
A Constructive Development Environment 

for Parallel and Distributed Programs

Jeff Magee, Naranker Dulay, Jeff Kramer

Department of Computing, 
Imperial College of Science, Technology and Medicine, 

180 Queen's Gate,  London SW7 2BZ, UK.
Email: jnm@uk.ac.ic.doc

Tel: +44-71 589 5111 x5040
Fax:+44-71 581 5024

Abstract
Regis is a programming environment aimed at supporting the development

and execution of parallel and distributed programs. It embodies a constructive
approach to the development of programs based on separating program

structure from communication and computation. The emphasis is on
constructing programs from multiple parallel computational components which

cooperate to achieve the overall goal. The environment is designed to easily
accommodate multiple communication mechanisms and primitives. Both the

computational and communication elements of Regis programs are programmed
in the Object Oriented programming language C++. The elements are combined

into parallel and distributed programs using the configuration language

Darwin.  The paper describes programming in Regis through a set of small

example programs.

Keywords
parallel programming, distributed programming, inter-process

communication,  parallel programming language, software development
environment.
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1. Introduction

The Regis environment we describe in this paper has evolved from our research into

“configuration” programming[1]. The premise of this approach is that a separate, explicit
structural (configuration) description is essential for all phases in the software development

process for distributed programs, from system specification as a configuration of component
specifications to implementation as a set of interacting computational components. Configuration

programming thus separates the description of program structure from the programming of
computational components. In common with others[2,3,4] have found this to be  crucial in

managing the complexity of large parallel and distributed  programs.  The Regis environment
extends our previous work in two major areas: by separating communication from computation

and in the support for dynamic program structures. 

The Conic system[5] separated structure from  component behaviour but was restricted to a
single programming language (Pascal) augmented with a fixed set of communication primitives

for defining computational components. REX[6], which suceeded Conic, permitted the
implementation of computational components in a range of sequential programming languages,

however, these components were restricted to a fixed set of intercommunication primitives. The

Regissystem we described here removes the latter restriction by allowing components to interact

through user specified communication primitives. In essence, Regis allows the separation

between configuration, computation and communication while its predecessors considered
computation and communication as integral. 

The configuration language included in the Conic system permitted only the definition of

static component graphs. The set of component instances and their interconnections was fixed at
system startup time. However, Conic did allow distributed programs to be interactively

configured and modified at run-time through the agency of an external configuration manager.
The configuration language provided in the REX system in contrast allowed the user to define

arbitrary configuration operations which could be invoked at system runtime to modify and
extend the initial structure. REX attempted to include the functionality of the configuration

manager in the configuration language. However, this generality obscured the clarity of the
configuration description since it provided a precise description only of the initial structure. The

subsequent structure depended on the exact sequence of configuration operations which had
been executed. We feel that Regis is a more satisfactory compromise between the desire for a

precise description of program structure and the need for dynamic component instantiation in
some applications.  Regis provides lazy component instantiation and direct dynamic component

instantiation as the only two methods of programming dynamic structures.  These limited forms
of dynamic instantiation have been found, so far, to satisfy the needs of applications. The result

is that the Regis configuration describes the potential structure of an application which may or
may not be completely elaborated at runtime. The need for arbitrary evolutionary change to
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structure which REX attempted to accomodate is catered for by providing hooks into the

external Open Systems environment in which Regis programs execute. 

The computational components in Regis are provided by C++ objects. Computational
components interact via communication objects again programmed in C++. The framework in

which these objects concurrently execute is programmed in the configuration language Darwin.

This is essentially the language described in [7].  The version used here differs only in its
treatment of dynamic instantiation and in the way generalised communication is handled. In the

following, the basic elements of the Regis environment are described and  illustrated by a set of

examples1 . We look at configuration, communication and computation in the Regis environment

and then see how these elements are combined to form parallel and distributed programs.  The
more advanced features of the Regis environment concerned with dynamic and generic

structures are then examined before we  conclude by discussing our experience with using the
environment.

2. Program Configuration

From the previous section, we have seen that programs in Regis consist of multiple

concurrently executing and interacting computational components. Typically, a program consists
of a limited set of component types with multiple instances of these types. The task of

describing a program as a collection of components with complex interconnection patterns
quickly becomes unmanageable without the help of some structuring tools. In Regis, the

structuring tool is the configuration language Darwin. Darwin allows parallel programs to be
constructed from hierarchically structured configuration descriptions of the set of component

instances and their interconnections. Composite component types are constructed from the basic
computational components and these in turn can be configured into more complex composite

types.  

Components

Darwin views components in terms of both the communication objects they provide to allow

other components to interact with them and the communication objects they require to interact

with other components. For example, the component of Figure 1 is a filter component which

provides the communication object left and requires two communication objects right and

output.  The diagrammatic convention used here is that filled in circles represent communication

objects provided by a component and empty circles represent communication objects required by

a component.

3

1 We have reused some of the examples from [7] so that the interested reader may easily follow the evolution
of the Darwin configuration language.



left right

output

filter

component filter {
		 provide left   <port,int>;
  require right  <port,int>,
          output <port,int>;
}

Figure 1 - Darwin description of filter component.

In the Darwin description of the filter component, the required and provided communication

object names are annotated with a type description <port, int>. These annotations, as we will

see in the next section, are used in the generation of class headers for computational components
implemented in C++. They indicate that the communication objects provided and required are

message ports which accept messages of the integer type int.  Ports are one of the standard

communication object classes provided by Regis.

Composite Components

The primary purpose of the Darwin configuration language is to allow programmers to
construct composite components from both basic computational components and from other

composite components. The resulting parallel program is a hierarchically structured composite
component which when elaborated at execution time results in a collection of concurrently

executing computational component instances.  Darwin is a declarative notation. Composite
components are defined by declaring both the instances of other components they contain and

the bindings between those components. Bindings, which associate the communication objects
required by one component with the communication objects provided by others, can be

visualised as filling in the empty circles of a component with the solid circles provided by other

components. The example of Figure 2 of a pipeline  component constructed from the filter

component of Figure 1 illustrates the Darwin bind statement.
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component pipeline ( int n) {
		 provide input;
  require output;

  array F[n]:filter;
  forall k:0..n-1 {
    inst F[k];
    bind F[k].output -- output;
    when k<n-1
      bind F[k].right -- F[k+1].left;
  }
  bind input -- F[0].left;
       F[n-1].right -- output;
}

output
input

pipeline(n)

F[0] F[1] F[n-1]

Figure 2 - Darwin description of composite pipeline component.

The Darwin bind statement is also used to described how component interface provisions are

implemented by internal component instances (e.g. Figure 2,  bind input -- F[0].left ) and to

export requirements to the component interface  (e.g. Figure 2,  bind F[k].output -- output ).

As can be seen from this last example, many required communication objects can be satisfied by
one provided object. However, a required object may only be bound to a single provided object.

The Darwin compiler checks that bindings are only made between compatible communication

objects (in this case that the provided port and required port are both of the same type int ).

Where necessary, the compiler infers the type of interface objects which are not explicitly typed

(e.g.. input and output ).  The forall construct of Figure 2 is used to declare an array of

filter instances and their bindings. The when construct allows conditional declaration of both

instances and bindings, although in this case, only a conditional binding is declared. Instance

arrays may be multi-dimensional, the array declaration is used to specify the dimensions.

So far, we have described how the Regis configuration language (Darwin) may be used to
describe static structures of component instances. Before examining more advanced features

which permit the description of recursive, generic and dynamic structures we will examine how
communication and computation are catered for in Regis.
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3. Communication

Inter-component communication is supported in Regis by communication objects defined by

C++ template classes.  A communication object is contained within the component which

provides the object and is remotely referenced by the component which requires it.   Figure 3 is

the C++ description of the Regis por t communication object previously mentioned in relation to

Figure 1. 

template <class T> 
class port: public portbase {
public:
      void in(T &msg);           //  receive message  of type T into msg
      int  inv(T msg[], int n);  //  receive   inv elements of vector   (maximum n )

      void out(T &msg);          //  synchronous send  msg of type T
      void outv(T msg[],int n);  //  synchronous send  of n elements of msg 

      void send(T &msg);         //  asynchronous send  msg of type T
      void sendv(T msg[],int n); //  asynchronous send  of n elements of msg 
};

Figure 3 - Template class for Regis Port Objects

Port objects are really queues of messages of a particular type T. Messages may be queued to a

port object ( out, send ) and removed from a port object ( in ). A communication object named

input for integer messages would be declared in C++ as:

port <int> input;

The operation: input.send(3) would queue an integer message with the value  3 to the port

input. This send is asynchronous in the sense that it does not block its calling process. The

synchronous operation out blocks its calling process until the message has been received.

Variable length messages may be transferred through ports using the vector primitives ( inv,

outv, sendv ).  The operations on ports are implemented using the underlying class portbase

which supplies untyped send and receive operations. In addition, portbase supplies methods

common to all ports. These methods are used to selectively wait on a set of ports and to
determine whether  messages are queued to a port. 

The port operations we have described so far are only available to invoking processes which

are co-located with the port object. That is, they are resident on the same processor and in the
same address space such that they can either name a port directly or use a pointer to it. This is of

limited use in a distributed memory environment. Consequently, the implementer of
communication objects in the Regis framework must describe not only the object class but also a

class which can be used to access that communication object remotely.  These remote access

classes are by convention named by adding the suffix ref to the name of the communication
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object class it is providing access to.  Regis provides the template class portref for remote

access to port objects. As can be seen from Figure 4, we have chosen to support only the

sending operations in the remote access class for ports. Although, a remote receive operation
could in theory be implemented, this would not be efficient, nor would it lead to clear program

design. 

template <class T> 
class portref : public remref {
public:
      portref();
      portref( port<T> &P); 

      void out(T &msg);
      void outv(T msg[],int n);

      void send(T &msg);
      void sendv(T msg[],int n);
};

Figure 4 - Template class for Port remote access

The base class for port references is the remref class provided by the Regis run-time system.

Remref, short for remote reference,  provides operations to transfer data between machines and

to remotely invoke operations.  In addition, remref , ensures that the system can detect invalid

remote references (i.e. subclasses of remref ) to objects which no longer exist. From Figure 4,

we can see that a remote reference value can be constructed from a port object. In effect, this
makes a binding between a port reference and a port object. Figure 5. summarises the

relationship between the declaration of communication objects in Darwin and C++ and the
relationship between binding and remote references.

output = portref <char>(input);

require output<port,char>; provide input<port,char>;

portref <char> output; port <char> input;

bind output -- input;

Darwin

C++

Figure 5 - Communication Objects in Darwin & C++
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For computational components, required communication objects become reference objects and

provided communication objects become object declarations at the C++ implementation level.
Bindings are made by associating the reference object with the actual communication object. The

reader should note that this simple correspondence between Darwin require/provide interfaces
and the C++ objects and reference objects is only true for the base level of computational

components. Composite component interfaces have no concrete representation at runtime. They
are an artifact of program structuring which incur no runtime resource overhead.  Similarly, a

Darwin binding may result in many C++ reference to object bindings.  Table 1 summarises the
performance of the Regis port communication primitives in our environment of Sun SPARC

IPX workstations connected by ethernet. Remote communication is implemented on top of
Sun’s implementation of the UDP/IP datagram protocol. The local communication times are

dominated by the time taken to perform a light-weight thread context switch on the SPARC
architecture.

Local RemoteMessage
Size(bytes)

Test

Synchronous
X.out(M) ->
X.in(M).

Asynchronous
X.out(M) ->
X.in(M).

1

100

1000

1

100

1000

118uS

126uS

197uS

1.89mS

2.05mS

3.01mS

121uS

131uS

182uS

0.98mS

1.16mS

2.17mS

Table 1 - Port communication performance

In this section, we have illustrated how communication is supported in Regis by C++ objects.

In particular, we have used the Regis port  object as an example. Ports can be used to transfer

messages with complex datatypes as well as the simple base types used here. Reference objects
may be sent in messages to allow bindings to be set up dynamically. Regis has a library of

communication template classes which currently includes bidirectional request-reply ports and
streams in addition to ports. We have chosen to use communication template classes in Regis

rather than directly supporting remote method invocation since it gives us the flexibility to use
different communication mechanisms in the same program and in addition allows us to optimise

communication for a particular mechanism. For example, it would be inefficient to implement

the asynchronous send operation on a remote port by using a synchronous remote method

invocation. By specifying communication in terms of both a communication class and a remote

reference class, we have the opportunity to optimise the interaction between objects of these
classes.
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4. Computation

The computational components of a Regis program are again programmed in C++.
Computational components execute as lightweight threads or processes. In our current

workstation implementation, many computational components may execute inside a Unix

heavyweight process. Lightweight threads are implemented by the Regis process class.

Computational components must be implemented as a subclass of process as shown in Figure 6

which gives the C++ implementation of the filter component defined in Figure 1. The class

header for this component is directly generated from the Darwin declaration. The class
constructor forms the body of the component and is supplied by the programmer.

// generated from Darwin description
class filter : public process {
public:
	 port<int> left;
	 portref<int> right;
	 portref<int> output;
	 filter();
};

//  constructor implements component computational function
filter::filter() {
  int first, val;
  left.in(first);
  output.out(first);
  for(;;) {
    left.in(val);
    if (val%first) right.send(val);
  }
}

Figure 6 - Filter C++ computational component

The filter program of Figure 6 transfers the first value it receives from left to output.

Subsequent values are transferred from left to right if they are not multiples of the first value

received. The pipeline of Figure 2 when used with this implementation of the filter process
forms a program to compute prime numbers as shown in Figure 7. The additional computational

components are a process to generate odd numbers( odds ) and a process to print out the prime

numbers ( print  ). The code for these processes is also described in Figure 7.  The program is

terminated when the first n prime numbers have been printed out by the call to end_program().

Regis programs also terminate when all their constituent computational components have
terminated. However, in this case, since the filter processes are programmed to execute

endlessly, the forced termination using end_program() is required.
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outputinput

primes(n)

P(n-2)O Pr(n)

component odds {
 require output<port,int>;
}

component print (int n) {
  provide input <port,int>;
}

component primes( int n) {
  inst
    O:odds;
    P:pipeline(n-2);
    Pr:print(n);
  bind
    O.output -- P.input;
    P.output -- Pr.input;
}

output input

odds::odds () {
 int i;
 for(i=3;;i+=2)
   output.out(i);
}

print::print(int n){
  cout << 2 << '\n';
  while(--n){
    int prime;
    input.in(prime);
    cout << prime << '\n';
  }
  end_program();
}

Figure 7 - Primes Sieve of Eratosthenes

In summary, Regis computational components are active objects in the sense that they
incorporate a thread of control. The thread mechanism, as discussed in the foregoing, is

inherited from the process  class. These process objects interact through communication objects

as described in the previous section. The function of a computational component is implemented

as the constructor method for a C++ class derived from process. Although not shown here, a

programmer can directly embed C++ declarations in Darwin component descriptions to allow

the generation of process class headers which have more than communication objects as
members.

5. Distributed Execution

So far we have examined how Regis programs are constructed from a Darwin configuration

description. This description is a hierarchically structured specification of interconnected
component instances. When elaborated at execution time, this specification results in a network

of intercommunicating active objects.  We now examine how Regis programs are executed in a
distributed system, in our case, a collection of workstations connected by a local area network.

To illustrate distributed execution, we will use an example program which computes an
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approximation to π by calculating the area under the curve 4/(1+x2) between 0 and 1 using

numerical integration. This computation has been used by Lewis and El-Rewini [8] to compare a

wide range of parallel programming languages, tools and environments. The program is
structured as a set of workers which each compute a part of the integration and a supervisor

which combines the results.  Figure 8 outlines both the Darwin structural description for this
program and the C++ computational components.

W[0]

W[1]

W[nw-1]

calcpi(nw)

S

result

result

result

result

component supervisor( int nw){
	 provide result <port,double>;
}

component worker( int id, int nw,
                 int intervals){
  require result <port,double>;
}

component calcpi( int nw){
 const int intervals=400000
	 array W[nw]:worker;
	 inst S:supervisor(nw);
	 forall k:0..nw-1 {
		 inst W[k](k,nw,intervals) @ k;
		 bind W[k].result--S.result;
	}
}

supervisor::supervisor(int nw){
	double area=0.0;
	for (int i=0; i<nw; i++) {
		double tmp;
		result.in(tmp);
		area+=tmp;
	}
	printf("Approx pi %20.15lf\n",area);
	exit();
}

worker::worker (int id, int nw, 
                int intervals){
	double area=0.0; 
	double width=1.0/intervals;
	for (int i=id; i<intervals; i+=nw){
		double x=(i+0.5)*width;
		area+=width*(4.0/(1.0+x*x));
	}
	result.send(area);
	exit();
}

Figure 8 - Program to calculate approximate value of π

The calcpi program is parameterised with the number of worker components. This

determines the degree of parallelism. Each worker component instance is mapped to a different
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logical processor by the annotation @k in the line: inst W[k](k,nw,intervals) @ k. The

general form of the mapping annotation is@ integer_expression. By default, a component
is mapped to the same location as its enclosing composite component and the top-level

component is mapped to processor 0. Processor 0 is by default the processor location at which
the program is initiated. Effectively, we are using the positive integers to denote logical

processors. These logical processors are then mapped to the actual physical workstations by the
Regis execution environment. A user may specify a detailed mapping by supplying a mapping

file, however, more usually it is left to the environment to select an appropriate set of
workstations. The Regis execution environment maintains a set of candidate workstations and

allocates these to programs based on the current CPU loading of those workstations. The load

sharing algorithm is outlined in [9].  A program such as calcpi is initiated by a user on his local

workstation and this then requests extra workstations when necessary. Currently, the entire

program code is loaded at each workstation, but only those components required at that location

are instantiated. The Regis execution environment is implemented by a daemon (r e d - Regis

Execution Daemon) process running at each candidate workstation. The daemon copies the

program code where necessary and insures that protection is not violated. Figure 9 illustrates an

execution scenario in which the command calcpi 3 executed at a workstation named skid

causes execution at three workstations ( skid, bench & water ).

S

W[0] W[1] W[2]

skid =0 bench = 1 water =2

LAN

> calcpi 3

Figure 9 - Program to calculate approximate value of π

We have chosen integer expressions as the most general way of expressing the mapping of a

Regis program to the underlying multicomputer. A user may encapsulate a particular set of
mappings by implementing these expressions as C++ functions. For example, on a torus

connected network, it would be natural to have the functions north(), south(), east() and

west() which would be used to locate components relative to each other. To facilitate

programming these abstractions, Regis supplies a standard function here() which returns the

logical processor location of the enclosing component. Any level of the Darwin configuration
program may be annotated with mapping expressions. Consequently, composite components

complete with mappings can be developed as part of a library of distributed components.
Separating the partitioning of the program structure for distribution using logical locations as
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opposed to directly specifying physical machine addresses gives the execution environment the

opportunity to load share and in addition makes Regis programs portable between different
workstation environments. 

6. Dynamic Configuration

The programs we have described so far have a static structure which is determined by the set
of actual parameters given to the program at initiation time.   Regis also permits the development

of programs in which the process structure changes as execution proceeds. Two extensions to
Darwin are required to accommodate programs with dynamic structure. The first is lazy

instantiation which together with recursion allows the description of structures whose size is
determined dynamically. The second is direct dynamic instantiation of components. 

Lazy instantiation

To illustrate lazy instantiation, we will return to the pipeline example of Figure 2. This had a

fixed number of filter instances determined by the parameter n. However, suppose that we did

not know apriori the number of filter elements required, for example, if we wanted to compute

primes up to some limit rather than the first N. In this case, the number can only be determined
during execution. The program of Figure 10 is a version of the pipeline component defined

recursively which extends as it executes. 

component lazypipe {
		 provide input;
  require output;
  inst 
    head:filter;
    tail: dyn lazypipe @ (here()+1)%MAX;
  bind
    input -- head.left;
    head.right -- tail.input; // use triggers tail instantiation
    head.output -- output;
    tail.output -- output;      
}

outputinput

lazypipe

head tail
input outputleft right

output

Figure 10 - Lazily instantiated pipeline component
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The lazily instantiated pipeline is defined as having a head filter component and a tail

component which is itself a lazypipe. The tail instance declaration is prefixed by the keyword

dyn indicating that this component should not be immediately created at program initiation time.

The tail component  creation is triggered by the head component sending a message to it. That

is, use of the binding head.right -- tail.input causes the tail to be instantiated. If used to

compute prime numbers up to some limit, the lazypipe component would create a filter

instance for each prime found2 . The program could be terminated by a print component in a

similar fashion to that used in the program of Figure 7. Figure 10 illustrates the use of the

here() function. Each tail is created at the next location (modulo MAX) to the current location.

The combination of lazy instantiation and recursion can be used to describe a wide range of

commonly occurring diustributed parallel processing structures (e.g. search trees, combining
trees, divide & conquer). The advantage of this technique of specifying dynamic structure is that

the configuration description is a precise specification which describes the potential structure at
execution time. The components used in the structure need not be aware of whether they are

being used in a statically or lazily elaborated structure.

Dynamic instantiation

Lazy instantiation, although elegant where applicable, is generally only useful in conjunction
with  recursive structures. It does not permit parameters to be passed to newly created instances.

To allow the full generality of dynamic configuration, Regis permits components, both
composite and computational, to be created directly at execution time. Figure 11 gives a

dynamically instantiated version of the calcpi program of Figure 8. While the worker

component remains the same, the supervisor component is modified to instantiate the workers

directly. To create components directly, a component must specify that it requires that service. In

Figure 11, the supervisor component specifies this as: require labour

<component,int,int,int>. This is bound in the calcpi2 program to the system provided

object dyn worker which creates new instances of type worker when it is invoked. The

supervisor invokes worker instantiation by the call labour.inst(...) . The location at which

the new worker instance is to be created is specified by the labour.at(i) call.  It should be
noted that Figure 11 includes the type specific binding worker.result -- S.result . This

binding applies to all instances of type worker created within the composite component calcpi2.

That is, when a new instance of worker is created, it will automatically be bound to the
supervisor instance. Type specific bindings are useful in contexts other than dynamic

instantiation. They can be used to specify default bindings which are over-ridden by instance
specific bindings.  For example, we could have used type specific bindings to specify that all
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instances of type filter in the program of Figure 2 had their output bound to the enclosing

component interface output. .

calcpi2(nw)

S
result

component supervisor( int nw){
	 provide 
   result <port,double>;
 require 
   labour <component,int,int,int>;
}

component worker( int id, int nw,
                 int intervals){
  require result <port,double>;
}

component calcpi2( int nw){
 	 inst 
    S:supervisor(nw);
	 bind
    worker.result -- S.result;
    S.labour -- dyn worker ;   
}

supervisor::supervisor(int nw){
 const int intervals=400000
	double area=0.0;
 for (int i=0; i<nw; i++) {
		labour.at(i);
  labour.inst(i,nw,intervals);
	}
	for (int i=0; i<nw; i++) {
		double tmp;
		result.in(tmp);
		area+=tmp;
	}
	printf("Approx pi %20.15lf\n",area);
	exit();
}

result

worker
labour

Figure 11 - Dynamically instantiated components

It is worth noting that the configuration description calcpi2 is shorter than that of the original

statically configured calcpi. In using direct dynamic instantiation, we have moved information

from the structural description into the supervisor computational component. In general, we

have found  this reduces the clarity and thus comprehensibility of Regis programs. Where
possible, we prefer to describe structure explicitly. Direct dynamic instantiation is thus a

compromise which permits dynamic structures while retaining some information in the
configuration description of the sort of structure being created. Dynamic instantiation is usually

used in combination with sending remote references in messages to dynamically establish
bindings. Again, this serves to obscure program structure, but is necessary for very dynamic

and irregular structures. We have found that it is usually the case that more manageable
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programs result from restricting dynamic bindings to temporary transactional relationships

between component while describing more permanent relationships explicitly in the
configuration description.

7. Generic Components

One of the primary considerations in the design of Regis and its subsequent  development

was the requirement that commonly used parallel and distributed computing paradigms and
functions should be capable of description in a reusable form. We believe that this is crucial in

reducing the complexity of this form of programming. A user should not begin programming
from the basic elements each time but should be able to select components from a library.

Components are specified in a way which makes it easy to plug them into different programs
since they specify both the communication objects they require as well as those they provide.

Internally they use only local names to communicate with the external environment. We term this

propertycontext independence since it allows components to be developed independently of

the context in which they will execute.  However, we would liked to be able to reuse the

structural forms or skeletons of parallel programs as well as overall parallel computational
objects. To this end, the Darwin configuration language allows the description of generic

components which can be parameterised with component types. For example, Figure 12 gives

the generic form of a binary tree component with n inputs and one output. 

component bintree( int n, component bnode) {
  provide input[n]; require result;
  when n==1
    bind result -- input[0];
  when n>1 {
    inst
     root: bnode;
     upper:bintree(n/2,bnode);
     lower:bintree(n/2+n%2,bnode)@here()+n/2;
    bind
     root.result -- result;
     upper.result -- root.upper;
     lower.result -- root.lower;
    forall i:0..n/2-1
     bind input[i] -- upper.input[i];
    forall i:0..n/2+n%2-1
      bind input[i+n/2] -- lower.input[i];
  } 
}

bintree(n)
upper

lower lower

upper
root

result

result

result

input[]

input[]

component bnode {
   provide upper <<alpha>>,
           lower <<alpha>>; 
   require result <<alpha>>; 
}

Figure 12 - Generic binary tree component

Any component which conforms to the description of bnode in Figure 12 can be substituted for

16



it in the bintree component at instantiation time. The type of communication nodes provided and

required by bnode have been specified using a type variable <alpha>. The description simply

states that a component will conform to bnode if it provides two communication objects and

requires one communication objects and that the types of these three are compatible. The Darwin

compiler incorporates a simple form of the polymorphic type checking algorithm that ensures

that any component substituted into bintree must be compatible with the input[] and result

objects provided and required by the component. The bintree generic component can be used to

construct the parallel form of any binary associative operator. For example, a component defined

as follows:
component add {

provide A<port,int>, B<port,int>; 
require sum<port,int>;  

}

which produced the sum of it inputs A and B on its output sum could be used to construct an

adder paradd which summed its  N inputs in O(log2N) time by the declaration:

inst paradd:bintree(N,add);

Generic components describe not only a logical interconnection structure but also information on

how that structure should be mapped to the physical system. For example, the component of
Figure 12 has a simple mapping expression which ensures that nodes at the same depth of the

tree execute on different processors.

8. Conclusion

The paper has given an overview of the Regis support environment for parallel and

distributed programs. The environment is distinguished from its predecessors CONIC and
REX firstly, by the ability to easily incorporate different interaction mechanisms through the

general support for communication objects and secondly,  by the support  included for dynamic
configuration.  To date, we have developed classes to support many to one communication (e.g.

ports) and one to many communication ( e.g. streams are provided by one component and may
be read by many components). Work is in progress to provide support for reliable group

multicast communication. The goal of this work is to allow configurable highly available
systems[10] to be programmed in Regis. 

Darwin configuration programs are elaborated in the Regis environment by a highly parallel

and distributed algorithm. In contrast, the REX implementation of Darwin used a sequential
algorithm. The new parallel algorithm permits an elegant and efficient implementation of both

lazy and direct dynamic instantiation. It can be  observed that configuration programs of simple
functional components which communicate using streams and which use only static or lazy

instantiation are equivalent to first order functional programs (cf. Kahn and MacQueen
dataflow[11]). We intend to formally examine the relationship between the configuration
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language and other programming paradigms using the π calculus semantics specified for

Darwin[12].

The use of a configuration language naturally poses the question as to whether the activity of
structuring parallel programs would be better accomplished using a graphics based tool.  Our

experience with ConicDraw[13], a visual programming tool for Conic, suggests that graphic
representations are valuable as an aid to comprehension and as a framework to meaningfully

display status and performance data on executing programs. However, visual programming of
large regular graph structures is a tedious activity best left to the concise descriptions afforded

by a textually based configuration language. The developers of the Poker environment, a visual
programming environment for distributed memory parallel programs, have also met this

problem[14]. However, Poker does not have a textually based configuration language. Our
current approach is to develop a graphics based program design tool in which the textual

description can be generated from a graphic description and vice-versa[15]. Each component of
a program may thus be designed and viewed in whichever representation a developer is most

comfortable with.

Regis has been in use at Imperial College since November 1992. It is used in both
undergraduate and postgraduate laboratories for distributed and parallel programming courses

and as a vehicle for postgraduate research. It has proved invaluable in the design of laboratory
exercises since it allows instructors to constrain the solution space for an exercise by specifying

both the structure of the overall solution and key component interfaces.  It is also proving a
useful research tool since the approach of separating configuration, communication and

computation allows researchers to quickly construct a framework in which to test their ideas.  It
is planned in the near future to make a version of Regis publicly available via anonymous FTP.

Our previous experience with disseminating the Conic toolkit demonstrated convincingly to us
that the benefits of user feedback outweigh by far the disadvantages and workload involved in

dealing with user queries and problems.

Acknowledgements

The authors would like to acknowledge discussions with our colleagues in the Parallel

and Distributed Systems Group during the formulation of the ideas behind Regis,  Stephen
Crane for helping with the  design and implementation and Kevin Twidle for implementation of

the Regis execution environment. We gratefully acknowledge the DTI (Grant Ref: IED
410/36/2) for their financial support.

18



References

[1 ] J.Kramer, J.Magee, "Dynamic Configuration for Distributed Systems", IEEE Transactions on Software
Engineering, SE-11 (4), April 1985, pp. 424-436.

[2] J. Nehmer, D. Haban, F. Mattern, D. Wybranietz, D. Rombach, “Key Concepts of the INCAS
Multicomputer Project”, IEEE Transactions on Software Engineering, SE-13 (8), August 1987.

[3] M. Barbacci, C. Weinstock, D, Doubleday, M. Gardner and R Lichota, “Durra: a structure description
language for developing distributed applications”, IEE Software Engineering Journal, Vol. 8, No. 2,
March 1993, pp83-94.

[4] C. Hofmeister, E. White and J. Purtillo, “ Surgeon: a packager for dynamically reconfigurable distributed
applications”, IEE Software Engineering Journal, Vol. 8, No. 2, March 1993, pp95-101.

[5] J. Magee, J. Kramer  and M. Sloman, "Constructing Distributed Systems in Conic"  IEEE Transactions
on Software Engineering, SE-15 (6), 1989.

[6] J. Kramer, J. Magee, M.Sloman, N.Dulay, "Configuring Object-Based Distributed Programs in REX",
IEE Software Engineering Journal, Vol. 7, 2, March 1992, pp139-149. 

[7] J. Magee, N. Dulay and J. Kramer, “Structuring Parallel and Distributed Programs”,  IEE Software
Engineering Journal, Vol. 8, No. 2, March 1993, pp73-82

[8] T.G. Lewis and H. El-Rewini, “Introduction to Parallel Computing”, Prentice- Hall International Editions,
1992.

[9] O. Kremien, J. Kramer and J. Magee, “Scalable Load-Sharing for Distributed Systems”, Proc. of HICSS-
26, Hawaii, Jan 1993, pp632-641.

[10] F. Cristian, “Automatic reconfiguration in the presence of failures”,  IEE Software Engineering Journal,
Vol. 8, No. 2, March 1993, pp53-60.

[11] G. Kahn and D. MacQueen, “Coroutines and Networks of Parallel Processes”, Information Processing 77,
edited by B. Glichrist, North-Holland.

[12] S. Eisenbach, R. Paterson, “π-Calculus Semantics for the Concurrent Configuration Language Darwin”,
HICSS-26, Hawaii, January 1993.

[13] J. Kramer, J. Magee and K. Ng,. (1989).  "Graphical Configuration Programming", IEEE Computer,
22(10), 53-65.

[14] D. Notkin, L. Snyder, D. Socha et al., “ Experiences with Poker”, Proc. of ACM/SIGPLAN PPEALS,
pp 10-20, July 1988.

[15] J. Kramer, J. Magee, K. Ng and M. Sloman, “The System Architect’s Assistant for Design and
Construction of Distributed Systems”, To be published in Proceedings of the Fourth IEEE Workshop on
Future Trends of Distributed Computing Systems, Sept. 2-24, 1993, Lisbon, Portugal, IEEE Computer
Society Press.

19


