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Closed queueing networks are frequently used to model complex service systems such 
as production systems, communication systems, computer systems, and flexible 
manufacturing systems. When limitations are imposed on the queue sizes (i.e., finite 
queues), a phenomenon called blocking occurs. Queueing networks with blocking are, in 
general, difficult to treat. Exact closed form solutions have been reported only in a few 
special cases. Hence, most of the techniques that are used to analyze such queueing 
networks are in the form of approximations, numerical analysis, and simulation. In this 
paper, we give a systematic presentation of the literature related to closed queueing 
networks with finite queues. The results are significant for both researchers and 
practitioners. 
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INTRODUCTION 

System performance has been a major issue 
in the design and implementation of sys- 
tems such as computer systems, production 
systems, communication systems, and flex- 
ible manufacturing systems. The success or 
failure of such systems is judged by the 
degree to which performance objectives are 
met. Thus, tools and techniques for pre- 
dicting performance measures are of great 
interest. 

Queueing theory was developed to under- 
stand and predict the behavior of real 
life systems. Conceptually, the simplest 
queueing model is the single queueing sys- 

tem illustrated in Figure 1. The system 
models the flow of customers as they arrive, 
wait in the queue if the server is busy 
serving another customer, receive service, 
and eventually leave the system. 

To describe the behavior of a queueing 
system in time, five basic characteristics of 
the process need to be specified: (1) the 
arrival pattern, (2) the number of servers, 
(3) the service pattern, (4) the service dis- 
cipline, and (5) the system capacity. The 
arrival pattern, or input, to a queueing sys- 
tem is often measured in terms of the av- 
erage number of arrivals per some unit of 
time, called the mean arrival rate. If the 
arrival pattern is deterministic, the arrival 
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process is fully determined by the mean 
arrival rate. If the arrival pattern is ran- 
dom, further characterization is required in 
the form of the probability distribution as- 
sociated with the process. The number of 
service channels refers to the number of 
parallel servers that can service customers 
simultaneously. The rate at which cus- 
tomers are served is called the mean service 
rate. In the case of deterministic service 
processes, specification of the mean service 
rate is sufficient to describe the process, 
whereas if the process is random its prob- 
ability distribution needs to be specified. 
The manner by which customers are se- 
lected for service when a queue has formed 
is referred to as the service discipline. 
Finally, the system capacity is the upper 
limit on the number of customers (waiting 
for and receiving service) in the system. 
Kendall [1953] introduced the notation 
A/B/X/Y/Z to describe the queueing pro- 
cess of a single queueing system, where A 
indicates the arrival pattern, B the service 
pattern, X the number of parallel servers, 
Y the system capacity, and 2 the service 
discipline. For example, D/D/l/w/FCFS 
describes a single queueing system with 
deterministic arrival and service processes, 
one server, infinite system capacity (i.e., 

Arrivals 

Service 
Facility 

Queue 

Figure 1. Single queueing system. 

there is always a space in the queue for 
arriving customers), and first come first 
served (FCFS) service discipline. 

The most common queueing models as- 
sume that interarrival and service times 
obey the exponential distribution, or, 
equivalently, the arrival and the service 
rates follow a Poisson distribution. Con- 
sider an arrival process (N(t ), t I 0), where 
N(t) denotes the total number of arrivals 
up to time t, with N(0) = 0, which satisfies 
the following assumptions [Gross and 
Harris 19741: 

(9 

(ii) 

(iii) 

The probability that an arrival occurs 
between time t and At is equal to xAt 
+ o(At), where X is a constant, At 
is an incremental element, and o( At) 
denotes a quantity that becomes 
negligible as At goes to zero. 
Probability that there is more than 
one arrival between t and t + At is 
o(At). 
The numbers of arrivals in nonover- 
lapping intervals are statistically 
independent. 

Let pn (t ) be the probability of n arrivals 
in a time interval t. Under the three as- 
sumptions above, we have p,(t) = 
(At )“e-“‘/n!. This distribution is referred 
to as the Poisson distribution with rate X. 
If N(t) is Poisson with rate X, then the 
time between arrivals is exponentially dis- 
tributed with mean l/h; that is, let T be 
the random variable “time between ar- 
rivals,” then: Pr(T 5 t ] = 1 - eext. One of 
the interesting properties of the exponen- 
tial distribution is the Markovian (also 
called memorylessness) property, which 
states that the probability that a customer 
currently in service is completed at some 
future time t is independent of how long 
the customer has already been in service. 
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Figure 2. Queueing system with a Coxian server with L stages. 

The variance of service time [var(ST)] 
gives a rough measure of spread. In partic- 
ular, if var(ST) is small, then the service 
times of customers are close to the mean 
with a little variation. For example, if the 
service times are deterministic, then 
var(ST) = 0 (i.e., no variation). If the ser- 
vice times are exponentially distributed, 
then their variance is equal to the mean 
service time. Conversely, a large variance 
indicates that the service times of cus- 
tomers are widely spread; hence there is 
a large variation from the mean. Finally, 
the squared coefficient of variation of the 
service time, cl, gives a rough measure of 
the spread normalized over the square 
of the mean service time; that is, c? = 
var(ST)/(mean(ST))’ [Solomon 19831. We 
now define a family of probability distri- 
butions that are general and will allow us 
to relax the assumption that the service 
and the interarrival times are exponentially 
distributed. The idea is to use a simple 
exponential network to represent the serv- 
ice time required from a single server [Cox 
19551. 

Consider the service facility of the single 
queueing system illustrated in Figure 2. 
There can be at most one customer in nodes 
1 to L at any time. Customers enter the 
service via node 1. The service time at node 
m is exponentially distributed with mean 
l/pm. A customer completing its service at 
node m leaves the system with probability 
b, or proceeds to node m + 1 with proba- 
bility a, (b, + a, = 1, m = 1, . . . , L - 1). 
After node L, the customer leaves the 
system with probability 1. This service 
distribution is referred to as a Coxian dis- 
tribution with L stages. Any probability 
distribution function can be approximated 

arbitrarily closely by Coxian distribution 
functions. Hence, an arbitrary distribution 
that does not have the Markovian property 
can be approximated by a Coxian distribu- 
tion that has the Markovian property [Cox 
19551. 

A queueing process with Poisson arrivals, 
exponentially distributed service times, one 
server, with capacity B, and first come first 
served service discipline is referred to as an 
M/M/l/B/FCFS queue, where M stands 
for Markovian (memoryless). Let r, (t ), 
n E S, be the probability that there are n 
customers at time t in an M/M/l/B/FCFS 
queue, where n and S are, respectively, 
referred to as the state and the state space 
of the system. For the above queueing sys- 
tem, we have S = (0, 1, . . . , BJ. Further- 
more, let us assume that the system state 
(n) eventually becomes independent of the 
initial state so that no matter what time we 
query the system, the probability of finding 
n customers in the system remains con- 
stant, independent of time t. Then, ir,, is 
referred to as the steady-state probability 
of having n customers in the system. 

The transition rate diagram of a process 
is a graphical representation of the transi- 
tions between the states of the process. The 
directed arcs between the states denote the 
one-step transitions of going from one state 
to another. For example, transitions out of 
state n of an M/M/l/B/FCFS queue occurs 
either to state n + 1 with an arrival (with 
rate X) or to state n - 1 with a departure 
(with rate p). Its transition rate diagram is 
given in Figure 3. 

The global balance equations equate 
the total rate out of state n to the total 
rate into state n, for each state n E S. 
The global balance equations of the 
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Figure 3. Transition rate diagram of an M/M/l/B/FCFS queue. 

M/M/l/B/FCFS queue can be easily writ- 
ten from the transition rate diagram given 
in Figure 3: 

x7rrJ = /ST’1 

n=l ,...f B-l 

PTN = hN-1 

In this system, there are B + 1 unknowns 
(a,‘~) and B + 1 equations of which only B 
of them are linearly independent. As ir,, is 
a probability distribution, the sum of all 
r,‘s over its state space should add up to 1; 
that is, Cflco K, = 1. This equation is re- 
ferred to as the normalization equation. Us- 
ing any B of the above B + 1 equations 
together with the normalization equation, 
there are B + 1 linearly independent equa- 
tions, which can be solved to obtain ?T,‘s. 
Writing these equations in matrix form, we 
have 

where 

Qr = b, 

b = (0, . . . , 0, 1) 

is a B + 1 vector with O’s in positions 1 to 
B and 1 at position B + 1; 

r = (7r0, . . . , 7rB) 

is a B + 1 vector of steady-state queue 
length probabilities; and 

I 

-h 
x 4x”+ PI 

Q= x 4x”+ /JCL) P 
. . . . . . . . . 

1 1 . . . 1 1 I 

is a (B + 1) X (B + 1) matrix referred to as 
the rate matrix of the process. 

We note that in this rate matrix, we use 
the first B of the above B + 1 equations 
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and replaced the B + 1st equation with the 
normalization equation. 

Customers in real life systems usually 
require several different services provided 
by different servers and may have to wait 
in several different queues before receiving 
the required services. Such complex service 
systems can be modeled by defining a net- 
work of single queueing systems, referred 
to as a queuehg network. A queueing net- 
work can be thought of as a connected 
directed graph whose nodes represent the 
service centers. The arcs between those 
nodes indicate the one-step moves that cus- 
tomers may make from service center to 
service center. The set of nodes and the set 
of arcs that connect the nodes are referred 
to as the topology of the network. The route 
that a customer takes through the network 
may be deterministic or random. Cus- 
tomers may be of different types and may 
follow different routes through the net- 
work. Each node has a queue associated 
with it. To complete the definition of a 
queueing network, the assumptions must 
be specified for the parameters of each node 
(i.e., the number of servers, the service dis- 
cipline, the node capacity, and the service 
time distribution). 

Queueing networks can be classified as 
open or closed. In an open model, customers 
enter the network from outside, receive 
service at one or more nodes, and eventu- 
ally leave the network. Figure 4 illustrates 
an open network. 

To model a system using an open net- 
work assumes that the arrivals to the sys- 
tem occur from an infinite population of 
customers. That is, the rate at which cus- 
tomers arrive to the network is independent 
of the number of customers already in the 
system. If the user population is finite, then 
those already in the system are no longer 
candidates for entering the network. 
Hence, as the number of customers in the 
network increases, the available population 
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Figure 4. Open network. 

dwindles and the arrival rate falls off be- 
cause of the reduced population that can 
generate arrivals to the network. Most real 
life systems have finite input populations. 
For example, in time-sharing systems, the 
number of jobs is limited by the number of 
terminals, so that the total number of jobs 
is bounded. As another example, in multi- 
programming systems, the degree of mul- 
tiprogramming is limited by the memory 
size. Similarly, in communication net- 
works, the number of unacknowledged 
packets in a region of the network is limited 
by the window size. Open networks may 
not be used to model such systems in which 
the nature of the arrival process depends 
strongly on the number of customers al- 
ready in the system [Kleinrock 19761. 

In closed queueing networks, there is a 
fixed population of customers circulating 
in the network; that is, no arrivals to or 
departures from the network are allowed. 
Modeling real life systems as closed 
queueing networks is based on the assump- 
tion that the number of customers in the 
system is bounded. As an example, consider 
the simplistic view of a time-sharing system 
illustrated in Figure 5. 

The system consists of a central process- 
ing unit (CPU) and two peripherals. Each 
job in the system is associated with one of 
the terminals, hence the number of jobs in 
the system is equal to the number of ter- 
minals. A job generated by a terminal goes 
to the CPU. Upon receiving its service, the 
job is either completed and goes back to the 
terminals node or requests an input/output 
operation and joins one of the peripheral 
devices node with respective probabilities. 
Upon completion of its service at the pe- 
ripheral device, the job always goes back to 
the CPU node. 

/ PERIPHEFLAIS 

‘I I 
TERMINALS 1 

Figure 5. Model of a time-sharing system. 

Closed queueing networks are also used 
to model service systems where the number 
of customers in the system is constant for 
a long period of time and there is always 
a customer waiting to enter whenever a 
departure occurs from the system. As an 
example, consider the simplified view of a 
packet switched network with fixed routing 
as illustrated in Figure 6. A physical net- 
work path is set up for each user session 
and is released when the session is termi- 
nated. End-to-end flow control is exercised 
to prevent buffer congestion at the exit 
node due to the fact that remote sources 
are sending traffic at a higher rate than can 
be accepted by the hosts fed by the exit 
node [Reiser 19791. Sliding window strate- 
gies are among the most popular forms of 
end-to-end flow control. In this scheme, the 
number of packets that can be outstanding 
without an acknowledgment between any 
source-destination pair is constrained to be 
no more than some positive integer w, 
called the window size. 

If the network is operating in a high load 
condition, then the source can be assumed 
to have a backlog of packets ready to send 
into the network as long as the window size 
allows. In this case, when a packet is deliv- 
ered to the destination, a new packet im- 
mediately enters the network. Hence, the 
system can be modeled as a closed network 
with w customers in it. 

Queueing networks have been studied 
in the literature under a multiplicity of 
assumptions. After the pioneering work 
of Jackson [1963], the development and 
analysis of one of the most general queueing 
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Figure 6. Network path with a window flow control and equivalent closed 
queueing model. 

networks was due to the combined efforts 
of Baskett et al. [ 19751. The result is known 
as the BCMP theorem, bearing their ini- 
tials. Although this theorem is applicable 
to both open and closed networks, we pre- 
sent the result only in the context of closed 
queueing networks. Consider a closed 
queueing network with N nodes. Each node 
has an infinite capacity; that is, there is 
always a space at a node for arriving cus- 
tomers. The topology of the network is 
arbitrary. There are R different types of 
customer classes. A customer of class r, 
upon completing service at node i goes to 
node j with probability pij.r. K, is the num- 
ber of class r customers circulating in the 
network. Let S and Si denote, respectively, 
the state of the network and the state of 
node i, that is, S = (S, , Sz, . . . , SN ), 
whereas Si depends on the type of node i. 
In particular, node i can be one of the 
following four types, referred to as the 
BCMP nodes. 

Type 1 Node 

All customers have the same service time 
distribution that is exponentially distrib- 
uted with mean l/pi. Customers are served 
in order of arrival, referred to as the FCFS 
service discipline. The state Si of the node 
is defined as the vector (rl, rz, . . . , rnj), 
where ni is the number of customers present 
at node i and rj is the class index of the j th 
customer in the FCFS order. There is a 
single server whose speed Ci(ni) depends 
on the number of customers at node i; that 
is, the instantaneous service completion 
rate at node i is p;C;(ni). 

Type 2 Node 

There is a single server and the service 
discipline is processor sharing (i.e., when 
there are n customers at the node, each is 
receiving service at a rate of l/n of the 
service rate). The service times for class r 
customers are Coxian with parameters oi,l, 
bi,l, pirl, and Li,. The node state Si is defined 
as the vector (vl, v2, . . . , vR), where v, = 
bk, nir2, . . . , ni,L,) is a vector whose mth 
element nirn denotes the number of class r 
customers at node i that are in the mth 
stage of their service. The speed of service 
at node i may depend on the total number 
of customers at node i as for type 1 nodes. 

Type 3 Nodes 

There are as many servers as there may be 
customers requiring service. As soon as a 
customer arrives, a separate server is as- 
signed for the duration of the customer’s 
service. The assumptions regarding the re- 
quired service time distributions and the 
definition of the node state Si are the same 
as for type 2 nodes. 

Type 4 Nodes 

A single server is scheduled according to 
the preemptive resume last come first 
served (LCFS)discipline . In this discipline, 
a customer in service is preempted by an 
arriving customer. That is, when a new 
customer arrives the service of the current 
customer is interrupted until the new cus- 
tomer departs (which, in turn, may be in- 
terrupted) and then resumed from the point 
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of interruption. The service time is Coxian, 
as for type 2 and 3 nodes. The state of the 
node, Si, is defined as the vector of pairs 
lh, ml), b-2, m), . . . , (r,, m,)), where rj 
and mj are, respectively, the class index and 
the stage of service of the j th customer in 
the LCFS order. The speed of the server 
may depend on the total number of cus- 
tomers at node i, as for type 1 nodes. 

Let M,(S) be the number of class r cus- 
tomers at node i when the node is in state 
Si. Then network state S is feasible if 0 5 
Mr(Si) 5 K,; i = 1, . . . , N and CjY1 n/r,(Si) 
= K,; r = 1, . . . , R. The steady-state queue 
length distribution p(S) is the solution of 
the global balance equations together with 
the normalizing equation 

P(S) 
[ 

instantaneous transition rate 
out of state S 1 (la) 

= 5 PW’) 
instantaneous transition 

rate from S’ to S 1 
; P(S) = 1 (lb) 

The visit ratios, eirr is defined as the 
relative arrival rate of class r customers to 
node i. eL’s are determined from the follow- 
ing system of equations: 

N 

eir = C ejrPji;r, 
j=l (2) 

i=l , *a*, N; r = 1, . . . , R. 

For each class r, there are N unknowns 
(eir’s) and N equations of which N - 1 are 
linearly independent. Hence, it is necessary 
to set one of the unknowns to an arbitrary 
value and calculate the others relative to 
the set value. 

The following result is known as the 
BCMP theorem [Baskett et al. 19751: 

Theorem 1 

Let ei, (i = 1,. . . , N; r = 1,. . . , R) be any 
solution of (2). The general solution of the 
global balance equations (la) has the form 

P(S) = G i f;(Si) (3) 
i=l 

where G is the normalization constant that 
ensures that Csp(S) = 1. The factor fi(Si) 
depends on the type of node i: 

If node i is of type 1, then 

ni eir 

fi(8) = jFl PiCi(j) . 
[ 1 

If node i is of type 2, then 

fi (Si) = ni! 
fi C,(j). 

j=l 

If node i is of type 3, then 

fi($) = cl $ [t+)nr”/&i!]- 

If node i is of type 4, then 

fi(Si) = s eir,AiriIi [ 1 j=l /.brjljCi(j) ’ 

Since the steady-state queue length dis- 
tribution is the product of the functions of 
nodes, these types of solutions to the global 
balance equations are referred to as product 
form solutions. 

Any Markovian model can, in theory, be 
solved numerically. In particular, obtaining 
the steady-state queue length distribution, 
a, of a queueing network is a three-step 
procedure: (1) Determine the states and the 
state space of the network; (2) determine 
its state transition structure to construct 
the rate matrix, Q, of the network; and (3) 
solve the linear system of equations Qr = 
b numerically. There are, however, some 
practical limitations in obtaining the 
steady-state queue length distribution of 
queueing networks numerically. First, the 
state space of queueing networks grows rap- 
idly with the number of nodes and the 
number of customers in the network. For 
example, the state space of a single class 
closed network with 10 type 1 nodes and 
10 customers in it has 1,847,560 states. 
Hence, the space required to store the rate 
matrix Q can be excessive; this problem, to 
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some extent, can be alleviated by using 
the sparseness of Q (i.e., storing only the 
nonzero elements of Q). Second, the con- 
struction of Q from a model is rather a 
time-consuming task. Finally, solving the 
system of equations, in general, has a time 
complexity of o (n3), where IL is the number 
of states, which restricts the applicability 
of numerical techniques. The interested 
reader may refer to Jennings [1977] for 
the details on solving systems of linear 
equations. 

Simulations may be used to obtain the 
steady-state queue length distributions of 
queueing networks. Simulations could, 
however, be considered an approximation 
technique [Chandy and Sauer 19781. In 
particular, the exact values of the steady- 
state queue length probabilities of a 
queueing network can be obtained if the 
network has a product form queue length 
distribution or a tractable numerical solu- 
tion. However, the values obtained from 
simulation will, it is hoped, be near (but 
usually not equal to) the exact values. Two 
of the principal problems with simulations 
are determining how close simulation esti- 
mates are to the exact values and determin- 
ing how long to run the simulation in order 
to obtain estimates near the correct values. 
Furthermore, developing and implement- 
ing simulation models are usually a time- 
consuming task. The interested reader 
may refer to Law and Kelton [1982] and 
Solomon [ 19831 for the details on modeling 
and analysis of queueing networks with 
simulation. 

Approximate solution techniques have 
been developed to analyze queueing net- 
works in which obtaining the exact solu- 
tions of the performance measures are 
inordinately expensive or the form of their 
steady-state queue length distributions are 
not known. The main problem with ap- 
proximations is to bound the error in the 
solution. The accuracy of an approximation 
is tested with numerical solutions (in 
smaller configurations that can be solved 
numerically) or with simulations to deter- 
mine the conditions under which the 
algorithm yields a good approximation. De- 
composition methods are the most widely 
used techniques in the approximate analy- 

sis of queueing networks [Chandy and 
Sauer 1978; Chandy et al. 1975; Courtois 
19771. The main idea is to decompose the 
network into subnetworks, analyze each 
subnetwork in isolation, and use the results 
obtained from each subsystem to analyze 
the macro-system composed of these sub- 
systems [Muntz 19781. These methods give 
exact solutions for queueing networks with 
product form steady-state queue length dis- 
tributions. In networks with nonproduct 
form solutions, the method yields good ap- 
proximations if the rate of interaction 
among the nodes in the subnetwork is sig- 
nificantly higher than the rate of interac- 
tion of the subnetwork with the remainder 
of the network. The error bounds for this 
approach can be calculated from the rate 
matrix of the network [Courtois 19771. 

Almost all queueing networks with prod- 
uct form queue length distributions require 
infinite queues; that is, it is assumed that 
there is always a space in the queue for 
arriving customers. In real life systems, the 
storage space is always finite. Hence, a 
more realistic model of such systems re- 
quires modeling finite node capacities. An 
important feature of queueing networks 
with finite queues is that the flow of cus- 
tomers through a node may be momentarily 
stopped when another node in the network 
reaches its capacity. That is, a phenomenon 
called blocking occurs. In particular, con- 
sider a simplistic view of a computer com- 
munications system. The individual queues 
represent the finite space that is available 
for intermediate storage and servers corre- 
spond to communication channels. A mes- 
sage may not be transmitted until the 
destination node has space available to 
store the message, thus sometimes causing 
the blocking of communication to that 
node. Similarly, in production systems, 
intermediate storage areas have finite 
capacities. A unit completing its service 
at a station may be forced to occupy the 
machine until there is a space available in 
the next station. While the unit blocks 
the machine, it may not be possible for the 
machine to process other units waiting in 
its queue. As another example, consider a 
multiprocessor system consisting of N pro- 
cessors and M memory modules connected 
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Figure 7. Multiprocessor architecture and its queueing model. 

together by a multiplexed single bus. The 
memory modules have buffers at their in- 
puts to queue the service requests of pro- 
cessors and buffers at their outputs to 
queue the requests served by the memory 
modules that cannot be served by the 
bus immediately. The system architecture 
and the queueing model of the system are 
illustrated in Figure 7. 

Processor i makes a request to memory 
module j. If the bus at that moment is not 
busy transferring a request for another pro- 
cessor or data from a memory module, pro- 
cessor i takes the bus and the request is 
sent to memory module j. If the bus is busy 
transferring data, then processor i has to 
retry its request at a later time. If the 
memory module j is free, it will serve the 
request; if it is not free, the request will be 
queued. After the memory module com- 
pletes its service, the output is placed in its 
output buffer for the bus to be transmitted 
to the processor that made the request. The 
effect of a full node on its upstream nodes 
(nodes that have a directed arc to the full 
node) depends on the type of system being 
modeled. If the input buffers of the memory 
modules are full, the bus cannot place the 
request to the buffer, and the processor has 
to send a new request. The request will be 
transmitted a number of times until it is 
delivered by the bus at a moment that there 
is a space at the buffer. Similarly, the out- 
put buffer of a memory module can be full. 
In this case, the module may be forced to 
suspend its service until a request is deliv- 
ered from its output buffer to the processor 

that made the request, that is, until a 
space becomes available at the output 
buffer. Hence, distinct models for blocking 
have been reported in the literature to 
model various real life systems with finite 
resources. 

In addition to the problem of blocking, 
deadlocks may occur in queueing networks 
with finite queues. In particular, a set of 
nodes is in a deadlock state when every 
node in the set is waiting for a space to 
become available at another node in the 
set. In this case, all servers in the set are 
blocked, and they can never get unblocked 
because the space required for the change 
of status will never be available. The prob- 
lem of deadlocks is not unique to queueing 
networks with finite queues. Different 
aspects of the problem such as detection, 
avoidance, and prevention have been inves- 
tigated in the literature, particularly in the 
context of operating systems [Coffman et 
al. 1971; Minoura 19821. This problem, 
however, has been largely ignored in 
queueing networks with blocking. We will 
elaborate on this issue in Section 1. 

This paper gives a survey of exact, ap- 
proximate, and numerical results related 
to closed queueing networks with finite 
queues. The parameters describing these 
networks and distinct models of blocking 
that exist in the literature are defined in 
Section 1. In Section 2 we deal with two- 
node closed queueing networks. In Section 
3, we survey results related to queueing 
networks with more than two nodes. We 
introduce the concept of indistinguishable 
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nodes in Section 4 and show that the 
steady-state queue length distribution of 
symmetrical networks can be obtained nu- 
merically on a reduced state space. Finally, 
we present conclusions in Section 5. 

1. PRELIMINARIES 

Queueing networks with blocking are diffi- 
cult to solve; in general, their steady-state 
queue length distributions could not be 
shown to have product form solutions. 
Hence, most of the techniques used to ana- 
lyze these networks are in the form of ap- 
proximations, simulation, and numerical 
techniques. In recent years, there has been 
a growing interest in the development of 
computational methods for the analysis of 
both open and closed queueing networks 
with blocking. A comprehensive survey of 
the literature on open queueing networks 
with blocking was compiled by Perros 
[1989]. Although studies reported in the 
literature for open networks with blocking 
are of particular interest, these networks 
can be viewed as special types of closed 
networks. In particular, any open queueing 
network with finite queues and Poisson 
arrivals can be analyzed exactly as a closed 
queueing network (but not vice versa). 
Hence, the studies reported in the literature 
for closed queueing networks with blocking 
are directly applicable to open networks 
with finite queues [Onvural and Perros 
19881. 

Closed queueing networks considered 
here consist of N nodes and K customers. 
A customer which completes its service at 
node i will next require service at node j 
with a certain probability denoted pij. Bi is 
the capacity (queue size plus one for the 
server) of node i; i, j = 1, . . . , N. Through- 
out the paper, we assume that customers at 
each node are served in a FCFS manner 
and there is a single server with one stage 
of service at each node. These parameters 
are summarized in Table 1. 

Consider a closed queueing network with 
parameters given in Table 1. Furthermore, 
assume that the service time at each node 
is exponentially distributed with mean l/~i 
and Bi = CQ, i = 1, . . . , N. The state of this 
network, S, is an N-vector (n,, rz2, . . . , nN ), 
where ni is the number of customers at node 

Table 1. Parameters of Closed Queueing Networks 

K Number of customers in the network. 
N Number of nodes. 
pi, Fraction of departures from node i that proceed 

next to node j. 
All nodes have FCFS service discipline. 
Each node has a single server with one stage of service. 
Bi Capacity of node i. 

i. We have 0 I ni 5 Bi and Czl ni = K. 
Then the steady-state queue length distri- 
bution of the network, 7r (n,, n2, . . . , nN ), 
has a product form solution as follows 
[Gordon and Newell 1967131: 

N 
ei nL 

rh, n2, . . . , nN) = G C - 
0 

, 
i=l Pi 

where ci is the relative visit ratio of node i 
given by (2) with a single class of customers 
in the network (Equation 7 below) and G is 
the normalization constant. 

To understand and to predict the behav- 
ior of a real life system, an analyst would 
like to know the values of the performance 
metrics of the system such as the percent- 
age of time a device is used, the rate at 
which the system produces an output, the 
average unfinished work at each device, 
average time it takes to produce a unit at 
each device, and average time it takes to 
produce a finished product. Corresponding 
to these, the primary performance mea- 
sures of queueing networks are defined as 
follows: (i) marginal queue length distri- 
bution, (ii) use of each server, (iii) through- 
put of each node, (iv) throughput of the 
network, (v) mean queue lengths, and (vi) 
average response time at node i. 

The steady-state marginal queue length 
probabilities, p”(n), of node i is the steady- 
state probability of having n customers at 
node i when there are K customers in the 
network, independent of the number of cus- 
tomers at other nodes of the network. Let 
S denote a network state, p(S) be the 
steady-state queue length probability of 
being in state S, and Yi(n) be the set of 
states such that there are n customers at 
node i. Then 

p?(n) = C P(S), 
SE Y,(n) 

(4) 
n = 0, 1, . . . , min(K, Bi). 
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The utilization, ui (K), of node i is defined 
as the percentage of time the server is busy 
serving when there are K customers in the 
network. In the case of nonblocking net- 
works (i.e., networks with infinite node 
capacities), this is equivalent to the proba- 
bility that the node is not empty; that is, 
there is at least one customer at node i. In 
case of blocking networks, the existence of 
at least one customer at node i does not 
necessarily mean that the server is busy 
serving as node i may be blocked. The 
effective utilization, u”(K), of node i is de- 
fined as the percentage of time the server 
is busy serving, whereas the total utiliza- 
tion, u:(K), of node i is defined as the 
percentage of time there is at least one 
customer at node i. In terms of marginal 
queue length probabilities, we have 

u?(K) = (1 - p?(O) - p?(b)), 

and (5) 

u?(K) = (1 -p?(O)) 

where p?(b) is the probability that node i 
is blocked. 

The throughput of node i is defined as 
the rate at which customers depart from 
that node. Let Ai be the throughput of 
node i when there are K customers in the 
network. Then, 

k(K) = (1 - P?(O) - PK(b)lpi, (6) 

where pi is the service rate at node i. In 
single class networks, the equations for the 
visit ratios, ei, defined in (2) reduces to 
the following: 

N 

ei = C eipji, i = 1, . . . , N. (7) 
j=l 

We note that there are N unknowns and 
N - 1 independent equations in the above 
system. Hence, it is necessary to set one of 
the ei’s to one (or any other value) and 
solve the other ci’s relative to that given 
value. Without loss of generality, let the 
visit ratio of node 1 be set to one. In 
this case, the throughput of the network, 
X(K), is defined as the average number 
of customers leaving node 1 per unit time. 
Furthermore, the relation between the 
throughputs of nodes and the throughput 

of the network is given as follows: 

Ai = eiA(K), i = 1, . . . , N. (8) 

The mean queue length, Li, of node i is 
the average number of customers in node i 
at steady state; that is, 

min(B,,K) 

C p?(n). 
n=l 

(9) 

The average response time, wi, is the av- 
erage time a customer spends in node i at 
steady state. There is a simple relation 
between the average response time and the 
mean queue length in a queueing system in 
steady state that equates the average ar- 
rival rate to the average departure rate. In 
particular, since a customer remains at 
node i for an average time of wi, the depar- 
ture rate is l/wi. The average number of 
customers at node i is Li. Hence, the aver- 
age departure rate is Li/wi. In steady state, 
the average arrival rate to node i, Ai, is 
equal to the average departure rate from 
node i; hence, we have the following result, 
which is known as the Little’s result [Little 
19611: 

Li = XiWi. (10) 

1.1 Blocking Mechanisms 

The effect of a full node on its downstream 
nodes depends on the type of the system 
being modeled. For presentation purposes, 
consider the simplistic view of a transaction 
processing (TP) system as shown in Fig- 
ure 8 [Highleyman 19891. 

Users of the system send their requests 
(read or update) to a request handler. When 
the request handler receives a request from 
a user, it evaluates the request and passes 
it to an appropriate server that is designed 
to handle that request type. Figure 8, being 
very simplistic, illustrates two types of 
servers: one for handling inquiries and one 
for handling updates. The servers usually 
interact with the database manager to gain 
access to (or to update) data in the data- 
base. It then formulates a reply and returns 
it to the user that made the request via a 
reply handler. 

A queueing model of this transaction pro- 
cessing system is shown in Figure 9. 
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Figure 8. Transaction processing system. 

Figure 9. Queueing model of a TP system. 

User requests are transmitted from user 
terminals to request handler (REQ) over a 
communication channel (CC). Once the re- 
quest is received and processed by the re- 
quest handler, it is passed to the queue of 
the appropriate server: inquiry server 
(INQ) or update server (UP). The server 
processes the request and sends it to the 
database manager (DBM), which accesses 
the disk to serve the request. Once the 
request is served by the disk, the data (for 
inquiry operation) or status (for update 
operation) is returned to the appropriate 
server. When the server completes its pro- 
cessing, it sends a reply to the reply handler 
(REP), which in turn returns the reply to 
the user via the communication link. The 
queues between various servers represent 
the buffers available for intermediate stor- 
age. Since there is a finite number of buffers 
available at each node, it is possible that 
one or more of the queues are full at any 
given time. In particular, a user generates 
a request and attempts to access the com- 
munication channel. If the channel is busy 
transferring another request and if there is 

a buffer available, then the request is 
queued. If, however, there is no buffer avail- 
able, then the user suspends its operation; 
that is, it cannot generate new requests. 

Similarly, the communication to the re- 
quest handler may be temporarily stopped 
if there is no space available in the request 
handler queue. Furthermore, the commu- 
nication channel cannot be used to store a 
request due to physical constraints; hence 
all requests should wait in the queue until 
there is a space available in the request 
handler queue at which time the commu- 
nication may be resumed. Request handler 
upon completing the processing of a request 
attempts to place the request at appropriate 
server’s queue. If there is no space available 
at the destination node, the request handler 
suspends its service until a space becomes 
available at the destination node. Finally, 
the database manager may have to send the 
request to the disk a number of times before 
a space becomes available at the disk buff- 
ers. Hence, the effect of a full node on the 
service of the nodes that are connected to 
it may be quite different depending on the 
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type of system being modeled. In particular, 
a full node may not affect the operation of 
an upstream server until the service is com- 
pleted (user request sent to the communi- 
cation channel), or the server may not start 
serving its customer until there is a space 
available in the destination node (commu- 
nication channel may not transmit if there 
is no space available in the request handler 
queue). Service may be suspended during 
the period that the destination node is full, 
or a customer may be served a number of 
times until it is accepted by the destination 
node (database manager sends a request 
a number of times until there is a space 
available in the disk buffers). 

TO model different characteristics of var- 
ious real life systems with finite resources, 
various blocking mechanisms that define 
distinct models of blocking have been re- 
ported in the literature. In particular, each 
blocking mechanism defines when a node 
is blocked, what happens during the block- 
ing period, and how a node becomes un- 
blocked. Following Onvural and Perros 
[1986] and Perros [1989], we next clas- 
sify the most commonly used blocking 
mechanisms. 

1.1.1 Blocked after Service (BAS) 

A customer upon completion of its service 
at node i attempts to enter destination node 
j. If node j at that moment is full, the 
customer is forced to occupy server i until 
it enters destination node j, and node i is 
blocked. Node i remains blocked for this 
period of time, and server i cannot serve 
any other customer that might be waiting 
in its queue. In queueing networks with 
arbitrary topologies, it is possible that a 
number of nodes may be blocked by the 
same node simultaneously. This necessi- 
tates imposing an ordering on the blocked 
nodes to determine which node will be un- 
blocked first when a departure occurs from 
the blocking node. This problem has not 
been elaborated on in the literature. We 
are only aware of the First-Blocked-First- 
Unblocked rule (FBFU), which states that 
the node that was blocked first will be 
unblocked first [Altiok and Perros 19871. 

Figure 10. Four-node closed queueing network. 

Consider the four-node network given in 
Figure 10 with Bi = 2, i = 1, . . . , 4; K = 6 
and assume that the network is in a state 
where there are two customers each in 
nodes 1, 3, and 4; all servers are busy serv- 
ing. Let server 4 complete its service before 
servers 1 and 3 blocking node 4. If server 3 
completes its service before server 1, then 
both nodes 4 and 3 are blocked by node 1, 
in that order. Upon service completion, 
customer at node 1 goes to node 2. At 
that moment, blocked customer at node 4 
will join node 1, unblocking node 4, while 
node 3 will have to wait for another service 
completion at node 1 before it is unblocked. 

It is possible that deadlocks might occur 
in queueing networks under BAS blocking. 
Let us consider the above example and 
assume that the network is in a state in 
which node 1 is blocked by node 2, node 3 
is blocked by node 1, and node 3 is full (i.e., 
there are two customers each in nodes 1, 2, 
and 3 and no customer at node 4). If the 
customer at node 2, upon service comple- 
tion, chooses to go to node 3, then a dead- 
lock occurs. The problem of deadlocks in 
networks under BAS blocking has been 
addressed in Onvural and Perros [ 1989131, 
Jun [ 19881, and Akyildiz and Kundu 
[1989]. In particular, it was assumed in the 
first two references that such deadlocks can 
be detected immediately and resolved by 
instantaneously exchanging blocked cus- 
tomers; that is, in the above example, when 
a deadlock occurs blocked customers at 
nodes 1, 2, and 3 simultaneously join nodes 
2, 3, and 1, respectively. Lemma 1 gives the 
necessary and sufficient condition for a 
network under BAS blocking to be deadlock 
free [Kundu and Akyildiz 19891. A cycle of 
a network is defined as a directed path that 
starts and ends at the same node. For ex- 
ample, in the four-node closed network 
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illustrated in Figure 10, the two cycles that 
start and end at node 1 are (1, 2, 3, 1) and 
(1, 2, 4, 1). 

Lemma 1 

A closed queueing network under BAS 
blocking is deadlock free if and only if for 
each cycle, C, in the network, the following 
condition holds: 

KC C Bj 
jEC 

Simply stated, the total number of cus- 
tomers in the network must be smaller than 
the sum of the node capacities in each cycle. 

The BAS blocking (also referred to as 
type 1 blocking, manufacturing blocking, 
classical blocking, and transfer blocking) 
has been used to model systems such as 
production systems and disk I/O subsys- 
tems [Altiok and Perros 1987; Perros 1984, 
1989; Suri and Diehl 19841. In particular, 
consider a simplistic view of a production 
system having a sequence of operation sta- 
tions. The availability of a storage space in 
the next destination has no effect on the 
operation of a machine until it completes 
its service. Upon service completion, if 
there is no space available in the destina- 
tion station, then there are .two possibili- 
ties: The unit that completed its service at 
node i is (1) moved back from the ith 
machine to the storage area of machine i 
(i.e., its queue) allowing a unit to enter 
service or (2) allowed to occupy the ma- 
chine, blocking the operation for other 
units waiting in the storage space (i.e., BAS 
blocking). In most cases, it may not be 
possible to move the unit from the machine 
back to the storage area due to the physical 
constraints of the unit, the system, or both. 
Hence, the operation of the machine is 
blocked until there is a space available at 
the destination station. In a recent paper, 
Mitra and Mitrani [1988] considered the 
possibility of moving the blocked customer 
back to its queue in the context of open 
networks to model the Japanese Kenban 
scheme that is used for cell coordination in 
production lines. The interested reader may 
refer to Mitra and Mitrani [1988] for a 
detailed explanation of this scheme. 

1.1.2 Blocked before Service (BBS) 

A customer at node i declares its destina- 
tion node j before it starts receiving its 
service. If node j is full, the ith node be- 
comes blocked. When a departure occurs 
from the destination node j, node i is un- 
blocked and its server starts serving the 
customer. If the destination node j becomes 
full during the service of a customer at node 
i, the service is interrupted and node i is 
blocked. The service is resumed from the 
interruption point as soon as a space be- 
comes available at the destination node. 
Depending upon whether the customer is 
allowed to occupy the service area when the 
server is blocked, the following subcategor- 
ies are distinguished. 

BBS-SNO (server is not occu- 
pied) Service facility of a blocked node 
cannot be used to hold a customer. 
BBS-SO (server is occupied) Service fa- 
cility of a blocked node is used to hold a 
customer. 

In BBS blocking mechanism, a full node 
j blocks all nodes i that are connected to it 
(i.e.,p;j > 0). When a departure occurs from 
node j, all blocked nodes become unblocked 
simultaneously and start serving their cus- 
tomers. Hence, there is no need to impose 
any ordering on the blocked nodes, unlike 
BAS blocking. 

The BBS blocking mechanism (also 
called type 2 blocking, immediate blocking, 
service blocking, communications block- 
ing) is motivated by considering servers 
that only move customers between stations 
and do no other work on them. In this case, 
the lack of downstream space must force 
the server to shut down. Two nodes i and j 
are called adjacent if there is a directed arc 
that connects node i to node j, that is, 
pij > 0, and Bi + Bj (the capacity of two 
adjacent nodes) is the upper limit on the 
number of customers that can be accom- 
modated simultaneously in nodes i and j. 
Furthermore, let K’ be the number of cus- 
tomers in the network such that there can 
be only one node blocked at a time and the 
blocked node cannot be full. Then, K’ = 
min(Bi+Bj;i,j=l,..., Ns.t.pij>O}. 
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We note that there is no difference between 
the BBS-SO and BBS-SNO blocking 
mechanisms when only one node can be 
blocked at a time and the blocked node 
cannot be full (Lemma 2b). The two block- 
ing mechanisms, however, are not equiva- 
lent when K > K’. Consider an N node 
(N > 2) cyclic network with K = K’ + 1. 
In BBS-SO blocking, it is possible to have 
Bi and Bi+l customers at nodes i and 
i + 1, respectively, such that K = Bi + Bi+l . 
In BBS-SNO blocking, however, there can 
be at most Bi - 1 customers at node i when 
node i + 1 is full. Hence, the set of global 
balance equations that describes the sto- 
chastic behavior of a cyclic network (i.e., 
its rate matrix) is different under the two 
blocking mechanisms. The above discus- 
sion may suggest that there might be an 
equivalence between the two blocking 
mechanisms after the node capacities are 
increased by 1 in BBS-SNO blocking. In 
this case, however, the number of ways that 
K customers can be distributed over N 
nodes is not the same for the two blocking 
mechanisms. Hence, in general, BBS-SO 
and BBS-SNO blocking mechanisms have 
different stochastic behavior and there is 
no equivalence between the two. 

The distinction between BBS-SO and 
BBS-SNO blocking mechanisms is mean- 
ingful when modeling different types of sys- 
tems. For example, in communication 
networks, a server corresponds to a com- 
munication channel. If there is no space in 
the downstream node, then messages can- 
not be transmitted. Furthermore, the chan- 
nel itself cannot be used to store messages 
due to physical constraints of the channel; 
that is, BBS-SNO blocking. On the other 
hand, BBS-SO blocking results if the serv- 
ice facility can be used to hold the blocked 
customer, which, in this case, would be an 
approximate modeling of the system. 

BBS-SO blocking has been used to model 
manufacturing systems, terminal concen- 
trators, mass storage systems, disk-to-tape 
back-up systems, window flow control 
mechanisms, and communication systems 
[Ammar and Gershwin 1987; Boxma and 
Konheim 1981; Gershwin and Berman 
19811, all in the context of open networks 
and Suri and Diehl 119861. Modeling these 

Figure 11. Disk-to-tape backup system. 

systems with BBS-SO blocking assumes 
that when its destination buffer is full the 
device is forced to stop its operation and 
the service facility can be used to hold a 
customer. A disk-to-tape back-up model il- 
lustrated in Figure 11 is comprised of three 
servers and two finite buffers between serv- 
ers. The first server is the disk and channel 
that transfers blocks of data from the disk 
to the main memory. The second server, 
the CPU, transfers data from the main 
memory to the tape drive. The last server 
represents the tape drive. One of the per- 
formance objectives of interest is the tape 
back-up rate (i.e., the throughput of the 
system). Blocking occurs due to finite 
spaces available for intermediate storage. 

The next example is motivated by a sim- 
ple mass storage system (MSS) as might be 
used in a data processing environment. The 
system consists of a first MSS, a staging 
disk, a CPU, an outstaging disk, and an- 
other MSS, as illustrated in Figure 12. Due 
to the relatively small sizes of the buffers, 
the blocking primarily occurs between the 
disks and the MSS devices. 

A simple terminal concentrator consists 
of a number of terminals, a concentrator, 
and a channel to transfer data to the main 
memory. The system configuration is the 
same as the disk-to-tape back-up system 
illustrated in Figure 11, with the concentra- 
tor, the channel, and the CPU replacing 
the disk, the CPU, and the tape, respec- 
tively. Similar to the above two examples, 
the two buffers in this terminal concentra- 
tor system have finite capacities that cause 
blocking of respective nodes. We note that 
the above examples are only subsystems of 
larger configurations of computer systems, 
used only to illustrate the possibility of 
blocking due to finite storage capacities 
between the devices of such systems. 

For example, consider the disk-to-tape 
back-up system. The first server corre- 
sponds to both the disk and the channel. If 
there is no space available in the memory, 
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Figure 12. Mass storage system. 

then the transfer of data has to be sus- 
pended. The server will resume its opera- 
tion when a space becomes available at the 
memory. Similarly, other servers are forced 
to suspend their services if there is no space 
available at their destination nodes. 

Closed queueing networks under BBS 
blocking are not always well defined for 
arbitrary topologies with an arbitrary num- 
ber of customers in the network. This is 
because deadlocks in this blocking mecha- 
nism cannot be resolved without violating 
its rules. As an example, let us assume that 
node i is blocked by node j and node j is 
blocked by node i. Then the services at 
both nodes are suspended. Furthermore, 
the service cannot start unless the blocking 
mechanism is temporarily switched to, for 
example, BAS blocking. In view of this, this 
blocking mechanism can only be used in 
deadlock free networks. Similar to Lemma 
1, it can be shown that a closed queueing 
network with BBS blocking is deadlock free 
if and only if for each cycle C in the net- 
work, (i) K < Cjec (Bj - 1) in BBS-SNO 
blocking, and (ii) K < Cjec Bj in BBS-SO 
blocking. Simply stated, a closed network 
under BBS-SO blocking is deadlock free if 
the number of customers in the network is 
less than the sum of node capacities in each 
cycle in the network, whereas in a BBS- 
SNO, a network is deadlock free if the 
number of customers in the network is less 
than the sum of queue capacities (node 
capacity minus 1 for the server facility) in 
each cycle. 

Repetitive Service (RS) A customer 
upon service completion at node i attempts 
to join destination node j. If node j at that 
moment is full, the customer receives an- 
other service at node i. This is repeated 
until the customer completes a service at 
node i at a moment that the destination 
node is not full. Within this category of 
blocking mechanisms, the following two 
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subcategories are distinguished: 
RS-FD ( fixed destination) Once the cus- 
tomer’s destination is determined, it cannot 
be altered. 
RS-RD (random destination) A destina- 
tion node is chosen at each service comple- 
tion independently of the destination node 
chosen the previous time. 

We note that closed queueing networks 
with exponential servers have the same rate 
matrix under both BBS-SO and RS-FD 
blocking mechanisms (Lemma 2a). Hence, 
a network under RS-FD blocking is dead- 
lock free if and only if K < Cjec Bj for each 
cycle in the network; that is, the number of 
customers in the network is less than the 
capacity of each cycle in the network. On 
the other hand, it can be shown that a 
closed network under RS-RD blocking is 
deadlock free if the network is irreducible 
(i.e., there is a path from every node to 
every other node in the network) and if 
there is at least one free space in the net- 
work; that is, K < C& Bi (not for each 
cycle). This is because the existence of 
a free space in the network guarantees 
that all blocked customers will eventually 
depart, unblocking their servers. 

The RS blocking (also called rejection 
blocking and type 3 blocking) arise in mod- 
eling telecommunication systems and is 
mostly associated with reversible queueing 
networks. In particular, let us consider a 
packet switching network with fixed rout- 
ing. The number of packets in the network 
is controlled by a window flow mechanism 
[Reiser 19791. A node transmits a packet 
to a destination node and waits for an ac- 
knowledgment. If the destination node does 
not accept the packet due to the fact that 
there is a lack of space, it will not send an 
acknowledgment. In this case, the packet 
may be retransmitted (RS-FD blocking) 
until it is accepted by the destination node 
(i.e., until an acknowledgment is received 
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Figure 13. Queueing model of a flexible manufactur- 
ing system. MHD, Material handling device; WS-i, 
ith workstation. 

by the sender). Similarly, consider a man- 
ufacturing system consisting of a network 
of automated work stations (WS) linked by 
a computer controlled material handling 
device (MHD) to transport work-pieces 
that are to be processed from one station 
to another, as illustrated in Figure 13. 

In these systems, if a work-piece finds 
the next station full, it has to wait for the 
next turn of the MHD. At the next turn, 
there are two possibilities: (i) the work- 
piece can only be processed by one station, 
therefore, the next attempt can only be 
made to the previously chosen station (i.e., 
RS-FD blocking), or (ii) the unit may be 
processed by all stations, hence, the next 
station is chosen independent of the pre- 
vious choice(s) (i.e., RS-RD blocking). If 
the service time of the MHD is assumed to 
be exponentially distributed, the RS-RD 
blocking is equivalent to the following: The 
work-piece attempts to enter station 1. If 
station 1 is full, it tries station 2, and so 
on, until a space is found in one of the 
stations. The interested reader may refer 
to Yao and Buzacott [1985a, b, c, 19861 for 
the details on the flexible manufacturing 
systems. 

1.2 Equivalences of Blocking Mechanisms 

Comparisons between these distinct types 
of blocking mechanisms in the context of 
closed queueing networks have been carried 

Figure 14. Cyclic network. 

Figure 15. Central server 
model. 

out by Balsam0 et al. [1986] and Onvural 
[1987]. The objective of these comparisons 
was to obtain an equivalence between dif- 
ferent blocking mechanisms applied to the 
same network. Two blocking mechanisms 
are said to be equivalent if the network 
under consideration has the same rate ma- 
trix under both types of blocking mecha- 
nisms. We note that all of the equivalences 
obtained in the literature assume that the 
service times are exponentially distributed. 
Furthermore, these equivalences are most 
often true only for specific topologies: cyclic 
networks and the central server model 
shown in Figures 14 and 15, respectively. 
In the central server model, there is a single 
node, referred to as the central server, con- 
nected to N nodes. A customer upon com- 
pletion of its service at the central server 
joins node i with probability noi, Czl poi = 
1, whereas customers at the other nodes 
join the central server with probability 1. A 
cyclic network consists of N nodes con- 
nected in series. A customer upon comple- 
tion of its service at node i always joins the 
proceeding node i + 1. Customers at node 
N always join the first node, forming a 
cycle. The following lemmas were proved 
Onvural [1987] and Balsam0 et al. [1986]. 
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Lemma 2 

In closed queueing networks with arbitrary 
topologies : 

(a) 
(b) 

BBS-SO and RS-FD are equivalent. 
BBS-SO and BBS-SNO are equivalent 
f or 

KS min(Bi + Bj; 

i,j=l,..., N sat. pij > 0) - 1. 

Lemma 3 

In cyclic networks 

(a) RS-FD and RS-RD are equivalent. 
(b) BBS-SNO given node capacities Bi is 

equivalent to BAS blocking with node 
capacities Bi - 1, i = 1, .,. . , N. 

Lemma 4 

In the central server model, 

(a) BBS-SO and BBS-SNO are equivalent 
if B1 = ~0. 

(b) BBS-SO and BBS-SNO are equivalent 
ifBi=m,i=2 ,..., N. 

(c) RS-FD and RS-RD are equivalent if 
Bi = 03, i = 2, . . . , N. 

Lemma 5 

In cyclic networks with two nodes, 

(a) 

(b) 

BBS-SNO, BBS-SO, RS-FD, and RS- 
RD are equivalent. 
BBS-SNO (BBS-SO, RS-FD, and RS- 
RD) with node capacities B1 and B, is 
equivalent to BAS with node capacities 
Bi-landBz-1. 

2. TWO-NODE CLOSED QUEUEING 
NETWORKS 

We start our review of the literature with 
two-node closed queueing networks illus- 
trated in Figure 16. Let K be the number 
of customers in the network and Bi be the 
capacity of node i. Furthermore, assume 

2 ’ ’ 10-l 
Figure 16. Two-node closed queueing 
network. 

that the service time at each node is expo- 
nentially distributed with rate pi, i = 1, 2. 

2.1 Blocked after Service Blocking 

Two-node closed queueing networks under 
BAS blocking have been studied by Diehl 
[1984] and Akyildiz [1987]. In particular, 
Akyildiz demonstrated that a two-node 
closed network with K customers under 
BAS blocking is equivalent (i.e., has the 
same rate matrix) to a nonblocking net- 
work, with the same parameters as the 
blocking network but with infinite capaci- 
ties and with K ’ customers, where 

K’ = min(K, B, + 1) (11) 
+ min(K, B, + 1) - K. 

The state of this two-node network is 
defined as (nl, n2), where ni is the number 
of customers at node i, i = 1, 2. Further- 
more, the states (k,, B, + 1) and (B, + 1, 
K - B1) denote that nodes 1 and 2 are 
blocked, respectively. We note that in this 
blocking mechanism there is a need to 
distinguish the state (kl, B,), where both 
servers are busy serving, from the state 
(kl, B, + l), where node 1 is blocked, al- 
though the number of customers at each 
node is the same in both states. Let kl and 
k, be the minimum and maximum occu- 
pancy of node 1; that is, k, = max(O, K - 
B,) and k2 = min(K, B1). If K > max(B1, 
B2), we have k1 > 0 and k, = B,. Then the 
rate diagram associated with this two-node 
network is given in Figure 17. 

The equivalent nonblocking network has 
the same rate diagram with K’ customers 
andB,=Bq=K’.Letp(i,j)bethesteady- 
state joint queue length probability of being 
in state (i, j ). The global balance equations 
can be written easily from the transition 
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g@q . . . . . . . . . . . . %i$g 

Figure 17. Transition rate diagram of a two-node network under BAS blocking. 

rate diagram: 

/.w&,&+ 1) =/.dkl,Bd 

(PCLZ + pl)p(h + i, B2 - i) = pgp(kl + i- 1, 

B,-i+l) 

+w&+i+l, 

BP-i-l) 

CL~P(B~+~,K-B~)=~~P(B~,K-B~) 

Solving the global balance equation for 
the steady-state queue length distributions 
p(i, j), we have 

i+1 

p(kl, B, + 1); 

i=O 3 ***, B, - kl + 1, (12) 

and p (k, , B2 + 1) can be determined from 
the normalizing equation; that is, 

B,-la,+2 

Ah, & + 1) C (13) 
i=O 

If K 5 BZ, then the first server can never 
get blocked since the capacity of the second 
node is large enough to hold all K cus- 
tomers. In this case, the first node becomes 
identical to an M/M/l/B, + 1 queue with 
arrival and service rates equal to p1 and p2, 
respectively. If the node capacities of both 
nodes are large enough to hold all K cus- 
tomers, then there is no blocking; hence, 
the network has a product form queue 
length distribution [Gordon and Newell 
1967b]. 

Furthermore, these results are readily ap- 
plicable to a two-node closed queueing net- 
work under BBS-SNO blocking after the 
node capacities increased by 1 (Lemma 3b). 

2.2 Blocked before Service-Server Occupied 
Blocking 

Now, consider the two-node closed 
queueing network under BBS-SO blocking, 
and let K < B1 + BP to eliminate the prob- 
lem of deadlock. This model was first 
studied by Gordon and Newell [1967a]. Fol- 
lowing their argument, let p (nI, n2) be the 
steady-state probability that there are ni 
customers at node i, i = 1, 2. Since a node 
is blocked and service is suspended when 
its destination node is full, it is not neces- 
sary to define additional states to define 
the states in which a node is blocked, unlike 
BAS blocking. Let kI and kp be the mini- 
mum and maximum occupancy in node 1, 
respectively, as defined above. Assum- 
ing K 2 max(B1, Bz), the rate diagram asso- 
ciated with the network is illustrated in 
Figure 18. 

The global balance equations are given 
as follows: 

/w(kl, B2) 

= /.dh + 1, B, - 1) 

(~2 + ddh + i, K - kl - i) 

= p2p(k1 + i - 1, K - i - kl + 1) 

+ pCL1p(kl + i + 1, K - i - kl - 1) 

/.dkz, K - BI) 

= pzp(k2 - 1, K - k, + 1) 

Solving the global balance equations, we 
have 

p(kl + i, K - kl - i) 
/ \i =cL2 
0 ~1 p(k,, B2); (14) 

i=l ,-*., k2 - kl, 

ACM Computing Surveys, Vol. 22, No. 2, June 1990 



102 l Raif 0. Onvural 

5 6 8 4 2 p2 5 ($+l,B2-1) . . . . . w 

Figure 18. Transition rate diagram of a two-node network under BBS-SO 
blocking. 

and p(kl, B2) can easily be obtained from 
the normalizing equation; that is, 

(15) 

If B1 % K I BP, then the queue length 
distribution of the first queue becomes 
identical to an M/M/l/BJFCFS queue 
with arrival and service rates equal to ~2 
and pi, respectively. If both node capacities 
are greater than or equal to the number of 
customers, there is no blocking and the 
network has a product form steady-state 
queue length distribution [Gordon and 
Newell 1967b]. Furthermore, it can be eas- 
ily shown that a two-node closed network 
under BBS-SO blocking has the same rate 
matrix as a nonblocking network with K’ 
customers, where 

K’ = min(K, B,) (16) 
+ min(K, B2) - K. 

We note that BBS-SO blocking is equiv- 
alent to RS-FD and RS-RD blocking mech- 
anisms in two-node closed queueing 
networks (Lemmas 2 and 3a). Thus, the 
product form of the queue length distribu- 
tion presented above for BBS-SO blocking 
is also applicable to the other two types of 
blocking mechanisms. 

2.3 Two-Node Networks with Multiple 
Classes 

The product form queue length distribu- 
tions of two-node exponential blocking net- 
works presented above can be extended to 
include multiple classes of customers and 
BCMP [Baskett et al. 19751 type of nodes 
by viewing a two-node blocking network as 
a truncated process of the same network 
with infinite node capacities. In particular, 
a process T is called a truncated process 
of 2 [Kelly 19791 if (a) it is irreducible; 

(b) the state space of T is a subset of the 
state space of 2, and (c) the transitions 
between the states of T is the same as it is 
in 2. The routing in a network is called 
reversible if there exists positive Xi such that 

PijXi = PjiAj; i, j = 1, . a. 3 N. (17) 

Equation (17) states that the rate at which 
customers arrive at node j from node i is 
equal to the rate at which customers leave 
node j to return to node i. The following 
lemma is given in Kelly [1979]: 

Lemma 6 

The form of the queue length distribution, 
g(n), of a truncated process is the same as 
the original process normalized over the 
state space A of the truncated process; that 
is, CneA 7r(n) = 1. 

A two-node network with buffer capaci- 
ties B, and Bz under BAS blocking is a 
truncated process in which no more than 
Bi + 1 customers are allowed at node i. 
Similarly, a two-node network under BBS- 
SO blocking is a truncated process in which 
no more than Bi customers are allowed at 
node i, i = 1, 2. The following lemma, 
proved in Onvural [1989b], extends the set 
of networks with product form queue length 
distributions to include multiple classes 
and BCMP type of nodes (see also Van 
Dijk and Tijms [1986]). 

Lemma 7 

A two-node closed network with multiple 
classes and BCMP type nodes has a product 
form queue length distribution under the 
blocking mechanisms defined in Section 1. 
Furthermore, the queue length distribution 
of the blocking network is the same as the 
queue length distribution of the network 
with infinite queue capacities normalized 
over the states of the blocking network. 
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We now proceed with the survey of closed 
queueing networks consisting of more than 
two nodes. 

3. CLOSED QUEUEING NETWORKS WITH 
MORE THAN TWO NODES 

In this section, we survey results related to 
closed queueing networks with arbitrary 
topologies under the blocking mechanisms 
defined in Section 1. 

3.1 Blocked after Service Blocking 

Earlier work in queueing networks with 
finite queues was motivated by open 
queueing networks under BAS blocking in 
the context of production systems. Most of 
the approximations developed for these 
networks are based on decomposing the 
network into individual queues and analyz- 
ing them in isolation. Hence, these algo- 
rithms produce the marginal queue length 
probabilities from which other performance 
measures are calculated. On the other hand, 
there are relatively few results reported in 
the literature for closed queueing networks 
under BAS blocking, and much of the work 
has been done in recent years. There is no 
algorithm reported in the literature to ap- 
proximate the marginal queue length prob- 
abilities of these networks. 

Consider a closed queueing network with 
parameters given in Table 1 under BAS 
blocking. Furthermore, assume that the 
service time at each node is exponentially 
distributed with rate pi, i = 1, . . . , N. For 
1 I K I min Bi, there is no blocking and 
the network has a product form queue 
length distribution [Gordon and Newell 
1967131. When K 2 min Bi + 1 blocking 
occurs. In this case, product form queue 
length distributions are, in general, not 
available. When K = min(Bi, i = 1, . . . , N) 
+ 1, however, there can be at most one node 
blocked at a time, and when a server is 
blocked there cannot be any customer wait- 
ing in its queue. Thus, during the blocking 
period, the service area in the blocked node 
behaves like an additional space for the 
blocking node. Onvural and Perros [1989a] 
showed that such networks, in this special 
case, have product form queue length 
distributions. 

Table 2. States of the Central Server Model 
with Bi = 2; i = 0, 1, 2 

No node is blocked: 
IO, 1,2) IO, 2, 1) {l, 0,2} {I, Ll) {I, 2,Ol (2,0, 11 
1% 1, 01. 

Node 1 is blocked by node 0: 
1% (1, Oh, 01. 

Node 2 is blocked by node 0: 
P,O, (1, OLI. 

Node 0 is blocked by node 1: 
((1, 110, 2, 01. 

Node 0 is blocked bv node 1: 
” 1(1, 2)a. 0, 21. 

Lemma 8 

Consider a closed exponential queueing net- 
work under BAS blocking with parameters 
given in Table 1. If the number of customers 
in the network, K, is equal to the minimum 
node capacity plus 1, then the network has 
a product form queue length distribution. 

To see this, let (i, s)k be the state of node 
k, where i is the number of customers at 
node k and s is the index of the blocking 
node. If node i is not blocked, then s is 
dropped from the state definition. We have 
0 5 i 5 min(Bk, K). For example, consider 
the central server model shown in Fig- 
ure 15, with N = 2, Bi = 2; i = 0, 1, 2 with 
K = 3 customers. Then, the states of the 
network are given in Table 2. 

Furthermore, let p(S) = p((i, s)~, (i, sjp, 
. . . , (i, s)~) be the steady-state queue 
length probabilities of a closed network un- 
der BAS blocking. For a moment, assume 
that each node has an infinite capacity 
and let 7r (j,, jZ, . . . , j,) be its steady- 
state queue length probabilities, where 
j, is the number of customers at node k, 
0 5 j, I K, k = 1, . . . , N. We note that 
djl, j2, . . . j, ) has a product form queue 
length distr;bution. If the above assump- 
tions are satisfied, then 

P(S) 
r(iI, iz, . . . , iN) 

if no node is blocked 

= Pee, 

( 
-7T(O, . . . . ij 

ej 

(18) 

= Bj + 1, 0, . . . ) 0) 
if node m is blocked by node j 
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where ci is the relative number of visits a 
customer makes to the i th node and is given 
by Equation (7). 

Although Lemma 8 is a special case, it 
was used in Onvural [1987] and Onvural 
and Perros [1988] to obtain a lower bound 
on the throughput of closed and open net- 
works, respectively. It can also be used in 
the validation process for approximations. 
Finally, we note that closed queueing net- 
works with more than two nodes and under 
BAS blocking could not be shown to have 
product form queue length distributions 
other than this special case. 

3.3.1 Throughput 

Let xi(K) and h(K) be, respectively, the 
throughput of a node i and the throughput 
of the network when there are K customers 
in the network. By definition, xi(K) = 
(1 - P:(O), - Pr(b))pi, where ki is the 
service rate, P?(O) and P:(b) are the prob- 
abilities that node i is empty and blocked, 
respectively, given that there are K cus- 
tomers in the network. Furthermore, we 
have X(K) = x,(K) [Equations (7) and (8) 
in Section 11. Clearly, X(K) depends on the 
parameters of the network. Let M be the 
capacity of the network (sum of node ca- 
pacities); that is, M = CK1 Bi. In Fig- 
ure 19, we give an example of X(K) as 
K changes from 1 to M for the cyclic net- 
work shown in Figure 14 with N = 3 and 
M = J$FG1 Bi. We note that in Figure 19, 
X(K) increases as K increases until it rea- 
ches a maximum value, X*, for some K*. 
For K 2 K*, X(K) is nonincreasing (see 
also Persone and Grill0 [1987]). 

Lemma 9 provides bounds on the maxi- 
mum throughput and the number of cus- 
tomers, K*, that produces the maximum 
throughput [Onvural 19871, which is based 
on the following three conjectures: 

Conjecture 1 

The throughput of a closed queueing net- 
work with finite node capacities is less than 
or equal to the throughput of the same net- 
work with infinite node capacities, that is, 
X(K)sP(K);K=l,...,M. 
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Conjecture 2 

Probability that a node is empty does not 
increase as the number of customers in 
the network increases; that is, p?(O) 2 
P:+‘(O), K = 1, . . . , M - 1, wherepJ(0) is 
the probability that node i is empty when 
there are J customers in the network. 

Conjecture 3 

Probability that a node is blocked does not 
decrease as the number of customers in the 
network increases; that is, p?+l(b) 2 
p?(b), K = 1, . . . , M - 1, where p:(b) is 
the probability that node i is blocked when 
there are J customers in the network. 

Lemma 9 

Consider a closed exponential queueing net- 
work under BAS blocking with parameters 
given in Table 1, and let M = xEI Bi, n = 
min(Bi, i = 1, . . . , NJ, and X* = {X(K), 
K=l,... , M ). For a moment, assume that 
the network has infinite queue capacities 
and let P(K) be its throughput when there 
are K customers in it. Then 

P(n + 1) 

5 x* 

5 /3(M - min(Bi, i = 1, . . . , NJ + 1). 

Now, let K* be such that X* = X(K*). 
Then 

max(min(Bj such that 

pij#Oj=l,..., N) i=l, . . . . N) 

=K*sM- min(Bi, i = 1,. . . , NJ + 1. 

For presentation purposes, consider the 
closed queueing network illustrated in Fig- 
ure 10 with parameters given in Table 1, 
and B, = 3, Bz = 4, BB = 6, Bq = 5. Fur- 
thermore, assume that the service time at 
each node is exponentially distributed with 
rate pi. The number of customers in this 
network can vary from 1 to 18. For 1 5 
K I 3 the network is nonblocking and has 
a product form steady-state queue length 
distribution [Gordon and Newell 1967131. 
Furthermore, the network has a product 
form solution with K = 4 (Lemma 8) and 
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#customers 
0 2 4 6 8 10 

Figure 19. Throughout versus number of customers. 

X(K) = P(K), K = 1,. . . ,4 [Onvural1987]. 
Furthermore, X(K) is nondecreasing as K 
increases from 1 to 4. Hence, the maximum 
throughput of the network is greater than 
or equal to the throughput of the network 
with infinite node capacities and four cus- 
tomers in it, that is, h* 2 p(4). Let K’ be 
the number of customers in the network 
such that no node can be empty, that is, 
K’rM-min(B;,i=l,..., N}+l.For 
the above example we have K’ 2 16. For 
16 5 K’ 5 18, the probability of any node 
being empty is equal to zero. Furthermore, 
p?‘(b) is nondecreasing in this interval 
(Conjecture 3). Hence Ai = pi{1 - 
p?‘(O) - pr’ (b)] is nonincreasing as K’ 
increases from 16 to 18; that is, X(16) 5 
X(K’ + l), K’ = 16, 17, 18, /!3(16) z (16) 
(Conjecture 1) and /?(16) > p(K), K = 1, 
. . . , 15. Hence, we have X* 5 /3(16). Fur- 
thermore, if K* is the number of customers 
that the throughput of the network is max- 
imum, then 4 ZG K* < 16. 

We note that these bounds are not usu- 
ally tight. Nevertheless, these are the only 
bounds reported in the literature for the 
maximum throughput of closed networks 
under BAS blocking. Onvural and Perros 
[1988] used this result together with the 
equivalences of open and closed queueing 
networks with finite capacities to obtain 
bounds on the throughput of open networks 
with finite queues. The authors stated in 
the cited paper that these simple bounds 
are comparable with other algorithms 

reported in the literature developed to ob- 
tain bounds on the throughput of such 
networks. 

Akyildiz [1988a, b] developed approxi- 
mation algorithms for the throughput of 
closed queueing networks with exponential 
and general service times. He approximates 
the throughput assuming that the through- 
put of a blocking network is approximately 
the same as an equivalent nonblocking net- 
work with product form queue length dis- 
tribution. The equivalent network with 
infinite queue capacities has the same pa- 
rameters as the blocking network except K. 
The number of customers in the nonblock- 
ing network is chosen such that the number 
of states of the blocking network is as close 
to the number of states of the nonblocking 
network as possible. The only assumption 
in the algorithm is that the network under 
consideration should be deadlock free. 
Akyildiz’s algorithm to calculate the 
throughput of exponential closed queueing 
networks under BAS blocking can be sum- 
marized as follows. 

Algorithm 1 

SO: For a given deadlock free closed net- 
work under BAS blocking with parameters 
given in Table 1, calculate the number 
of states, 2 ‘, of the blocking network as 
follows: 
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where * is a convolution operator, and Zi, 
i=l,..., N, is a K + 1 dimensional vector 
given by 

zi = (zb, zi, . . . ) zk) 

where 

‘j = { 

1 for 0 I j 5 Bi + 1 
0 otherwise 

Sl: Find q such that 

is minimum, where 2 ’ (z;O is the Kth ele- 
ment of the vector 2 ‘. Then, X(K) = p(q), 
where p(q) is the throughput of the net- 
work with q customers obtained by solving 
the network with infinite queues. 

We note that 

is the number of states in a closed queue- 
ing network with infinite queues and q 
customers. 

The algorithm simply finds a product 
form network that has approximately the 
same number of states as the blocking net- 
work, and it can be easily implemented. 
Consider the cyclic network shown in Fig- 
ure 14 with N = 3 and let Bi = 2, i = 1, 2, 
3, and K = 4. Then, the state space of this 
network has 12 states; that is, 2 ’ (4) = 12. 
Now, consider the same network with infi- 
nite node capacities. In this case, the state 
space of the network has 10 states with 
three customers and 15 states with four 
customers. Hence, Algorithm 1 produces 
the throughput of the blocking network to 
be equal to the throughput of the network 
with infinite capacities and three customers 
in it; that is, X(4) = p(3). 

Akyildiz [ 1988b] applied the algorithm to 
more than 200 closed networks with differ- 
ent configurations and with different 
parameters. He reported that in 145 ex- 
amples, the relative error percentages, 
RE%, (lOO[exact throughput - approxi- 
mate throughput)/exact throughput) was 
less than 1%. Dallery and Frein [1989] 
observed that the RE% of this algorithm 
can go up to 25%. Due to the fact that this 

algorithm takes into account only the total 
number of states, the throughput estimates 
are insensitive to the location of nodes and 
the service rates. For example, the algo- 
rithm would produce the same throughput 
for two networks with node capacities 
(1,5,1,5,1) and (5, 1, 1, 1,5) while keeping 
all other parameters the same, although 
these two networks may have quite differ- 
ent throughputs. 

Akyildiz [1988a] applied the same algo- 
rithm to closed queueing networks with 
general service times. In addition to the 
assumptions of Table 1, assume that the 
service time at each node is Coxian with 
two stages; that is, L = 2. We note that 
Algorithm 1 finds a nonblocking network 
that has the closest number of states as the 
blocking network under consideration, and 
this step is independent of the service time 
distributions at nodes. Once the approxi- 
mately equivalent nonblocking network is 
found, the network is solved to obtain its 
throughput. In case of exponential service 
time distributions, the nonblocking net- 
work has a product form solution and its 
throughput can be calculated efficiently. 
When the service times are Coxian, the 
network does not have a product form so- 
lution. Marie [1979] proposed an approxi- 
mation algorithm to obtain the marginal 
queue length distributions of a closed 
queueing network with Coxian service time 
distributions. The nonblocking network 
obtained from Algorithm 1 is solved 
approximately using Marie’s method to ob- 
tain its throughput. The steps of the algo- 
rithm to approximate the throughput of a 
closed queueing network under BAS block- 
ing with Coxian service time distributions 
are given below. 

Algorithm 2 

SO: Given a deadlock free closed queueing 
network find a nonblocking network with 
K ’ customers using Algorithm 1. 
Sl: Solve the nonblocking network with 
Coxian service times approximately using 
Marie’s method and calculate the through- 
put /3(q) of the network. Then, the 
throughput of the blocking network is 
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assumed to be equal to P(K). That is, 
X(K) = P(s). 

The accuracy of this algorithm is not as 
good as that of Algorithm 1. This is due to 
the fact that Marie’s method introduces an 
additional error to the error produced by 
Algorithm 1. Still, the RE% reported in the 
paper was less than 10%. Finally, we note 
that these two approximations can be used 
only to calculate the throughput. In partic- 
ular, both Algorithms 1 and 2 do not pro- 
duce accurate results for other performance 
measures such as mean queue lengths 
and marginal queue length probabilities 
[ Onvural1987 1. 

Another approximation algorithm for the 
throughput of closed queueing networks 
under BAS blocking was developed by 
Suri and Diehl [1984]. Their algorithm is 
also applicable to networks under BBS- 
SO blocking, and it will be presented in 
Section 3.2. 

Onvural and Perros [1989b] developed 
an approximation algorithm to calculate 
the throughput of large closed exponential 
queueing networks with finite queues. The 
main steps of the algorithm are given below. 

Algorithm 3 

SO: Find K* (approximately) such that 
X(K*) 2 X(K), K = 1, . . . , Cz1 Bi. Solve 
the blocking network numerically with K * 
customers to obtain its throughput X(K*). 
Sl: Calculate X(l), . . . , x(min(Bi) + 1) 
using one of the efficient algorithms for 
product form networks and solve the net- 
work with Cgl Bi customers and calculate 
A( Czl Bi). 
52: Estimate the parameters of the curve 
that passes through the above calculated 
points. 
S3: Calculate the unknown throughput 
points from the equation of these curves. 

The critical step in the algorithm is find- 
ing the number of customers, K*, that pro- 
duces the maximum throughput X (K* ). In 
closed queueing networks with exactly one 
node with an infinite capacity, K * can be 
found exactly using the following result 
[Onvural and Perros 1989a]. 

Lemma 10 

Consider an exponential closed queueing 
network under BAS blocking. Let m be the 
index of the node with the maximum capac- 
ity; that is, B, = max(B;, i = 1, . . . , N), 
and M = CzI Bi be the total capacity of the 
network. If B, 1 M - B,, then the network 
has the same throughput for all K E S, where 
S=(L:M-B,+lsLsB,+l]. 

For presentation purposes, let node 1 be 
the node with an infinite capacity. Then, 
B1 > M - B, . Let M ’ denote the capacity 
of nodes two to N (the sum of node capac- 
ities of all nodes other than the node with 
the infinite capacity) plus 1; that is, M ’ .= 
CEz Bi + 1. From Lemma 10, the through- 
put of the network is the same for all 
K L M ‘. Using the monotonicity of the 
curve with respect to the number of cus- 
tomers [Persone and Grill0 1987; Onvural 
and Perros 1989b], we have K * = M ’ + 1. 
Algorithm 3 was also applied to cyclic net- 
works with finite capacities. In this case, it 
was assumed that the maximum through- 
put occurs at K* = (M + N)/2, which is 
approximated from the same network un- 
der BBS-SO blocking. The interested 
reader may refer to Onvural and Perros 
[1989b] for details. Another drawback of 
the algorithm is solving the network nu- 
merically with K* customers to calculate 
X (K * ), since this is a time-consuming task. 
Still, the algorithm results in savings of 50 
to 85% of CPU time as compared to solving 
the network numerically, and it produces 
fairly accurate results. The savings in CPU 
time increases with the size of the network. 
Of the 100 examples run by the authors, 
the relative error percentages was observed 
to be less than 5%. 

The throughput of cyclic networks with 
M = CE1 Bi customers can be calculated 
efficiently using the following lemma 
[Onvural and Perros 1989131. 

Lemma 11 

Consider an exponential cyclic network un- 
der BAS blocking with node capacities Bi 
and K customers. If K = M, then the 
throughput of the network is equal to 
l/E[max(X1, X,, . . .,XN)],whereXiisthe 
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service time at node i. Furthermore, assum- 
ing Xi’s are distributed exponentially with 
rate pi, we have 

E [max(Xl, X2, . . . , XN)] 
m 

= 

U 

1 - G (1 - ecPit) dt. 
0 i=l 

For presentation purposes, let N = 3, 
K = 3, and Bi = 1, i = 1, 2,3. Let Xi be the 
service time at node i and without loss of 
generality assume that X1 5 X, 5 X,. Fur- 
thermore, assume that at t = 0 all servers 
are busy working. Then at t = X,, all three 
servers will become blocked and a deadlock 
will occur. If we assume that deadlocks are 
detected immediately and resolved by in- 
stantaneously exchanging the blocked cus- 
tomers, then at t = X3 customer at note 1 
will go to node 2, customer at node 2 will 
go to node 3, and customer at node 3 
will go to node 1. At this point in time, all 
servers will start a new service. The points 
at which all three servers start a new service 
are the renewal points and the throughput 
of the cyclic network is l/(expected time 
between arrivals) by definition. 

that this algorithm should be used only to 
calculate the mean queue lengths since it 
does not produce accurate results for the 
throughput or the marginal queue length 
probabilities. Let (Izl, kZ, . . . , &) be the 
state of the network under consideration 
with infinite buffer capacities, where kj is 
the number of customers at node j. Then, 
the network has a product form queue 
length distribution if the service times are 
exponentially distributed [Gordon and 
Newell 1967131. In the case of general serv- 
ers, the algorithm is applicable by first ap- 
plying Marie’s method [1979], similar to 
Algorithm 2. 

Transforming the states of the network 
with infinite capacities to the states of the 
blocking is done as follows: For any state 
(h,kz,.. . , kN) of the network with infinite 
capacities, if there exists a node i with 
ki > Bi, then 

Bi ifi=j 
kj = 

kj(ki - Bi) ejPji 

ei(l - Pii) 
otherwise 

3.1.2 Mean Queue Lengths 

To the best of our knowledge, there are 
only two approximations reported in the 
literature to calculate the mean queue 
lengths of arbitrary closed queueing net- 
works under BAS blocking: Akyildiz 
[ 1988c, 1989a]. In particular, Akyildiz 
[ 1988c] developed an approximation to cal- 
culate the mean queue lengths and the 
throughput of each node. The algorithm, 
however, needs more work since it does not 
produce accurate errors. The other algo- 
rithm [Akyildiz 1989a] is not time efficient 
but produces fairly accurate results. The 
approximation algorithm first obtains the 
steady-state joint queue length probabili- 
ties of the network as if there is no blocking 
(i.e., with infinite node capacities). The 
steady-state joint queue length probabili- 
ties of the blocking network are then ap- 
proximated by using a transformation from 
the states of the nonblocking network to 
the states of the blocking network. We note 

Hence, if the capacity of node i is ex- 
ceeded at some state for some node i, then 
the number of customers at that node is set 
to its capacity and the remaining customers 
are distributed to other nodes according to 
the routing probabilities (pij ‘s) (referred to 
as the normalization step). ei is the relative 
number of visits a customer makes to the 
ith node and is given by Equation (7). This 
transformation is applied until the number 
of customers at each node is less than or 
equal to the respective node capacities, giv- 
ing the normalized state. Consider the 
cyclic network shown in Figure 14 with 
N = 3, B, = 2, B2 = 1, B3 = 2, and K = 4. 
Furthermore, assume that the service time 
at each node is exponentially distributed. 
We note that ei = 1, i = 1, 2, 3. For a 
moment, consider the network with infinite 
node capacities and the state (0, 0,4), where 
nodes 1 and 2 are empty and there are four 
customers at node 3. Since the capacity of 
node 3 is exceeded, the first normalization 
gives the state (0, 2, 2). As the capacity 
of node 2 is exceeded, the normalization 
step is applied once more giving the state 
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(1, 1, 2) in which no node capacity is ex- 
ceeded. Hence, the state (0, 0, 4) of the 
nonblocking network becomes (1, 1,2) after 
the normalization step is applied twice. 

Let f(b) denote the normalized state 
where the ith component off, that is, fi(&) 
is the number of customers at node i after 
the normalization step. Then the mean 
queue length of node i, Li, is equal to 
Ckfeas fi(k)P(k), where p(k) is the steady- 
state joint queue length distribution of the 
network with infinite queue capacities. The 
algorithm was applied to a variety of closed 
queueing networks under BAS blocking. It 
was reported in Akyildiz [1989a] that the 
maximum relative error percentage ob- 
served was 20%. 

Dallery and Frein [1989] presented an 
approximation technique for the analysis 
of cyclic networks in which there is at least 
one node with an infinite capacity. The 
approach is similar to the ones developed 
in the literature for open queueing net- 
works with blocking. The algorithm decom- 
poses the network into individual nodes 
with revised capacities, revised service 
rates, and revised arrival rates. In particu- 
lar, if node i causes the blocking of the 
preceding node, that is, Bi < K, then its 
capacity is increased by 1 to accommodate 
the blocked unit. If Bi 2 K, then its capacity 
is set to be equal to K. The service process 
is revised to reflect the possible delay a 
customer might undergo due to blocking. 
Upon completion of its service, a customer 
at node i may find node i + 1 full. Then the 
blocked customer will wait until a depar- 
ture occurs from node i + 1. We note that 
the blocking delay is not necessarily equal 
to the remaining service time at node i + 1 
as node i + 1 may get blocked by node 
i + 2, node i + 2 may get blocked by 
node i + 3, and so on. Hence, the mean 
delay, l/p:(n), at node i, when there are n 
customers in it is equal to 

5 (n) = i + bt(n)tt(n) (19) 
I I 

where t&T(n) is the mean blocking delay, 
br(n) is the probability that a customer 
upon service completion will find the suc- 

‘i ‘i(K) 

Figure 20. Node i in isolation. 

cessor node full and node i is blocked. It 
was assumed that 

Pi+l(n) 
b,*(n) = 

1 - Pi+l(Bi+l + 1) 
if K - n - Bi+l 2 0 

(20) 

0 otherwise 

where Pi+l(n) is the marginal probability 
of having n customers at node i + 1. 
Equation (20) is the probability that an 
arriving customer finds n customers in 
an M/M/l/Bi+,+l/FCFS queue [Cohen 
19691. It was used in the algorithm to ap- 
proximate the blocking probability. It is an 
approximation because neither the arrival 
distribution nor the time between depar- 
tures from node i is exponential in the 
original system (due to blocking). The 
blocking delay was assumed to be equal to 
the mean service time of the successor 
queue, that is, t*(n) = l/pi+l. That is, if 
node i is blocked by node i + 1 then it was 
assumed that node i + 1 cannot get blocked 
by node i + 2, even if this may not be the 
case. Then a node in isolation looks like an 
M/M/l/Bi+l/FCFS queue in Figure 20. 

Clearly, the overall arrival rate pi is not 
known. If the throughput of node i, hi(K), 
is known, however, then pi can be calcu- 
lated as a fixed point problem using the 
following algorithm. 

Algorithm 4 

SO: Let pi = xi(K). 
Sl: Solve the M/M/l/Bi+l/FCFS queue 
to obtain Pi(Bi + l), the marginal proba- 
bility of having Bi + 1 customers at node i. 
52: Let 0 = xi(K)/(l - Pi(Bi + 1)). If 
] D - pi ] < 6 then STOP; else set pi = fi 
and go to Sl. 

This procedure has been used in numer- 
ous algorithms in the context of open 
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queueing networks with blocking [Altiok 
and Perros 19871. 

We are now ready to present Dallery and 
Frein’s [ 19891 algorithm that calculates the 
throughput of the network and the mean 
queue length of each node. 

Algorithm 5 

SO: Set the bounding values for the 
throughput, X(K), of the network. Note 
that in cyclic networks, throughput of 
nodes and the throughput of the network 
are the same because ci = 1, i = 1, . . . , N. 
Let Xmin = 0 and X,,, = min( hi, i = 1, . . . , 
Nl. 
Sl: Let X(K) = (Xmin + X,*,)/2. 
S2: For i = N down to 1 

(* for each node in the network do *) 
calculate b: (n) using Equation (9) 

set w.*(n) = (pT1 + bT(n)/pi+l)-l 

solve this M/M/l/Bi+l queue using Algo- 
rithm 5 
(Note: If Bi I K, then the node capacity is 
set to be equal to K). 
53: Calculate the average length, Lip of 
node i, i = 1, . . . ,NtoobtainL=CziLi. 
S4: If IL-K1 <EthenSTOP; 
else if L > K then set X,,, = X(K) else if 
L<Kthenset&,=X(K) 
go to Sl. 

This algorithm was proven in the paper 
to be convergent. It produces both the 
throughput of the network and the mean 
queue lengths. Although the algorithm cal- 
culates these performance measures from 
the marginal queue length probabilities, 
their accuracy was not reported. The aver- 
age relative error percentages for the other 
two performance measures were reported 
to be 4.2%, whereas the maximum RE% 
was observed to be equal to 20%. 

3.1.3 Blocking Network as an Approximate 
BCMP Node 

Perros et al. [1988] developed a numerical 
procedure for the approximate analysis of 
closed queueing networks in which some of 
the queues have finite capacities. The ap- 
proximation algorithm is based on Norton’s 
theorem [Chandy et al. 19751. 
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Algorithm 6 

SO: Group all the finite queues and those 
infinite queues that are liable to getting 
blocked into a subnetwork (blocking 
subnetwork) and the remaining ones 
into another subnetwork (nonblocking 
subnetwork). 
Sl: Analyze the nonblocking subnetwork 
(obtained from the original network by 
“shorting” the blocking subnetwork) as a 
product form network assuming n cus- 
tomers, where n = 1,2, . . . , K. For each n, 
obtain the steady-state probabilities 
~(n ] n), where rlt E S, is the state of the 
nonblocking subnetwork and S, is the set 
of all feasible states for a given n. Based 
on these results, calculate T(n), n = 1, 
2 K. 
S2: 

* * 9 
Construct a composite queue with a 

state dependent throughput equal to T(n), 
n = 1, 2, . . . , K. Now, in the original 
network substitute the nonblocking sub- 
network by its composite queue. Analyze 
the reduced network numerically to obtain 
the marginal queue length probability dis- 
tribution for each queue, assuming K 
customers in it. 
53: Let p,(n), n = 1, . . . , K be the mar- 
ginal queue length probability that there 
are n units in the composite queue as 
calculated in S2. Then, from Sl, we have 
p(m) = p(m I n)p,(nL m E 8, and n = 1, 
2 K. Using p(m), the marginal queue 
length distribution for each queue in the 
nonblocking subnetwork can be easily 
obtained. 

Numerical investigation in the paper 
shows that the algorithm is very accurate. 
In particular, the authors observed that the 
throughput and the mean queue legnths 
have relative errors less than 1%. Also, the 
relative error percentages on the queue 
length probabilities were observed to be less 
than 5%. The drawback of the algorithm 
is solving the blocking network numeri- 
cally, which is time consuming for large 
networks. 

3.2 Blocked before Service Blocking 

The BBS blocking mechanism was in- 
troduced to model computer and tele- 
communications systems. In this blocking 
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mechanism, the lack of a space in the des- 
tination node forces the server to suspend 
its service. Our discussion is limited to 
deadlock free networks, since closed 
queueing networks under BBS blocking in 
which deadlocks can occur have not been 
studied in the literature. 

((B,, /JN, (BN, p~--l), . . . , (B2, PI)] with 
C,“=l Bj - Kcustomers. Let,p(n) andpD(n) 
be the steady-state queue length probabili- 
ties of a cyclic network and its dual, respec- 
tively, where 0 = (iI, ip, . . . , iN) is the state 
of the network with ii being the number of 
customers at node j. Then for all feasible 
states, we have 

3.2.1 BBS-SNO Blocking p(il, iZ, . . . , iN) 

This blocking mechanism was introduced 
in open networks and, to the best of our 
knowledge, no study of closed queueing net- 
works with this form of blocking has been 
reported in the literature. However, since 
BBS-SNO blocking is equivalent to BAS 
blocking in cyclic exponential networks 
(Lemma 3b), results reported for cyclic net- 
works under BAS blocking are readily 
applicable to cyclic networks under BBS- 
SNO blocking after the node capacities are 
adjusted. 

= pD(B1 - iI BN - iN, . . . , Bz - i2). 

We note that if the number of customers 
in the network is such that no node can be 
empty, then the dual network is a non- 
blocking network (i.e., the number of holes 
is less than or equal to the minimum node 
capacity) and it has a product form queue 
length distribution [Gordon and Newell 
1967b]. But then, from the concept of dual- 
ity, the original network has a product form 
queue length distribution. Hence, we have 
the following lemma [Gordon and Newell 
1967a]: 

3.2.2 BBS-SO Blocking 

Closed queueing networks under BBS-SO 
blocking were first studied by Gordon and 
Newell [1967a] in the context of cyclic net- 
works. The service time at each node is 
assumed to be exponentially distributed. 
First, we will discuss the concept of holes 
as introduced by Gordon and Newell. Since 
the capacity of node j is Bj, let us imagine 
that this node consists of Bj cells. If there 
are ij customers at node j, then ij of these 
cells are occupied and Bj - ij cells are 
empty. We may say that these empty cells 
are occupied by holes. Then the total num- 
ber of holes in the network is equal to 
x,El Bj - K. As the customers move se- 
quentially through the cyclic network, the 
holes execute a counter sequential motion 
since each movement of a customer from 
the j th node to the (j + 1)st node corre- 
sponds to the movement of a hole in the 
opposite direction (i.e., from the j + 1st 
node to the j th node). It is then shown that 
these two networks are duals. That is, if a 
customer (hole) at node j is blocked in one 
system, then node j + 1 has no holes (cus- 
tomers) in its dual. Let (Bi, CL;) be the 
capacity and the service rate of node i and 
i(&, PI), (&, PZ), . . . , (BN, ,-+I) ] be a cyclic 
network with K customers. Then its dual is 

Lemma 12 

Consider a cyclic network under BBS-SO 
blocking. The service time at each node is 
assumed to be exponentially distributed. The 
network has a product form queue length 
distribution if 

N 

K > C Bi = min{Bj, j = 1, . . . . NJ. 
i=l 

Furthermore, the following conjecture is 
a consequence of duality in cyclic networks 
[Onvural 1987; Persone and Grill0 19871. 

Conjecture 4 

An exponential network under BBS-SO 
blocking has the same throughput with 
K and CzI Bj - K customers in it. 

This conjecture was proved in the case of 
symmetrical node capacities, that is, Bi = 
B,i=l,... I y, and its validity for arbitrary 
node capacities was observed empirically. 
In addition to the above conjecture, it was 
observed that the throughput of cyclic net- 
works under BBS-SNO blocking is nonde- 
creasing as K increases from 1 to K’ = 
[ CZ1 BJ2] and nonincreasing as K in- 
creases from K’ to CZ1 B; - 1 [Onvural 
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and Perros 1989b; Persone and Grill0 
19871. 

Shanthikumar and Yao [1989] consid- 
ered exponential cyclic queueing networks 
under BBS-SO blocking and identified the 
conditions under which the performance 
measures are monotone in service rate, 
node capacity, and population size. Let 
pi(k) be the load dependent service rate at 
station i. Furthermore, let B = (Bi, . . . , 
BN) and cc = bl(k), . . ., m(k)) be the 
vector of node capacities and service rates, 
respectively. The main properties obtained 
by Shanthikumar and Yao are given as 
follows. 

Lemma 13 

Consider a cyclic network under BBS-SO 
blocking with two sets of ;ervice rates, 
;!=t”,‘, d(n). If p:(k) 2 pi (n), k 2 n, 

, * * * , N, then 

Throughput( y’, B, K) 

2 Throughput(k2, B, K). 

Lemma 14 

Consider a cyclic network under BBS-SO 
blocking with two sets of buffer capacities, 
el, B2 and assume that pi(k) is increasing 
znkforeachi,i=1,...,N.IfB2?B2then 

Throughput&, B’, K) 

2 Throughput(E, B2, K). 

Lemma 15 

LetB*=max(Bi;i=l,..., N).Then,for 
O<K<B*, 

Throughput(y, B, K + 1) 

1 Throughput(k, B, K). 

Lemma 15 states that throughput is non- 
decreasing with respect to the number of 
customers as long as the number of cus- 
tomers is less than the maximum node ca- 
pacity in the network. Similarly, Lemmas 
13 and 14 show the monotonicity of the 
throughput with respect to service rates 
and node capacities, respectively. In partic- 
ular, Lemma 13 states that the throughput 
of the network does not decrease if the 
service rate of a node (or a group of nodes) 

increases. Similarly, Lemma 14 states that 
the throughput of the network is nonde- 
creasing as the buffer capacity of a node 
(or a group of nodes) increases. 

Approximation algorithms for cyclic net- 
works under BBS-SO blocking were pro- 
posed by Suri and Diehl [ 19861 and Onvural 
and Perros [ 1989b]. In particular, Onvural 
and Perros used the above conjecture 
and assumed that the maximum through- 
put (w.r.t. K) is achieved with K* = 
[ Czl Bi/2] customers. With this value of 
K*, Algorithm 3 is readily applicable to 
cyclic networks under BBS-SO blocking. 
The algorithm was also applied to the cen- 
tral server model with exactly one node 
with an infinite capacity, using a result 
similar to Lemma 8 [Onvural and Perros 
1989a]. The algorithm, in general, was ob- 
served to work better in BBS-SO blocking 
than in BAS blocking. This is because the 
above value of K * was observed empirically 
to be exact for closed queueing networks 
under BBS-SO blocking (Conjecture 4). 

Suri and Diehl [1986] introduced the 
concept of variable buffer size and used it 
together with the flow equivalent approxi- 
mations to approximate the throughput of 
cyclic networks with at least one node with 
an infinite capacity. The service time at 
each node is assumed to be exponentially 
distributed with rate pi, i = 1, . . . , N. 
Without loss of generality, let the node with 
the infinite capacity be node 1. In the flow 
equivalent approach [Chandy and Sauer 
1978; Chandy et al. 19751 all nodes other 
than node i, for some i, are replaced by a 
single composite server with state depen- 
dent service rates pi ( j ), where j is the num- 
ber of customers in the composite queue. 
When this approach is used in networks 
with finite queues, the capacity of the com- 
posite node plays an important role. If we 
use a node capacity of B = CFi+, Bj (i.e., 
the total capacity of the downstream 
nodes), this would overestimate the 
throughput, because node i can be blocked 
in the actual network with less than B 
customers in nodes i + 1 to N. If we use 
B = Bi+l, this will underestimate the 
throughput because when there are Bi+l 
customers at nodes i + 1 to N, not all 
of them need to be at node i + 1. Thus, 
server i, Si, sees a finite capacity of size k, 
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Bi+ls K 5 Cci+i Bj, in the composite node 
for some fraction of time. The variable 
buffer size model introduced by Suri and 
Diehl is an attempt to capture this view. 

Let p(k ] K) be the fraction of time the 
composite queue behaves like a k-buffer 
node (including the server). Given the fixed 
node capacity k and state dependent service 
rates, the two node network has a product 
form queue length distribution; hence it can 
be solved efficiently. Ifp(k ] K)‘s are known 
for all k, then the performance measures of 
the original network can be calculated as a 
weighted sum of the performance measures 
of the two node networks. The approxima- 
tion algorithm is based on the idea that the 
ith server can view all the downstream 
nodes i + 1 to N in terms of a single finite 
node that is the flow equivalent represen- 
tation of the downstream servers. In partic- 
ular, node 2 of the variable buffer size 
model (Figure 21) is this flow equivalent 
node. The service rate at node 1 of the 
variable buffer size model is that of node i; 
that is, pi. The total number of customers 
is varied from 1 to K for each node i. The 
weights pi(k ] K) are obtained by calculat- 
ing the probabilities that there are bi cus- 
tomers at node 1 and k - bi customers at 
node 2. The algorithm proceeds in this 
fashion moving upstream until all nodes 
have been considered. It is easily started 
since the (N - 1)st node sees the Nth node 
as the flow equivalent node and as the 
destination of the Nth node (i.e., node 1 
has an infinite capacity). 

The complete algorithm is given in Suri 
and Diehl [ 19861. Validation tests pre- 
sented in the cited paper show that the 
algorithm is accurate and fast. These tests, 
however, are restricted to three-node cyclic 
networks. Of the 100 examples reported in 
Diehl [1984], 57% had RE% less than 1% 
with the maximum RE% being equal to 7%. 
The accuracy needs to be investigated for 
networks with more than three nodes. 

A similar algorithm is given for cyclic 
networks under BAS blocking. It was dis- 
cussed in Diehl [1984] that the algorithm 
can be used to approximate the other per- 
formance measures; it is also applicable to 
arbitrary topologies as well as open net- 
works. No validation tests have been re- 
ported for these cases. 

1 r “‘w”” 2 

0-l 

Figure 21. Two-node variable buffer 
size model. 

Finally, we note that, to the best of our 
knowledge, there is no algorithm reported 
in the literature to calculate the mean 
queue lengths of closed queueing networks 
under BBS-SO blocking. 

3.3 Repetitive Service Blocking 

The RS blocking was introduced by Caseau 
and Pujolle [1979] in open tandem net- 
works and by Pittel [1979] in reversible 
closed queueing networks. It was initially 
used to model communication networks 
where a packet is retransmitted due to the 
fact that the destination node was full. 
Recently, it has been used in modeling 
flexible manufacturing systems [Yao and 
Buzacott 1985a, b, c; 19861. 

3.3.1 RS-FD Blocking 

We first note that RS-FD blocking is equiv- 
alent to BBS-SO blocking independent of 
the topology of the network if the service 
time at each node is exponentially distrib- 
uted (Lemma 2). Thus, exact and approxi- 
mate results presented for BBS-SO 
blocking in Section 3.2.2 in the context of 
cyclic networks are readily applicable to 
this blocking mechanism. For general to- 
pologies, if all nodes that are subject to 
blocking in a closed exponential network 
have exactly one destination node, then 
RS-FD is equivalent to RS-RD, by defini- 
tion. Hence, results discussed next in Sec- 
tion 3.3.2 are applicable to this blocking 
mechanism. Other than these equivalences, 
there are no results reported in the litera- 
ture on closed queueing networks under 
RS-FD blocking. 

3.3.2 RS-RD Blocking 

Let us consider a closed queueing network 
under RS-RD blocking with parameters 
given in Table 1. The service time at node 
i is exponentially distributed with mean 
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l/pi. Let fi(ni) bed the rate at which the 
server at the ith node works when there 
are n; customers in the node. We have 
fi(ni) > 0 if ni > 0 and fi(ni) = 0 if 
ni = 0. Furthermore, let bj (nj ) be the prob- 
ability that a customer will be admitted to 
node j when there are nj customers in the 
node. We note that in RS-RD blocking, 
bj(Bj) = 0 and bj(nj) = 1 for 0 5 nj < Bj. 
Let x(il, iz, . . . , &) be the steady-state 
queue length distribution of a closed net- 
work, where ij is the number of customers 
atnodej,Cgiij=KandijIBj,j=l,..., 
N. In networks with reversible routing, it 
is shown that [Balsamo and Iazeolla 1983; 
Dallery and Yao 1986; Hordijk and Van 
Dijk 1981; Pittel 1979; Akyildiz and Von 
Brand 1989a, b, c]: 

N i, 

r(il, iz, . . . , 
bj(k - 1) 

N, = ‘j!l “h!l hj(k)fj(k)’ 

where C is the normalizing constant to 
ensure that the sum of the steady-state 
queue length probabilities is equal to 1. 

Lemma 16, proved in Onvural [1989b], 
unifies the product form queue length dis- 
tributions reported in the literature for 
closed queueing networks under RS-RD 
blocking. 

Lemma 16 

Any closed queueing network under RS-RD 
blocking is a truncated process (in which no 
more than Bi jobs are allowed at node i) of 
the same network with infinite buffer capac- 
ities. Hence, a closed queueing network 
with a reversible routing under RS-RD 
blocking has a product form queue length 
distribution if the network with infinite 
buffer capacities has a product form queue 
length distribution. 

When the routing matrix is not reversi- 
ble, the closed queueing networks under 
RS-RD blocking have been shown to have 
product form queue length distributions in 
the following two cases (Hordijk and Van 
Dijk 19821: 

(a) The probability, bj (nj ), that a customer 
will be admitted to a node j is constant, 
independent of nj; that is, bj (nj) = bj, 
j = 1, . . . . N. In this case, blocking of a 

node occurs independent of the number of 
customers in the destination node. We note 
that this definition of blocking does not 
correspond to any of the blocking mecha- 
nisms defined in Section 1, since the block- 
ing of a node in those blocking mechanisms 
is caused only if node j if full, that is, bj (Bj ) 
=landbj(nj)=O,nj=O ,..., Bj-1. 
(b) The rate fi(ni) at which server i works 
is constant, independent of ni; that is, 
fi(ni) = fi. We note that, in cyclic networks, 
this result is immediate from Gordon and 
Newell’s [1967a] result of duality in BBS- 
SO blocking and from the equivalences of 
the two blocking mechanisms, since a con- 
stant rate, fi, means that no node in the 
network can be empty, that is, K > Cc1 Bi. 
Akyildiz and Von Brand [1987a] extended 
this result to include K = J$gl Bi. 

Consider a closed queueing network with 
parameters given in Table 1 with a revers- 
ible routing. The service time at each node 
is assumed to be exponentially distributed. 
The normalization constant and the per- 
formance measures of such networks can 
be calculated efficiently using Algorithm 8 
[Akyildiz 1989b]. Define an auxiliary func- 
tion g(k, n), where k denotes the number 
of jobs and n denotes the number of sta- 
tions. Then the normalizing constant, 
g(K, N), can be calculated as follows: 

Algorithm 7 

SO: Let g(0, n) = 1, n = 1, . . . , N. 
Compute: 

g(k, 1) = 
xf if k 5 B1 
0 if k > B1 

Sl: g(k, n) = g(k, n - 1) + xNg(k - 1, n) 
- xkh(m, n), where 

h(m, n) = i z f xi h(m - j, n), 
0 i=l j-1 

with h(0, n) = 1, n = 1, . . . , N and Xi = 
e;/p;, where ei is the visit ratio and pi is the 
service rate of node i, respectively. 

The function h(m, n) eliminates the 
nonfeasible states (i.e., k > B,). Once 
the normalization constants are obtained, 
the performance measures of reversible 
networks under RS-RD blocking are 
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calculated as follows: 

(i) The steady-state queue length distri- 
bution: 

115 

probabilities, a queueing network has a 
reversible routing and has the following 
product form steady-state queue length 
distribution: 

ph, . . . , g(K N), 

where ni is the number of customers at node 
i,OSniSBi. 
(ii) Marginal queue length distribution of 
node i: 

Pi(n) = 
X)Gi(K - n) 

gW, NJ ’ 
i= 1, . . . . N, 

where Gi(K - n) is the normalization con- 
stant computed without considering the ith 
station with K - n customers in the net- 
work. 
(iii) Mean queue length of node i: 

4 xlGi(K - n) 
Lcnzl n g(K, N) , i= 1, ---,N. 

(iv) Throughput of node i: 

Xi = = Z. ,PijHij(K- 1 
j l&p% 

i=l ,---, N, 

:K) = hi(K) * bj(K) * 
with initial values Hij (0) = 1; 

convolution operator, and 
a;(K) = (1, x,!, x;, . . . , x?); b;(K) = 
(1, xi’, xf , . . . ) x:(-l, 0). 
(v) The effective utilization: p: = Xi/pi; 
the total utilization: UT (1 - Pi(O))pi, 
i=l * * , N. 
(vi) ;L;ean waiting time: Wi = Li/Xii, i = 
1 t*-*7 N. 

Yao and Buzacott [1985a] considered 
closed queueing networks under RS-RD 
blocking in which the routing probabilities 
from node i to node j are state dependent. 
In particular, let us consider reversible net- 
works studied above assuming pjk depends 
On ij and ik as follows: 

Pjk(ij9 ik) = $j(ij)tik(ik), 

where $j (ij ) and $k(ik) are arbitrary func- 
tions such that 4j (ij ) > 0 if ij > 0, $k (ik) > 
0 if ik > 0 with @j(O) = 0 and IC/k(Bk) = 0. 
Under these state dependent routing 

a(il, i2, . . . , iN) 

N ij 1 
= ’ j!l “(’ - ‘) k!l pj(k)fj(k)+j(k) ’ 

where C is the normalizing constant. The 
effect of this state dependent routing is as 
follows: Upon completion of its service at 
node i, a customer will probabilistically join 
any of the destination nodes that at that 
moment, are not full. If all the destination 
nodes are full, the service will be repeated 
at node i (i.e., RS-RD blocking). 

We note that the routing probability 
pjk (ij , ik) should SEitiSfy c ’ Pjk (ij , ik) = 1 for 

all j. From this we have Cm @j (ij )lC/m(i,,,) = 
1, or equivalently, 4j(ij) = l/En +j(im). 

NOW, let $,(i,) = B, - i,. Then, $j(ij) = 
l/C,B,-(K-ij)),withm#j.Thus,we 
have the following “probabilistic shortest 
queue” routing 

Bk - ii 
pik(ij, ‘k) = xrn B, _ (K _ ij> 

for all j # k such that m # j. 

In this type of routing, a customer may 
join a node that has the shortest queue with 
the highest priority. A customer never joins 
a node that is full; hence, no blocking can 
take place in the network. This is an exten- 
sion of RS-RD blocking to nonblocking 
networks with reversible routing. 

Yao and Buzacott [1985c] reported an 
approximation algorithm for analyzing 
closed queueing networks under RD-RS 
blocking. In addition to the parameters 
given in Table 1, assume that each queue i 
is served by ci servers. Service times are 
assumed to follow arbitrary Coxian distri- 
butions. The topology of the network is 
such that if each service distribution is 
approximated by an exponential distribu- 
tion with the same mean as the Coxian 
server, then the resulting exponential net- 
work is reversible and has a product form 
queue length distribution. The approxima- 
tion is based on the notion of exponential- 
ization. The main steps of the algorithm 
are as follows. 
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Algorithm 8 

SO: For each node i, substitute an expo- 
nential server with the same rate pi(ni) as 
the original Coxian server, ni = 0, . . . , Bi; 
i=l,...,N. 
Sl: Solve the resulting reversible network 
to obtain the marginal queue length distri- 
bution pi (ni) for each node i. 
52: Derive state dependent arrival rate 
Xi (ni) to each node i, i = 1, . . . , N, using 

x,tn,l = pit% + l)Pi(ni + 1) 
, L 

Pi(R) ’ 

ni = 0, . . . , Bie 

S3: Analyze each node in isolation as a 
Xi(ni)/G/ci/Bi queue, where Xi(ni) are ob- 
tained in Step 2. Other parameters of the 
queue are the same as in the original net- 
work. For each node i, obtain the marginal 
queue length probabilities 4i (ni ), ni = 
0 
&: 

* * , Bi;i=l,...,N. 
Derive state dependent service rates 

Vi(ni) as fOllOWS: 

Vi(Q) = 
Xi(ni - l)qi(ni - 1) 

Pi(Q) ’ 

ni=O ,..., Bi; i=l,..., N. 

S5: If max] oi(ni) - pi( < 6 then 
STOP. Else set pi (ni) = vi (ni) for all ni = 
0 ,***, Bi and i = 1, . . . , N and goto Sl. 

The algorithm produces the marginal 
queue length probabilities. Validation ex- 
amples in the paper show that the accuracy 
of the algorithm is good. 

Kouvatsos and Xenios [1989] used the 
principle of maximum entropy to find an 
approximate product form queue length 
distribution for closed queueing networks 
under RS-RD blocking. The algorithm re- 
quires the solution of nonlinear equations 
using the principle of maximum entropy. 
An interested reader may refer to Kouvat- 
SOS [1983] for a detailed description of the 
maximum entropy principle. The procedure 
is based on decomposing the network into 
individual nodes and analyzing them in 
isolation. In particular, each node in isola- 
tion is studied as a GE/GE/l/B/FCFS 
queue, that is, with generalized exponential 
arrival and service distributions. 

Let Pi(n) be the marginal probability of 
having n customers in a GE/GE/l/B/FCFS 
queue. Then, 

Pi(n) = Pi(0)gh(n)Xnyf(n)y n = 0, 1, . . . , 

where h(n) = min(1, max(O, n)), f(n) = 
max(O, n - B + l), g = e-@l, x = 
epp2, y = e+. pi, i = 1, 2, 3 are ob- 
tained by solving the following optimiza- 
tion problem: 

Max H(p) = ; Pi(n) log Pi(n) 
n=O 

subject to 

(1) (Normalization) 5 Pi(n) = 1. 
n=O 

(2) (Utilization) 

$ Pi(n) = p = ; h(?Z)Pi(n). 

(3) (Mean number of customers) 

f$ nPi(n) = Lie 
n=O 

(4) (The probability that node i is full) 

n!. f (n)Pi(n) = 4. 

Consider a closed queueing network un- 
der RS-RD blocking. The service time at 
each node follows a generalized exponential 
with mean l/pi and squared coefficient of 
variation cfi. The service distribution of 
each queue is revised to accommodate the 
delays a customer might undergo due to 
blocking. In particular, in this blocking a 
customer upon completing its service at 
node i attempts to join node j. If node j at 
that moment is full, then the customer goes 
back to ith server and receives another 
service. This is repeated until the customer 
completes its service at a time that there is 
a space in its destination. Hence, the effec- 
tive service time of a customer is a random 
number of GE service times. Let xi be the 
probability that the customer will find the 
destination node full. Then ri is approxi- 
mated as follows: 

ri = z pjipj(Bj), 
j=l 

(21) 
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where Pj (Bj ) is the marginal probability of 
queuej being full. Then the effective service 
at node i is represented by a GE distribution 
with 

and 
/.l* = /.ti(l - Ti) 

C,*i2 = Xi + C$(l - Pi)* (22) 

Similarly, the arrival process to node i in 
isolation is the superposition of the depar- 
ture processes from nodes j with pji > 0, 
each with mean. E (d;). and sauared coeffi- 
cient of variation, eii.as follows: 

E(di) = t 
I 

+ 1 - xi 
( 0) l-2 

C$, 

(23) 

where 

N SPji 
Cii = -1 + C - IcZji + l19 j=l Xi 

and 
2 

Cdji = 1 - pji + Pjic2j* 

In case of open networks, the algorithm 
is easily started with some initial values, 
and then the procedure iterates between 
nodes until the convergence criteria are 
satisfied for the service and arrival rates of 
each node i. In case of closed networks, 
there is an additional fixed population con- 
straint; that is, Czl Li = K (in closed 
queueing networks, the sum of mean queue 
lengths should add up to K). Furthermore, 
in this case it is not possible to obtain the 
exact values of the pi’s. The authors ap- 
proached this problem by first constructing 
a pseudo open network that does not have 
external arrivals and satisfies the fixed pop- 
ulation constraint. All other parameters of 
the open network are the same as those for 
the closed network under consideration. 
The pi’s obtained by solving the pseudo 
open network are used as initial values in 
the approximation for the closed network. 
The main steps of the algorithm are given 
as follows. 

Algorithm 9 

SO: Initialize cii and c,“; for each i = 
1 * * t N. Furthermore, let for some node 
A,‘&,, be initialized to an initial value. 
Sl: Solve Xi = CiN,lpjiAj, i=l * * , N 
52: Solve the above optimization problem 
together with the fixed population con- 
straint and obtain pi, i = 1, 2, 3, and X,. 
Then obtain the marginal queue length 
probabilities. 
53: Obtain the new values of c~i and cl;. 
If the new values are not close to the pre- 
vious values, then stop. 
Goto Sl. 

54: Implement the product form solution 
to calculate the throughputs and the mean 
queue lengths of nodes. Iterate until the job 
flow equations are satisfied 

Validation tests given in the cited paper 
show that the algorithm is fairly accurate. 
No discussion on the time complexity of 
the algorithm is given. The algorithm may 
be applicable to other types of blocking 
once the principles of the maximum en- 
tropy is understood. The main difficulty of 
applying the concept is obtaining the be- 
havior of a node in isolation and describing 
the relationships between nodes. Finally, 
we note that this is the only algorithm 
reported in the literature to analyze closed 
networks under RS-RD blocking with 
arbitrary topologies and general service 
times. 

4. SYMMETRIC NETWORKS 

In this section we discuss the concept of 
indistinguishable nodes as introduced by 
Onvural [1987] and Persone and Grill0 
[ 19871 in symmetric cyclic networks. When 
applicable, this notion allows the solution 
of the rate matrix of such networks on a 
reduced state space. It can be used as an 
efficient method to validate approxima- 
tions as well as to study systems with sym- 
metric parameters. 

Consider an exponential cyclic network 
under BAS blocking with parameter 
Bi = B and pi = /.L, i = 1, . . . , N. The 
algorithm presented next uses an aggregate 
state space obtained from the original state 
space after it is reduced by a factor of N. 
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Consider this cyclic network under BAS 
blocking with B = 2, K = 4, and N = 3 
shown in Figure 22. The state space of this 
network has the following structure with 
all transition rates being equal to CL. 

Let P(i, j, llz) be the steady-state queue 
length probability of having i, j, and k cus- 
tomers at nodes 1, 2, and 3, respectively. 
Furthermore, we used Ii = B + 1 (= 3) to 
denote that node i is blocking the preceding 
node. Writing down the global balance 
equations from the above transition rate 
diagram and solving the system of equa- 
tions numerically with the normalization 
equation replacing one of the equations, we 
have 

P(2,2,0)=P(0,2,2)=P(2,0,2)=0.071429 
P(2,3,0) =P(O,2,3) =P(3,0,2) =0.11905 
P(2,1,1) =P(l, 2,l) =P(l, 1,2) =0.095238 
P(3,1,1) =P(l, 3,l) =P(l, 1,3) =0.047619 

This result is not surprising since the 
nodes are indistinguishable. In view of this, 
let us define the following classes, where a 
state is a member of a class if that state 
has the same steady-state probability as all 
the other states in the same class: 

Sl = ((2, 2, O), (0, 2, 2), (2, 0, 31 

sz = ((2, 3, O), (0, 2, 3), (3, 0, 2)) 

ss = I@, 1, I), (1, 2, l), (1, 1, 211 

& = ((3, 1, 11, (1, 3, l), (1, 1, 3)) 

Then, we have the state space structure 
for these equivalence classes with all transi- 
tion rates being equal to p as shown in 
Figure 23. 

Writing down the global balance equa- 
tions from the above transition rate dia- 
gram and solving the system of equations 
numerically with the normalization equa- 
tion replacing one of the equations, we have 

P(S,) = 0.214287; 

P(S,) = 0.37515; 

P(S,) = 0.28571; 

P(S,) = 0.14285. 

Furthermore, J’(si) = C (i,,iZ,i3)ES, PC&, L, 
is), i = 1,. . . ,4. Hence, to solve the original 
network, we can form the equivalence 

Figure22. Transition rate diagram of a symmetric 
cyclic network under BAS blocking. 

S 1 % 

823 s2 
S 4 

Figure 23. Transition rate diagram of the aggregated 
network. 

classes, Si, create the rate matrix for these 
classes, and solve the system numerically. 
Algorithm 11 summarizes this procedure to 
obtain the queue length probabilities of the 
original network. 

Algorithm 10 

Sl: Generate the equivalence classes Si 7 
and set up the rate matrix. 
52: Solve the system numerically to ob- 
tain P(Si). 
53: Calculate the normalizing constant GK 
for the original network as follows: 

GK = i RiP(Si), 
i=l 

where S is the number of equivalence 
classes and Ri is the number of states in 
the equivalence class i. 
54: P(i,, is, . . . , iN) = G,‘P(S,). 

Finally, we note that although the con- 
cept of indistinguishable nodes is discussed 
in cyclic networks under BAS blocking, it 
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is also applicable to other blocking mecha- 
nisms defined in Section 1 in cyclic expo- 
nential cyclic networks and the central 
server model. 

5. CONCLUSIONS 

In this paper we give a survey of analytical, 
approximate, and numerical results related 
to closed queueing networks with finite 
queues. Except for a few special cases, these 
networks could not be shown to have prod- 
uct form solutions. Although the steady- 
state queue length distributions of these 
networks can, in theory, be calculated by 
solving the global balance equations to- 
gether with the normalization equation nu- 
merically, this procedure can, in practice, 
be restrictive due to the time complexity of 
the procedure and the large storage re- 
quired to store the rate matrixes, particu- 
larly for large networks. Since exact values 
of their steady-state queue length distri- 
butions are, in general, not attainable, good 
approximation algorithms are required to 
analyze closed queueing networks with fi- 
nite queues. 

Approximations developed in the litera- 
ture (particularly for BAS and BBS block- 
ing mechanisms) are, in general, based on 
empirical observations. In view of this, 
there is a strong need for developing ap- 
proximation procedures to analyze closed 
networks with blocking that cannot other- 
wise be analyzed. One approach toward the 
development of approximation algorithms 
is decomposing the network into individual 
queues and analyzing them in isolation. 
This methodology has been used in numer- 
ous algorithms developed for open net- 
works with blocking [Perros 19891. Its 
extension to closed networks, however, is 
trivial. Exact decomposition of queueing 
networks with blocking (open or closed) 
requires state dependent arrival and service 
rates [Onvural1989a]. This dependency on 
the number of customers appears not to be 
crucial in the case of open networks as a 
number of approximations has been devel- 
oped with state independent parameters. 
Due to the fixed population of customers, 
however, the dependencies of the parame- 
ters of a node in isolation appears to be 

very strong for closed networks. Hence, the 
next generation of approximation algo- 
rithms should focus on obtaining good 
estimates of these state dependent param- 
eters. Since this approach is based on the 
exact decomposition, such studies would 
produce efficient and accurate tools for the 
analysis of closed queueing networks with 
blocking. 
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