Speed

Passenger
Elevator

Freight
Elevator

MovingControlMethod

Express
MovingControl

LowSpeed
MovingControl

Scheduling

MovingDirection
Priority

SpecialFloor
Priority

Capability

Operating
Environment

Domain
Technology

Implementation
Technique CommunicationMethod

LPC MessageQueue

CallHandlingMethod

GeneralCallHandling OneCallOneHandling

SetImplementationMethod

BitImplementation ListImplementation

Feature Model Example

Composition Rule :

- ”FreightElevator” mutually excludes “HallCallCancellation”

-“HallCallCancellation” mutually excludes “OneCallOneHandling”.

- “VIPDriving” requires “SpecialFloorPriority”

Automatic
Express
Driving

ManualDriving VIPDriving

DrivingService

Door
Handling

CallHandling

HallCallHandling

HallCall
Registration

HallCall
Cancellation

CarCallHandling

CarCall
Registration

CarCall
Cancellation

POSI_Photo POSI_Yaskawa

PositionSensor

Run
Control

Copyright © Jaejoon Lee 2016

• [FODA90] K. Kang, S. Cohen, J, Hess, W. Nowak, and S. Peterson, “Feature-Oriented Domain Analysis

(FODA) Feasibility Study,” Technical Report, CMU/SEI-90-TR-21, Software engineering Institute, Carnegie

Mellon University, Pittsburgh, Pennsylvania, November 1990.

• [NIST94] National Institute of Standard and Technology Special Publication 500-222, MD 20899-001,

Gaithersburg, December 1994.

• [ODM98] M. Simos and J. Anthony. “Weaving the Model Web: A Multi-Modeling Approach to Concepts and

Features in Domain Engineering,” Proceedings of the Fifth International Conference on Software Reuse,

IEEE Computer Society Press, 1998.

• K. Lee, K. Kang, and J. Lee, "Concepts and Guidelines of Feature Modeling for Product Line Software

Engineering," Cristina Gacek, editor, Software Reuse: Methods, Techniques, and Tools: Proceedings of the

Seventh Reuse Conference (ICSR7), Austin, U.S.A., Apr.15-19, 2002, Heidelberg, Germany: Springer Lecture

Notes in Computer Science Vol. 2319, 2002, pp. 62-77.

• K. Kang, J. Lee, and P. Donohoe, "Feature-Oriented Product Line Engineering," IEEE Software, Vol. 9, No. 4,

July/August 2002, pp. 58-65.

References

19

Copyright © Jaejoon Lee 2016

Contact
Dr Jaejoon Lee: j.lee3@lancaster.ac.uk

Questions,
Comments, …

Copyright © Jaejoon Lee 2016

FeatureFeatureFeatureFeature----Oriented Approach forOriented Approach forOriented Approach forOriented Approach for
Software Product Line:Software Product Line:Software Product Line:Software Product Line:
Software ArchitectureSoftware ArchitectureSoftware ArchitectureSoftware Architecture

Dr. Jaejoon Lee

School of Computing and Communications

Lancaster University

20

Copyright © Jaejoon Lee 2016

Product Line Engineering Processes: Feature-Oriented Reuse
Method (FORM)

Conceptual

Architecture

Design

Object

Model

Deployment

Architecture

Domain Engineering Process

Application Engineering Process

Feature Selection

Product

Requirement

Analysis and

Feature Selection

Architecture

Selection &

Adaptation
Generation

Component

Adaptation

and/or Code

Generation

Product Line

Requirement

Analysis

* MPP: Marketing and Product Plan * PL: Product Line * Req.: Requirements

COTS,

Patterns

Name

Activity

Data

Flow

Legend

Feature

Modeling

Conceptual

Architecture

Design

Architecture

Refinement

Component

Design

Design

Object

Modeling

Product Line Assets

Feature

Model

PL

Req.

Process

Architecture

Feature

Model
PL

Req.

Conceptual

Architecture

Copyright © Jaejoon Lee 2016

Definition of Definition of Definition of Definition of Software ArchitectureSoftware ArchitectureSoftware ArchitectureSoftware Architecture

• The software architecture of a program or computing system is the
structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and the
relationships between them

• The term also refers to documentation of a system's software
architecture

• Documenting software architecture facilitates communication between
stakeholders, documents early decisions about high-level design, and
allows reuse of design components and patterns between projects

21

Copyright © Jaejoon Lee 2016

Architecture vs. DesignArchitecture vs. DesignArchitecture vs. DesignArchitecture vs. Design

• What’s the difference between them?

- Architecture is design, but not all design is architecture

- Many design decisions are left unbound and left to the discretion
and good judgment of downstream designers and implementers

- The architecture establishes constraints on downstream
activities, which produces artifacts that are compliant with the
architecture

- But, architecture does not define an implementation

Copyright © Jaejoon Lee 2016

Role of Software Architecture: Bridging the Gap Role of Software Architecture: Bridging the Gap Role of Software Architecture: Bridging the Gap Role of Software Architecture: Bridging the Gap

User view of problem User Model

Developer’s view of problem Requirements

Algorithms & data Code

ExecutableData layouts, memory maps

Components and connections Architecture

DesignMethods, data structures

Problem
Space: Abstract

Solution
Space: Concrete

22

Copyright © Jaejoon Lee 2016

Bad design can be dangerousBad design can be dangerousBad design can be dangerousBad design can be dangerous

Copyright © Jaejoon Lee 2016

Swedish Swedish Swedish Swedish Ship Ship Ship Ship VasaVasaVasaVasa

23

Copyright © Jaejoon Lee 2016

Swedish Swedish Swedish Swedish Ship Ship Ship Ship VasaVasaVasaVasa

Copyright © Jaejoon Lee 2016

24

Copyright © Jaejoon Lee 2016

Product Line ArchitectureProduct Line ArchitectureProduct Line ArchitectureProduct Line Architecture

• A product line architecture (PLA, also referred to as Reference
Architecture) is a generic software architecture for a product line that
embodies the architectures for all product line members

• A product line architecture differs from a single system architecture in
that it has to cover additional concerns:

- what are the common parts of the architecture?

- what are the variable parts?

- how does a particular instance architecture look like?

- how can it be ensured that all intended product line members are
indeed supported by the architecture?

Copyright © Jaejoon Lee 2016

Component
View

Conceptual
View

Deployment
View

Connector

Process
View

Allocation

Mapping

Refinement

FORM FORM FORM FORM Product Line Architecture ViewsProduct Line Architecture ViewsProduct Line Architecture ViewsProduct Line Architecture Views

25

Copyright © Jaejoon Lee 2016

FORM Architecture ViewsFORM Architecture ViewsFORM Architecture ViewsFORM Architecture Views

• Conceptual view: it shows major functional components of software, each of which
may be decomposed into sub-components.

• Process view: a set of concurrent processes and interactions between these
processes are identified.

• Deployment view: it shows an allocation of processes to hardware resources

• Component view: focuses on the organization of the software components in the
software development environment

Copyright © Jaejoon Lee 2016

Feature
Model

Product Line
Architecture

(Grouping, Separating, or Replicating Components;
Selection of Connectors)

Functional Features

(Allocating Functional
Features to Architectural

Components)

Problem Space Solution Space

Non-functional Features

Mapping Feature Model to Product Line ArchitectureMapping Feature Model to Product Line ArchitectureMapping Feature Model to Product Line ArchitectureMapping Feature Model to Product Line Architecture

26

Copyright © Jaejoon Lee 2016

Where do you want to live?Where do you want to live?Where do you want to live?Where do you want to live?1 2

3
4

5

Copyright © Jaejoon Lee 2016

Variation PointsVariation PointsVariation PointsVariation Points

• What is a variation point?

A variation point represents a place where different variants
can be bound for different product configurations.

27

Copyright © Jaejoon Lee 2016

Ex2Ex2Ex2Ex2

Comp1Comp1Comp1Comp1 NameNameNameName ConceptualConceptualConceptualConceptual
ComponentComponentComponentComponent

NameNameNameName External SubsystemExternal SubsystemExternal SubsystemExternal Subsystem
EX1EX1EX1EX1

Data FlowData FlowData FlowData Flow

Control FlowControl FlowControl FlowControl Flow

LegendLegendLegendLegend

Variation PointVariation PointVariation PointVariation Point

• A conceptual view shows major functional components of software, each of which
may be decomposed into sub-components.

• Communications between conceptual components are modeled as data or control
flow. At this level, the flow directions and types of messages are the main
concerns.

Conceptual Conceptual Conceptual Conceptual ViewViewViewView

Comp2Comp2Comp2Comp2

A variant

Copyright © Jaejoon Lee 2016

FeatureFeatureFeatureFeature----Oriented Approach forOriented Approach forOriented Approach forOriented Approach for
Software Product Line:Software Product Line:Software Product Line:Software Product Line:

Product Line Component Design and Product Line Component Design and Product Line Component Design and Product Line Component Design and
ImplementationImplementationImplementationImplementation

Dr. Jaejoon Lee

School of Computing and Communications

Lancaster University

28

Copyright © Jaejoon Lee 2016

Conceptual

Architecture

Design

Object

Model

Deployment

Architecture

Domain Engineering Process

Application Engineering Process

Feature Selection

Product

Requirement

Analysis and

Feature Selection

Architecture

Selection &

Adaptation
Generation

Component

Adaptation

and/or Code

Generation

Product Line

Requirement

Analysis

* MPP: Marketing and Product Plan * PL: Product Line * Req.: Requirements

COTS,

Patterns

Name

Activity

Data

Flow

Legend

Feature

Modeling

Conceptual

Architecture

Design

Architecture

Refinement

Component

Design

Design

Object

Modeling

Product Line Assets

Feature

Model

PL

Req.

Process

Architecture

Feature

Model
PL

Req.

Conceptual

Architecture

Product Line Engineering Processes

Copyright © Jaejoon Lee 2016

Domain
Knowledge

Feature

Model

HIS

Intrusion

Discrete

Value

Continuous

Value

Domain

Technology

Layer

Operating

Environment

Layer

Implementation

Technique

Layer

Composition Rules

Message requires Communication.

Data requires Internet.

Moisture
Sensor

Security

…

……

Water

Main
Pumping

Sump

Pump

Message

Data
Voice

Flood…

Communication

Telephone

Connection

TCP UDP

Internet

requires

Monitoring &

Detecting

requires

Binding unit

Alarm

Fire

FLOOD

PUMPING

MESSAGE

DATA

MONITORING&

DETECTING

CONNECTION

Feature Biding Unit NameNAME

Optional feature

Alternative feature

Composed-of relationship

Generalization relationship

Implemented-by relationship

Legend

Capability

Layer

Moisture

Commonality
and

Variability
Information

Product Specific Assets

selection,
customization,
instantiation

Products

Core Assets

variation points

A Big PictureA Big PictureA Big PictureA Big Picture

29

Copyright © Jaejoon Lee 2016

• Feature binding: When and how features are included to products

and delivered to customers.

PL Engineer

A Design
Driver

- Asset or product

development time

- Pre-operation time

(delivery, installation, etc.)

- Operation time

Feature Binding AnalysisFeature Binding AnalysisFeature Binding AnalysisFeature Binding Analysis

Copyright © Jaejoon Lee 2016

Three Perspectives of Feature BindingThree Perspectives of Feature BindingThree Perspectives of Feature BindingThree Perspectives of Feature Binding

- Asset or product

development time

- Pre-operation time

- Operation time

- Asset or product

development time

- Pre-operation time

- Operation time

- Feature Binding Techniques

30

Copyright © Jaejoon Lee 2016

• What is a feature binding unit?

• We define a feature binding unit as a set of features that are related to each

other via compose-of, generalization/specialization, and implemented-by

relationships and composition rules (i.e., require and mutually exclude).

• Feature binding unit identification starts with identification of

independently configurable service features.

• A service feature represents a major functionality of a system and may be

added to and removed from as a unit.

• A service feature uses other features (e.g., operational, environmental, and

implementation features) to function properly.

• The constituents of a binding unit can be found by traversing the feature model

along the feature relationships and composition rules.

What: Feature Binding UnitsWhat: Feature Binding UnitsWhat: Feature Binding UnitsWhat: Feature Binding Units

Copyright © Jaejoon Lee 2016

HIS

Intrusion

Discrete
Value

Continuous
Value

Domain
Technology
Layer

Operating
Environment
Layer

Implementation
Technique
Layer

Composition Rules

Message requires Communication.
Data requires Internet.

Moisture
Sensor

Security

…

……

Water
Main

Pumping

Sump
Pump

Message

Data
Voice

Flood…

Communication

Telephone

Connection

TCP UDP

Intern
et

requires

Monitoring &
Detecting

requires

Binding unit

Alarm

Fire

FLOOD

PUMPING

MESSAGE

DATA

MONITORING&
DETECTING

CONNECTION

Feature Biding Unit NameNAME

Optional feature

Alternative feature

Composed-of relationship

Generalization relationship

Implemented-by relationship

Legend

Capability
Layer

Moisture

What: Feature Binding UnitsWhat: Feature Binding UnitsWhat: Feature Binding UnitsWhat: Feature Binding Units

31

Copyright © Jaejoon Lee 2016

When: Feature Binding TimeWhen: Feature Binding TimeWhen: Feature Binding TimeWhen: Feature Binding Time

• Feature Binding Time

• Generally, feature binding time has been looked at from the software

development lifecycle viewpoint. However, there exits another dimension that is

based on the binding state of a feature binding unit.

• That is, some feature binding units may be developed and included in product

line assets at asset development time, but their availability can be determined at

installation time by enabling or disabling the feature binding units.

• Furthermore, activation of the available features may have to be controlled to

avoid a feature interaction problem.

• Feature binding time analysis with additional view on feature binding
state provides more precise framework for feature binding analysis.

• It includes inclusion and availability states and activation rules.

Copyright © Jaejoon Lee 2016

When: Feature Binding TimeWhen: Feature Binding TimeWhen: Feature Binding TimeWhen: Feature Binding Time

Asset

Development

Product

Development

Pre-Operation

(Installation)

Operation

Product Lifecycle View

Inclusion Availability Activation Rule Feature Binding

State View

• MESSAGE requires INTRUSION, FIRE, or
FLOOD activated.

• FIRE has higher priority than FLOOD.

• FIRE has higher priority than INTRUSION.

FIRE, INTRUSION

SECURITY

FLOOD, MESSAGE,
DATA, CONNECTION,
MONITORING&
DETECTING

PUMPING

FIRE, INTRUSION,
MONITORING&
DETECTING

FLOOD, MESSAGE,
DATA, SECURITY,
CONNECTION

PUMPING

32

Copyright © Jaejoon Lee 2016

When: Feature Binding TimeWhen: Feature Binding TimeWhen: Feature Binding TimeWhen: Feature Binding Time

• Feature Activation Rules

• The activation rules provide information on concurrency of feature binding unit

activation and they are defined in terms of mutual exclusion, dependency, and

priority schemes.

Mutual
Exclusion

Copyright © Jaejoon Lee 2016

How: Feature Binding TechniquesHow: Feature Binding TechniquesHow: Feature Binding TechniquesHow: Feature Binding Techniques

• Selection of binding techniques depends both on binding time and

quality attributes (e.g., flexibility) required for products.

• Delaying binding time to a later phase of the lifecycle may provide more

flexibility. But, applicable implementation techniques are limited and they

usually require more performance overheads.

• We propose a classification of feature binding techniques based on

the feature binding states.

• Binding techniques for the feature ‘inclusion’ should be able to control feature
inclusion by including or excluding code segments or components from
products.

• Binding techniques for the feature ‘availability’ should provide mechanisms for
enabling or disabling access to features.

• In addition, we should also explore techniques for dynamic or static binding of
features.

33

Copyright © Jaejoon Lee 2016

How: Feature Binding TechniquesHow: Feature Binding TechniquesHow: Feature Binding TechniquesHow: Feature Binding Techniques

Asset

Development

Product

Development

Pre-Operation

(Installation)

Operation

Product Lifecycle View

Asset

Development

Product

Development

Pre-Operation

(Installation)

Operation

Product Lifecycle View

Inclusion Availability Activation Rule Feature Binding
State View

Inclusion Availability Activation Rule Feature Binding
State View

• MESSAGE requires INTRUSION, FIRE, or

FLOOD activated.

• FIRE has higher priority than FLOOD.

• FIRE has higher priority than INTRUSION.

FIRE, INTRUSION

SECURITY

FLOOD, MESSAGE,

DATA, CONNECTION,

MONITORING&

DETECTING

PUMPING

FIRE, INTRUSION

SECURITY

FLOOD, MESSAGE,

DATA, CONNECTION,

MONITORING&

DETECTING

PUMPING

FIRE, INTRUSION,

MONITORING&

DETECTING

FLOOD, MESSAGE,

DATA, SECURITY,

CONNECTION

PUMPING

FIRE, INTRUSION,

MONITORING&

DETECTING

FLOOD, MESSAGE,

DATA, SECURITY,

CONNECTION

PUMPING

* Microsoft Developers Network (MSDN), Introduction to Internet Component Download (ICD),
http://msdn.microsoft.com/workshop/delivery/download/overview/entry.asp

Copyright © Jaejoon Lee 2016

Variation Point IdentificationVariation Point IdentificationVariation Point IdentificationVariation Point Identification

• For feature binding to be feasible, variation points for optional and

alternative binding units should be identified in the design object

model.

• We need to be sure that all objects that implement the features of a binding unit

are bound together with appropriate implementation techniques.

• To manage variation points of a binding unit consistently, mapping

between binding units and variation points should be established.

• If there is difficulty establishing this relationship, the related objects should be

examined for further decomposition, refinement, or restructuring.

• The binding dependency should also be preserved among variation points.

34

Copyright © Jaejoon Lee 2016

Variation Point IdentificationVariation Point IdentificationVariation Point IdentificationVariation Point Identification

Sump

Pump

Actuator

Refinement of “Event Responder” Object

FloodResponder
…

EventResponder MessageHandler

VoiceMessage

Controller

DataMessage

Controller

TCPUDP
Water

Main

Actuator

Alarm

Siren

Alarm

Light

HISFLOOD

PUMPING

MESSAGE DATA

……

CONNECTION

Simplified Feature Model with Binding Units

Optional binding unit Alternative binding unit

Legend

Binding relationNAME NAME

Binding Dependency

Copyright © Jaejoon Lee 2016

Component SpecificationComponent SpecificationComponent SpecificationComponent Specification

Component EventResponder {

…

EventResponder::EventResponder(){

…

fir = new FireResponder();

inr = new IntrusionResponder();

$IF(;;$FLOOD)[

if (IsInstalled(FLOOD)) {

flr = new FloodResponder();

}else {flr = NULL;}

]

…

}

SumpPumpSumpPumpSumpPumpSumpPumpActuatorActuatorActuatorActuatorFloodResponderFloodResponderFloodResponderFloodResponder…

EventResponderEventResponderEventResponderEventResponder
WaterMainWaterMainWaterMainWaterMainActuatorActuatorActuatorActuator

Component FloodResponder {

…

FloodResponder::BindPumping() {

…

if (DeviceCheck::Bus(PUMP)) {

DeviceCheck::getDevicInfo(m_pType, m_pVender);

idPump = (Pump*)RuntimeBind::LoadModule

(m_pType, m_pVender);

…

}

…

Feature Inclusion

(Product Development Time) Feature Availability

(Installation Time)

Dynamic Feature Binding

(For Flexibility)

35

Copyright © Jaejoon Lee 2016

Component IntegrationComponent IntegrationComponent IntegrationComponent Integration

The relationships between the feature model and

the architecture model

Component Development

By Packaging Objects

Object Extraction

Organization Support

Object Organization

Refinement

Refinement

Feature Allocation

Domain ArchitectureDomain Architecture

DesignDesign

Feedback

Feedback
Feature Model

Candidate

Objects

Object Model

Conceptual

Model

Process

Model

Component

Model

Domain AnalysisDomain Analysis

Copyright © Jaejoon Lee 2016

Implementation Techniques (1/3)Implementation Techniques (1/3)Implementation Techniques (1/3)Implementation Techniques (1/3)

• Components encapsulate variations. These components
must be refined incorporating product specific features into
the components.

• Mechanisms used to implement the variability are:
• Inheritance

• Composition

• Delegation

• Parameterization

• Macro processing

36

Copyright © Jaejoon Lee 2016

Implementation Techniques (2/3)Implementation Techniques (2/3)Implementation Techniques (2/3)Implementation Techniques (2/3)

Car

Transmission

Manual Automatic

Air conditioningEngine

Gasoline Diesel

Car

Gasoline Diesel

Manual
Gasoline

Automatic
Gasoline

Manual
Diesel

Automatic
Diesel

AirConditioner
0..1

Car

Gasoline Diesel

AirConditioner
0..1

Manual Automatic

0..1 0..1 0..1 0..1

Feature Model

Inheritance Mechanism Composition Mechanism

Copyright © Jaejoon Lee 2016

Implementation Techniques (3/3)Implementation Techniques (3/3)Implementation Techniques (3/3)Implementation Techniques (3/3)

Car

Transmission

Manual Automatic

Air conditioningEngine

Gasoline Diesel

Feature Model

Delegation Mechanism

Car

Manual Automatic

Transmission

Gasoline Diesel

Engine

Parameterization Mechanism

Car

<Transmission>

<Engine>

Manual Automatic

Gasoline Diesel

37

Copyright © Jaejoon Lee 2016

• Feature binding units are identified and feature binding time is

determined with consideration of feature activation rules and market

needs.

• Explicit identification of feature binding units, and binding decisions with

views on product line lifecycle and feature binding states could clarify

requirements for feature binding.

• Feature binding time may change, and it should be explored and be

incorporated into product line development.

SummarySummarySummarySummary

Copyright © Jaejoon Lee 2016

What’s next?What’s next?What’s next?What’s next?

Issues: Autonomous management of

Dependability

Scalability

Software composition / decomposition

…

- Dynamic Software Product Line

- Internet of Things (IoT)

- Cyber Physical System

38

Copyright © Jaejoon Lee 2016

Contact
Dr Jaejoon Lee: j.lee3@lancaster.ac.uk

Questions,
Comments, …

