
Mutual Exclusion 

Companion slides for 
The Art of Multiprocessor

 Programming 
by Maurice Herlihy & Nir Shavit 



Art of Multiprocessor
 Programming 

2 

Mutual Exclusion 

•  Today we will try to formalize our
 understanding of mutual exclusion 

•  We will also use the opportunity to
 show you how to argue about and
 prove various properties in an
 asynchronous concurrent setting 



Art of Multiprocessor
 Programming 

3 

Mutual Exclusion 

•  Formal problem definitions 
•  Solutions for 2 threads 
•  Solutions for n threads 
•  Fair solutions 
•  Inherent costs 



Art of Multiprocessor
 Programming 

4 

Warning 

•  You will never use these protocols 
–  Get over it 

•  You are advised to understand them 
–  The same issues show up everywhere 
–  Except hidden and more complex 



Art of Multiprocessor
 Programming 

5 

Why is Concurrent Programming
 so Hard? 

•  Try preparing a seven-course banquet 
–  By yourself 
– With one friend 
– With twenty-seven friends … 

•  Before we can talk about programs 
– Need a language 
–  Describing time and concurrency 



Art of Multiprocessor
 Programming 

6 

•  “Absolute, true and mathematical
 time, of itself and from its own
 nature, flows equably without
 relation to anything external.” (I.
 Newton, 1689) 

•  “Time is, like, Nature’s way of making
 sure that everything doesn’t happen
 all at once.” (Anonymous, circa 1968) 

Time 

time 



Art of Multiprocessor
 Programming 

7 

time 

•  An event  a0 of thread A is 
–  Instantaneous 
– No simultaneous events (break ties) 

a0 

Events 



Art of Multiprocessor
 Programming 

8 

time 

•  A thread A is (formally) a sequence
 a0, a1, ... of events  
–  “Trace” model 
– Notation: a0  a1 indicates order 

a0 

Threads 

a1 a2 … 



Art of Multiprocessor
 Programming 

9 

•  Assign to shared variable 
•  Assign to local variable 
•  Invoke method 
•  Return from method 
•  Lots of other things … 

Example Thread Events 



Art of Multiprocessor
 Programming 

10 

Threads are State Machines 

Events are
 transitions 

a0 

a1 a2 

a3 



Art of Multiprocessor
 Programming 

11 

States 

•  Thread State 
–  Program counter 
–  Local variables 

•  System state 
– Object fields (shared variables) 
–  Union of thread states 



Art of Multiprocessor
 Programming 

12 

time 

•  Thread A 

Concurrency 



Art of Multiprocessor
 Programming 

13 

time 

time 

•  Thread A 

•  Thread B 

Concurrency 



Art of Multiprocessor
 Programming 

14 

time 

Interleavings 

•  Events of two or more threads 
–  Interleaved 
– Not necessarily independent (why?) 



Art of Multiprocessor
 Programming 

15 

time 

•  An interval  A0 =(a0,a1) is 
–  Time between events a0 and a1  

a0 a1 

Intervals 

A0 



Art of Multiprocessor
 Programming 

16 

time 

Intervals may Overlap 

a0 a1 A0 

b0 b1 B0 



Art of Multiprocessor
 Programming 

17 

time 

Intervals may be Disjoint 

a0 a1 A0 

b0 b1 B0 



Art of Multiprocessor
 Programming 

18 

time 

Precedence 

a0 a1 A0 

b0 b1 B0 

Interval A0 precedes interval B0 



Art of Multiprocessor
 Programming 

19 

Precedence 

•  Notation: A0  B0 
•  Formally, 

–  End event of A0 before start event of B0 

–  Also called “happens before” or
 “precedes”  



Art of Multiprocessor
 Programming 

20 

Precedence Ordering 

•  Remark: A0  B0 is just like saying  
–  1066 AD  1492 AD,  
– Middle Ages  Renaissance, 

•  Oh wait,  
–  what about this week vs this month? 



Art of Multiprocessor
 Programming 

21 

Precedence Ordering 

•  Never true that A  A  
•  If A B then not true that B A 
•  If A B & B C then A C 
•  Funny thing: A B & B A might both

 be false!  



Art of Multiprocessor
 Programming 

22 

Partial Orders 
(you may know this already) 

•  Irreflexive: 
– Never true that A  A  

•  Antisymmetric: 
–  If A  B then not true that B  A  

•  Transitive: 
–  If A  B & B  C then A  C 



Art of Multiprocessor
 Programming 

23 

Total Orders 
(you may know this already) 

•  Also 
–  Irreflexive 
–  Antisymmetric 
–  Transitive 

•  Except that for every distinct A, B, 
–  Either A  B or B  A  



Art of Multiprocessor
 Programming 

24 

Repeated Events 
while (mumble) { 

  a0; a1; 

}   

a0
k 

k-th occurrence
 of event a0 

A0
k 

k-th occurrence of
 interval A0 =(a0,a1) 



Art of Multiprocessor
 Programming 

25 

Implementing a Counter 

public class Counter { 
  private long value; 

  public long getAndIncrement() { 
    temp  = value; 
    value = temp + 1; 
    return temp; 
  } 
} 

Make these steps
 indivisible using

 locks 



Art of Multiprocessor
 Programming 

26 

Locks (Mutual Exclusion) 

public interface Lock { 

 public void lock(); 

 public void unlock(); 
} 



Art of Multiprocessor
 Programming 

27 

Locks (Mutual Exclusion) 

public interface Lock { 

 public void lock(); 

 public void unlock(); 
} 

acquire lock 



Art of Multiprocessor
 Programming 

28 

Locks (Mutual Exclusion) 

public interface Lock { 

 public void lock(); 

 public void unlock(); 
} 

release lock 

acquire lock 



Art of Multiprocessor
 Programming 

29 

Using Locks 
public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 



Art of Multiprocessor
 Programming 

30 

Using Locks 
public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 

acquire Lock 



Art of Multiprocessor
 Programming 

31 

Using Locks 
public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 

Release lock 
(no matter what) 



Art of Multiprocessor
 Programming 

32 

Using Locks 
public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 

Critical
 section 



Art of Multiprocessor
 Programming 

33 

Mutual Exclusion 
•  Let CSi

k      be thread i’s k-th critical
 section execution 



Art of Multiprocessor
 Programming 

34 

Mutual Exclusion 
•  Let CSi

k      be thread i’s k-th critical
 section execution 

•  And CSj
m      be thread j’s m-th critical

 section execution 



Art of Multiprocessor
 Programming 

35 

Mutual Exclusion 
•  Let CSi

k      be thread i’s k-th critical
 section execution 

•  And CSj
m      be j’s m-th execution 

•  Then either 
–             or 



Art of Multiprocessor
 Programming 

36 

Mutual Exclusion 
•  Let CSi

k      be thread i’s k-th critical
 section execution 

•  And CSj
m      be j’s m-th execution 

•  Then either 
–             or 

CSi
k  CSj

m 



Art of Multiprocessor
 Programming 

37 

Mutual Exclusion 
•  Let CSi

k      be thread i’s k-th critical
 section execution 

•  And CSj
m      be j’s m-th execution 

•  Then either 
–             or 

CSi
k  CSj

m 
CSj

m  CSi
k 



Art of Multiprocessor
 Programming 

38 

Deadlock-Free	


•  If some thread calls lock() 
–  And never returns 
–  Then other threads must complete lock()

 and unlock() calls infinitely often 
•  System as a whole makes progress 

–  Even if individuals starve 



Art of Multiprocessor
 Programming 

39 

Starvation-Free	


•  If some thread calls lock() 
–  It will eventually return 

•  Individual threads make progress 



Art of Multiprocessor
 Programming 

40 

Two-Thread vs n -Thread
 Solutions 

•  Two-thread solutions first 
–  Illustrate most basic ideas 
–  Fits on one slide 

•  Then n-Thread solutions  



Art of Multiprocessor
 Programming 

41 

class … implements Lock { 
  … 
  // thread-local index, 0 or 1 
  public void lock() { 
    int i = ThreadID.get(); 
    int j = 1 - i;  
  … 

  } 
} 

Two-Thread Conventions 



Art of Multiprocessor
 Programming 

42 

class … implements Lock { 
  … 
  // thread-local index, 0 or 1 
  public void lock() { 
    int i = ThreadID.get(); 
    int j = 1 - i;  
  … 

  }   
} 

Two-Thread Conventions 

Henceforth: i is current
 thread, j is other thread 



Art of Multiprocessor
 Programming 

43 

LockOne 
class LockOne implements Lock { 
private volatile boolean[] flag =  
                        new boolean[2]; 
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 



Art of Multiprocessor
 Programming 

44 

LockOne 
class LockOne implements Lock { 
private volatile boolean[] flag =  
                        new boolean[2];  
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 

Set my flag 



Art of Multiprocessor
 Programming 

45 

class LockOne implements Lock { 
private volatile boolean[] flag =  
                        new boolean[2];  
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 

LockOne 

Wait for other
 flag to go false 

Set my flag 



Art of Multiprocessor
 Programming 

46 

•  Assume CSA
j overlaps CSB

k 
•  Consider each thread's last (j-th

 and k-th) read and write in the
 lock() method before entering  

•  Derive a contradiction 

LockOne Satisfies Mutual
 Exclusion 



Art of Multiprocessor
 Programming 

47 

•  writeA(flag[A]=true)  readA(flag[B
]==false) CSA 

•  writeB(flag[B]=true)  readB(flag[A
]==false)  CSB 

From the Code 

class LockOne implements Lock { 
…  
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 



Art of Multiprocessor
 Programming 

48 

•  readA(flag[B]==false)  writeB(fla
g[B]=true) 

•  readB(flag[A]==false)  writeA(fla
g[B]=true) 

From the Assumption 



Art of Multiprocessor
 Programming 

49 

•  Assumptions: 
–  readA(flag[B]==false)  writeB(flag[B]=true) 
–  readB(flag[A]==false)  writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true)  readA(flag[B]==false) 
–  writeB(flag[B]=true)  readB(flag[A]==false) 

Combining 



Art of Multiprocessor
 Programming 

50 

•  Assumptions: 
–  readA(flag[B]==false)  writeB(flag[B]=true) 
–  readB(flag[A]==false)  writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true)  readA(flag[B]==false) 
–  writeB(flag[B]=true)  readB(flag[A]==false) 

Combining 



Art of Multiprocessor
 Programming 

51 

•  Assumptions: 
–  readA(flag[B]==false)  writeB(flag[B]=true) 
–  readB(flag[A]==false)  writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true)  readA(flag[B]==false) 
–  writeB(flag[B]=true)  readB(flag[A]==false) 

Combining 



Art of Multiprocessor
 Programming 

52 

•  Assumptions: 
–  readA(flag[B]==false)  writeB(flag[B]=true) 
–  readB(flag[A]==false)  writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true)  readA(flag[B]==false) 
–  writeB(flag[B]=true)  readB(flag[A]==false) 

Combining 



Art of Multiprocessor
 Programming 

53 

•  Assumptions: 
–  readA(flag[B]==false)  writeB(flag[B]=true) 
–  readB(flag[A]==false)  writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true)  readA(flag[B]==false) 
–  writeB(flag[B]=true)  readB(flag[A]==false) 

Combining 



Art of Multiprocessor
 Programming 

54 

•  Assumptions: 
–  readA(flag[B]==false)  writeB(flag[B]=true) 
–  readB(flag[A]==false)  writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true)  readA(flag[B]==false) 
–  writeB(flag[B]=true)  readB(flag[A]==false) 

Combining 



Art of Multiprocessor
 Programming 

55 

Cycle! 



Art of Multiprocessor
 Programming 

56 

Deadlock Freedom 

•  LockOne Fails deadlock-freedom 
–  Concurrent execution can deadlock 

–  Sequential executions OK 

  flag[i] = true;    flag[j] = true; 
  while (flag[j]){}  while (flag[i]){} 



Art of Multiprocessor
 Programming 

57 

LockTwo 
public class LockTwo implements Lock { 
 private volatile int victim; 
 public void lock() { 
  victim = i; 
  while (victim == i) {};  
 } 

 public void unlock() {} 
} 



Art of Multiprocessor
 Programming 

58 

LockTwo 
public class LockTwo implements Lock { 
 private volatile int victim; 
 public void lock() { 
  victim = i; 
  while (victim == i) {};  
 } 

 public void unlock() {} 
} 

Let other go
 first 



Art of Multiprocessor
 Programming 

59 

LockTwo 
public class LockTwo implements Lock { 
 private volatile int victim; 
 public void lock() { 
 victim = i; 
  while (victim == i) {};  
 } 

 public void unlock() {} 
} 

Wait for
 permission 



Art of Multiprocessor
 Programming 

60 

LockTwo 
public class Lock2 implements Lock { 
 private volatile int victim; 
 public void lock() { 
  victim = i; 
  while (victim == i) {};  
 } 

 public void unlock() {} 
} 

Nothing to do 



Art of Multiprocessor
 Programming 

61 

public void LockTwo() { 
  victim = i; 
  while (victim == i) {};  
 } 

LockTwo Claims 

•  Satisfies mutual exclusion 
–  If thread i in CS 
–  Then victim == j 
–  Cannot be both 0 and 1 

•  Not deadlock free 
–  Sequential execution deadlocks 
–  Concurrent execution does not 



Art of Multiprocessor
 Programming 

62 

Peterson’s Algorithm 

1  public void lock() { 
2   flag[i] = true;  
3   victim  = i;  
4   while (flag[j] && victim == i) {}; 
5  } 
6  public void unlock() { 
7   flag[i] = false; 
8  } 



Art of Multiprocessor
 Programming 

63 

Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m
 interested 



Art of Multiprocessor
 Programming 

64 

Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m
 interested 

Defer to other 



Art of Multiprocessor
 Programming 

65 

Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m
 interested 

Defer to other 

Wait while other
 interested & I’m

 the victim 



Art of Multiprocessor
 Programming 

66 

Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
 } 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m
 interested 

Defer to other 

Wait while other
 interested & I’m

 the victim No longer
 interested 



Art of Multiprocessor
 Programming 

67 

public void lock() { 
  flag[i] = true;  
  victim  = i; 
  while (flag[j] && victim == i) {}; 

Mutual Exclusion 

•  If thread 1 in
 critical section, 
–  flag[1]=true,  
–  victim = 0 

•  If thread 0 in
 critical section, 
–  flag[0]=true,  
–  victim = 1 

Cannot both be true 



Art of Multiprocessor
 Programming 

68 

Deadlock Free 

•  Thread blocked  
–  only at while loop 
–  only if it is the victim 

•  One or the other must not be the victim 

public void lock() { 
  … 
  while (flag[j] && victim == i) {}; 



Art of Multiprocessor
 Programming 

69 

Starvation Free 

•  Thread i blocked
 only if j
 repeatedly re
-enters so that 

  flag[j] == true and
 victim == i 

•  When j re-enters 
–  it sets victim to j. 
–  So i gets in 

public void lock() { 
  flag[i] = true;  
  victim    = i; 
  while (flag[j] && victim == i) {}; 
} 

public void unlock() { 
  flag[i] = false;   
} 



Art of Multiprocessor
 Programming 

70 

The Filter Algorithm for n
 Threads 

There are n-1 “waiting rooms” called
 levels 

•  At each level  
–  At least one enters level 
–  At least one blocked if  
   many try 

•  Only one thread makes it through 

ncs 

cs 



Art of Multiprocessor
 Programming 

71 

Filter 
class Filter implements Lock { 
  volatile int[] level;  // level[i] for thread i 
  volatile int[] victim; // victim[L] for level L 

  public Filter(int n) { 

  level  = new int[n]; 

  victim = new int[n];  

  for (int i = 1; i < n; i++) { 

      level[i] = 0; 

  }} 

… 

} 

n-1	


n-1	


0	


1	


0	
 0	
 0	
 0	
 0	
 0	
4	


2	


2	


Thread 2 at level 4	


0	


4	


level	


victim	




Art of Multiprocessor
 Programming 

72 

Filter 
class Filter implements Lock { 
  … 

  public void lock(){ 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i level[k] >= L) && 
             victim[L] == i );  
    }}  
  public void unlock() { 
    level[i] = 0; 
  }} 



Art of Multiprocessor
 Programming 

73 

class Filter implements Lock { 
  … 

  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 

Filter 

One level at a time 



Art of Multiprocessor
 Programming 

74 

class Filter implements Lock { 
  … 

  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i) level[k] >= L) && 
             victim[L] == i); // busy wait 
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 

Filter 

Announce
 intention to
 enter level L 



Art of Multiprocessor
 Programming 

75 

class Filter implements Lock { 
  int level[n];   
  int victim[n];  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 

Filter 

Give priority to
 anyone but me 



Art of Multiprocessor
 Programming 

76 

class Filter implements Lock { 
  int level[n];   
  int victim[n];  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 

Filter 
Wait as long as someone else is at same or

 higher level, and I’m designated victim 



Art of Multiprocessor
 Programming 

77 

class Filter implements Lock { 
  int level[n];   
  int victim[n];  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 

Filter 

Thread enters level L when it completes
 the loop 



Art of Multiprocessor
 Programming 

78 

Claim 
•  Start at level L=0 
•  At most n-L threads enter level L 
•  Mutual exclusion at level L=n-1 

ncs 

cs L=n-1 

L=1 

L=n-2 

L=0 



Art of Multiprocessor
 Programming 

79 

Induction Hypothesis 

•  Assume all at level
 L-1 enter level L 

•  A last to write
 victim[L]  

•  B is any other
 thread at level L 

•   No more than n-L+1 at level L-1  
•   Induction step: by contradiction  

ncs 

cs 

L-1 has n-L+1 
L has n-L 

assume	


prove	




Art of Multiprocessor
 Programming 

80 

Proof Structure 
ncs 

cs 

Assumed to enter L-1	


By way of contradiction 
all enter L	


n-L+1 = 4 
n-L+1 = 4 

A	
 B	


Last to  
write 
victim[L]	


Show that A must have seen  
B at level L and since victim[L] == A 
could not have entered 	




Art of Multiprocessor
 Programming 

81 

From the Code 

(1) writeB(level[B]=L)writeB(victim[L]=B) 

public void lock() { 
 for (int L = 1; L < n; L++) { 
   level[i] = L; 
   victim[L]  = i; 

   while ((∃ k != i) level[k] >= L) 
          && victim[L] == i) {}; 
   }}     



Art of Multiprocessor
 Programming 

82 

From the Code 

(2) writeA(victim[L]=A)readA(level[B]) 

public void lock() { 
 for (int L = 1; L < n; L++) { 
   level[i] = L; 
   victim[L]  = i; 

   while ((∃ k != i) level[k] >= L) 
          && victim[L] == i) {}; 
   }}     



Art of Multiprocessor
 Programming 

83 

By Assumption 

By assumption, A is the last
 thread to write victim[L] 

(3) writeB(victim[L]=B)writeA(victim[L]=A) 



Art of Multiprocessor
 Programming 

84 

Combining Observations 

(1) writeB(level[B]=L)writeB(victim[L]=B) 
(3) writeB(victim[L]=B)writeA(victim[L]=A) 
(2) writeA(victim[L]=A)readA(level[B]) 



Art of Multiprocessor
 Programming 

85 

public void lock() { 
 for (int L = 1; L < n; L++) { 
   level[i]  = L; 
   victim[L] = i; 

   while ((∃ k != i) level[k] >= L) 
          && victim[L] == i) {}; 
   }}     

Combining Observations 

(1) writeB(level[B]=L)writeB(victim[L]=B) 
(3) writeB(victim[L]=B)writeA(victim[L]=A) 
(2) writeA(victim[L]=A)readA(level[B]) 



Art of Multiprocessor
 Programming 

86 

Combining Observations 

(1) writeB(level[B]=L)writeB(victim[L]=B) 
(3) writeB(victim[L]=B)writeA(victim[L]=A) 
(2) writeA(victim[L]=A)readA(level[B]) 

Thus, A read level[B] ≥ L,  
A was last to write victim[L], 
so it could not have entered level L! 



Art of Multiprocessor
 Programming 

87 

No Starvation 

•  Filter Lock satisfies properties: 
–  Just like Peterson Alg at any level 
–  So no one starves  

•  But what about fairness? 
–  Threads can be overtaken by others  



Art of Multiprocessor
 Programming 

88 

Bounded Waiting 

•  Want stronger fairness guarantees 
•  Thread not “overtaken” too much 
•  Need to adjust definitions …. 



Art of Multiprocessor
 Programming 

89 

Bounded Waiting 

•  Divide lock() method into 2 parts: 
–  Doorway interval: 

• Written DA 
•  always finishes in finite steps 

– Waiting interval: 
• Written WA 

• may take unbounded steps 



Art of Multiprocessor
 Programming 

90 

Bakery Algorithm 

•  Provides First-Come-First-Served 
•  How? 

–  Take a “number” 
– Wait until lower numbers have been

 served 
•  Lexicographic order 

–  (a,i) > (b,j) 
•  If a > b, or a = b and i > j 



Art of Multiprocessor
 Programming 

91 

Bakery Algorithm 
class Bakery implements Lock { 

  volatile boolean[] flag; 

  volatile Label[] label; 

  public Bakery (int n) { 

    flag  = new boolean[n]; 

    label = new Label[n]; 

    for (int i = 0; i < n; i++) {  

       flag[i] = false; label[i] = 0; 

    } 

  } 
 … 



Art of Multiprocessor
 Programming 

92 

Bakery Algorithm 
class Bakery implements Lock { 

  volatile boolean[] flag; 

  volatile Label[] label; 

  public Bakery (int n) { 

    flag  = new boolean[n]; 

    label = new Label[n]; 

    for (int i = 0; i < n; i++) {  

       flag[i] = false; label[i] = 0; 

    } 

  } 
 … 

n-1	
0	

f	
 f	
 f	
 f	
 t	
 f	
t	


2	


f	


0	
 0	
 0	
 0	
 5	
 0	
4	
 0	


6	


CS	




Art of Multiprocessor
 Programming 

93 

Bakery Algorithm 

class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 



Art of Multiprocessor
 Programming 

94 

Bakery Algorithm 

class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

Doorway 



Art of Multiprocessor
 Programming 

95 

Bakery Algorithm 

class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

I’m interested 



Art of Multiprocessor
 Programming 

96 

Bakery Algorithm 

class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

Take increasing
 label (read

 labels in some
 arbitrary order) 



Art of Multiprocessor
 Programming 

97 

Bakery Algorithm 

class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

Someone is
 interested 



Art of Multiprocessor
 Programming 

98 

Bakery Algorithm 
class Bakery implements Lock { 
  boolean flag[n]; 
  int label[n]; 

 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

Someone is
 interested 

With lower (label,i) in
 lexicographic order 



Art of Multiprocessor
 Programming 

99 

Bakery Algorithm 

class Bakery implements Lock { 

    … 

 public void unlock() {   
   flag[i] = false; 
 } 
} 



Art of Multiprocessor
 Programming 

100 

Bakery Algorithm 

class Bakery implements Lock { 

    … 

 public void unlock() {   
   flag[i] = false; 
 } 
} 

No longer
 interested 

labels are always increasing 	




Art of Multiprocessor
 Programming 

101 

No Deadlock 

•  There is always one thread with
 earliest label 

•  Ties are impossible (why?) 



Art of Multiprocessor
 Programming 

102 

First-Come-First-Served 
•  If DA  DBthen A’s

 label is earlier 
–  writeA(label[A]) 

 readB(label[A]) 
 writeB(label[B]) 
 readB(flag[A]) 

•  So B is locked out
 while flag[A] is
 true 

class Bakery implements Lock { 

public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], 
                 …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) >
 (label[k],k)); 

 } 



Art of Multiprocessor
 Programming 

103 

Mutual Exclusion 
•  Suppose A and B in

 CS together 
•  Suppose A has

 earlier label 
•  When B entered, it

 must have seen 
–  flag[A] is false, or 
–  label[A] > label[B] 

class Bakery implements Lock { 

public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], 
                 …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) >
 (label[k],k)); 

 } 



Art of Multiprocessor
 Programming 

104 

Mutual Exclusion 

•  Labels are strictly increasing so  
•  B must have seen flag[A] == false 



Art of Multiprocessor
 Programming 

105 

Mutual Exclusion 

•  Labels are strictly increasing so  
•  B must have seen flag[A] == false 
•  LabelingB  readB(flag[A])  write

A(flag[A])  LabelingA 



Art of Multiprocessor
 Programming 

106 

Mutual Exclusion 

•  Labels are strictly increasing so  
•  B must have seen flag[A] == false 
•  LabelingB  readB(flag[A])  write

A(flag[A])  LabelingA 
•  Which contradicts the assumption

 that A has an earlier label 



Art of Multiprocessor
 Programming 

107 

Bakery Y232K Bug 
class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 



Art of Multiprocessor
 Programming 

108 

Bakery Y232K Bug 
class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

Mutex breaks if
 label[i]
 overflows 



Art of Multiprocessor
 Programming 

109 

Does Overflow Actually
 Matter? 

•  Yes 
–  Y2K 
–  18 January 2038 (Unix time_t rollover) 
–  16-bit counters 

•  No 
–  64-bit counters 

•  Maybe 
–  32-bit counters 



... spin locks e desempenho 

•  material cap 7 livro Herlihy 

Art of Multiprocessor
 Programming 

110 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

111 

Revisit Mutual Exclusion... 

•  Think of performance, not just
 correctness and progress 

•  Begin to understand how performance
 depends on our software properly
 utilizing the multiprocessor machine’s
 hardware 

•  And get to know a collection of
 locking algorithms…  

(1) 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

112 

What Should you do if you can’t
 get a lock? 

•  Keep trying 
–  “spin” or “busy-wait” 
–  Good if delays are short 

•  Give up the processor 
–  Good if delays are long 
–  Always good on uniprocessor 

(1) 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

113 

What Should you do if you can’t
 get a lock? 

•  Keep trying 
–  “spin” or “busy-wait” 
–  Good if delays are short 

•  Give up the processor 
–  Good if delays are long 
–  Always good on uniprocessor 

our focus 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

114 

Basic Spin-Lock 

CS	


Resets lock  
upon exit 

spin  
lock 

critical  
section 

.	
.	
.	




Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

115 

Basic Spin-Lock 

CS	


Resets lock  
upon exit 

spin  
lock 

critical  
section 

.	
.	
.	


…lock introduces
 sequential bottleneck	




Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

116 

Basic Spin-Lock 

CS	


Resets lock  
upon exit 

spin  
lock 

critical  
section 

.	
.	
.	


…lock suffers from
 contention	




Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

117 

Basic Spin-Lock 

CS	


Resets lock  
upon exit 

spin  
lock 

critical  
section 

.	
.	
.	

Notice: these are distinct
 phenomena	


…lock suffers from
 contention	




Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

118 

Basic Spin-Lock 

CS	


Resets lock  
upon exit 

spin  
lock 

critical  
section 

.	
.	
.	


…lock suffers from
 contention	


Seq Bottleneck  no
 parallelism	




Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

119 

Basic Spin-Lock 

CS	


Resets lock  
upon exit 

spin  
lock 

critical  
section 

.	
.	
.	

Contention  ???	


…lock suffers from
 contention	




Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

120 

Review: Test-and-Set 

•  Boolean value 
•  Test-and-set (TAS) 

–  Swap true with current value 
–  Return value tells if prior value was true

 or false 
•  Can reset just by writing false 
•  TAS aka “getAndSet” 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

121 

Review: Test-and-Set 
public class AtomicBoolean { 
 boolean value; 

 public synchronized boolean
 getAndSet(boolean newValue) { 

   boolean prior = value; 
   value = newValue; 
   return prior; 
 } 
} 

(5) 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

122 

Review: Test-and-Set 
public class AtomicBoolean { 
 boolean value; 

 public synchronized boolean
 getAndSet(boolean newValue) { 

   boolean prior = value; 
   value = newValue; 
   return prior; 
 } 
} 

Package 
java.util.concurrent.atomic 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

123 

Review: Test-and-Set 
public class AtomicBoolean { 
 boolean value; 

 public synchronized boolean
 getAndSet(boolean newValue) { 

   boolean prior = value; 
   value = newValue; 
   return prior; 
 } 
} 

Swap old and new
 values 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

124 

Review: Test-and-Set 
AtomicBoolean lock 
 = new AtomicBoolean(false) 
… 
boolean prior = lock.getAndSet(true) 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

125 

Review: Test-and-Set 
AtomicBoolean lock 
 = new AtomicBoolean(false) 
… 
boolean prior = lock.getAndSet(true) 

(5) 

Swapping in true is called
 “test-and-set” or TAS 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

126 

Test-and-Set Locks 

•  Locking 
–  Lock is free: value is false 
–  Lock is taken: value is true 

•  Acquire lock by calling TAS 
–  If result is false, you win 
–  If result is true, you lose  

•  Release lock by writing false 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

127 

Test-and-set Lock 
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (state.getAndSet(true)) {} 
 } 

 void unlock() { 
  state.set(false); 
 }}  



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

128 

Test-and-set Lock 
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (state.getAndSet(true)) {} 
 } 

 void unlock() { 
  state.set(false); 
 }}  

Lock state is AtomicBoolean 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

129 

Test-and-set Lock 
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (state.getAndSet(true)) {} 
 } 

 void unlock() { 
  state.set(false); 
 }}  

Keep trying until lock acquired 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

130 

Test-and-set Lock 
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (state.getAndSet(true)) {} 
 } 

 void unlock() { 
  state.set(false); 
 }}  

Release lock by resetting
 state to false 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

131 

Space Complexity	


•  TAS spin-lock has small “footprint”  
•  N thread spin-lock uses O(1) space 
•  As opposed to O(n) Peterson/Bakery  
•  How did we overcome the Ω(n) lower

 bound?  
•  We used a RMW operation… 	




Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

132 

Performance 

•  Experiment 
–  n threads 
–  Increment shared counter 1 million times 

•  How long should it take? 
•  How long does it take? 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

133 

Graph 

ideal ti
m

e 

threads 

no speedup
 because of
 sequential
 bottleneck 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

134 

Mystery #1 

ti
m

e 

threads 

TAS lock 

Ideal 

(1) 

What is  
going
 on?  



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

135 

Test-and-Test-and-Set Locks 

•  Lurking stage 
– Wait until lock “looks” free 
–  Spin while read returns true (lock taken) 

•  Pouncing state 
–  As soon as lock “looks” available 
–  Read returns false (lock free) 
–  Call TAS to acquire lock 
–  If TAS loses, back to lurking 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

136 

Test-and-test-and-set Lock 
class TTASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
 } 
}  



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

137 

Test-and-test-and-set Lock 
class TTASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
 } 
}  Wait until lock looks free 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

138 

Test-and-test-and-set Lock 
class TTASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
 } 
}  

Then try to
 acquire it 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

139 

Mystery #2 
TAS lock 

TTAS lock 

Ideal ti
m

e 

threads 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

140 

Mystery 

•  Both 
–  TAS and TTAS 
–  Do the same thing (in our model) 

•  Except that   
–  TTAS performs much better than TAS 
– Neither approaches ideal 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

141 

Opinion 

•  Our memory abstraction is broken 
•  TAS & TTAS methods 

–  Are provably the same (in our model) 

–  Except they aren’t (in field tests) 

•  Need a more detailed model … 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

142 

Bus-Based Architectures 

Bus 

cache 

memory 

cache cache 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

143 

Bus-Based Architectures 

Bus 

cache 

memory 

cache cache 

Random access memory
 (10s of cycles) 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

144 

Bus-Based Architectures 

cache 

memory 

cache cache 

Shared Bus 
• broadcast medium 
• One broadcaster at a time 
• Processors and memory all
 “snoop” 

Bus 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

145 

Bus-Based Architectures 

Bus 

cache 

memory 

cache cache 

Per-Processor Caches 
• Small 
• Fast: 1 or 2 cycles 
• Address & state information 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

146 

Jargon Watch 

•  Cache hit 
–  “I found what I wanted in my cache” 
–  Good Thing™ 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

147 

Jargon Watch 

•  Cache hit 
–  “I found what I wanted in my cache” 
–  Good Thing™ 

•  Cache miss 
–  “I had to shlep all the way to memory for

 that data” 
–  Bad Thing™ 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

148 

Cave Canem 

•  This model is still a simplification 
–  But not in any essential way 
–  Illustrates basic principles 

•  Will discuss complexities later 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

149 

Bus 

Processor Issues Load Request 

cache 

memory 

cache cache 

data 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

150 

Bus 

Processor Issues Load Request 

Bus 

cache 

memory 

cache cache 

data 

Gimme 
data 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

151 

cache 

Bus 

Memory Responds 

Bus 

memory 

cache cache 

data 

Got your
 data
 right
 here  data 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

152 

Bus 

Processor Issues Load Request 

memory 

cache cache data 

data 

Gimme 
data 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

153 

Bus 

Processor Issues Load Request 

Bus 

memory 

cache cache data 

data 

Gimme 
data 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

154 

Bus 

Processor Issues Load Request 

Bus 

memory 

cache cache data 

data 

I got
 data 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

155 

Bus 

Other Processor Responds 

memory 

cache cache 

data 

I got
 data 

data data 
Bus 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

156 

Bus 

Other Processor Responds 

memory 

cache cache 

data 

data data 
Bus 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

157 

Modify Cached Data 

Bus 

data 

memory 

cache data 

data 

(1) 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

158 

Modify Cached Data 

Bus 

data 

memory 

cache data 

data 

data 

(1) 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

159 

memory 

Bus 

data 

Modify Cached Data 

cache data 

data 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

160 

memory 

Bus 

data 

Modify Cached Data 

cache 

What’s up with the
 other copies? 

data 

data 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

161 

Cache Coherence 

•  We have lots of copies of data 
– Original copy in memory  
–  Cached copies at processors 

•  Some processor modifies its own copy 
– What do we do with the others? 
– How to avoid confusion? 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

162 

Write-Back Caches 

•  Accumulate changes in cache 
•  Write back when needed 

– Need the cache for something else 
–  Another processor wants it 

•  On first modification 
–  Invalidate other entries 
–  Requires non-trivial protocol …  



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

163 

Write-Back Caches 

•  Cache entry has three states 
–  Invalid: contains raw seething bits 
–  Valid: I can read but I can’t write 
–  Dirty: Data has been modified 

•  Intercept other load requests 
• Write back to memory before using cache 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

164 

Bus 

Invalidate 

memory 

cache data data 

data 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

165 

Bus 

Invalidate 

Bus 

memory 

cache data data 

data 

Mine, all
 mine! 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

166 

Bus 

Invalidate 

Bus 

memory 

cache data data 

data 

cache 

Uh,oh 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

167 

cache 
Bus 

Invalidate 

memory 

cache data 

data 

Other caches lose read permission 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

168 

cache 
Bus 

Invalidate 

memory 

cache data 

data 

Other caches lose read permission 

This cache acquires write permission 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

169 

cache 
Bus 

Invalidate 

memory 

cache data 

data 

Memory provides data only if not
 present in any cache, so no need to

 change it now (expensive) 

(2) 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

170 

cache 
Bus 

Another Processor Asks for
 Data 

memory 

cache data 

data 

(2) 

Bus 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

171 

cache data 
Bus 

Owner Responds 

memory 

cache data 

data 

(2) 

Bus 

Here it is! 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

172 

Bus 

End of the Day … 

memory 

cache data 

data 

(1) 

Reading OK, no writing 

data data 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

173 

Mutual Exclusion 

•  What do we want to optimize? 
–  Bus bandwidth used by spinning threads 
–  Release/Acquire latency 
–  Acquire latency for idle lock 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

174 

Simple TASLock  

•  TAS invalidates cache lines 
•  Spinners 

– Miss in cache 
–  Go to bus 

•  Thread wants to release lock 
–  delayed behind spinners 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

175 

Test-and-test-and-set 

•  Wait until lock “looks” free 
–  Spin on local cache 
– No bus use while lock busy 

•  Problem: when lock is released 
–  Invalidation storm … 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

176 

Local Spinning while Lock is
 Busy 

Bus 

memory 

busy busy busy 

busy 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

177 

Bus 

On Release 

memory 

free invalid invalid 

free 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

178 

On Release 

Bus 

memory 

free invalid invalid 

free 

miss miss 

Everyone misses,
 rereads 

(1) 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

179 

On Release 

Bus 

memory 

free invalid invalid 

free 

TAS(…) TAS(…) 

Everyone tries TAS 

(1) 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

180 

Problems 

•  Everyone misses 
–  Reads satisfied sequentially 

•  Everyone does TAS 
–  Invalidates others’ caches 

•  Eventually quiesces after lock
 acquired 
– How long does this take?   



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

181 

Mystery Explained 
TAS lock 

TTAS lock 

Ideal ti
m

e 

threads 
Better than

 TAS but still
 not as good as

 ideal 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

182 

Solution: Introduce Delay 

spin lock time 
d r1d r2d 

•  If the lock looks free 
•  But I fail to get it 

•  There must be lots of contention 
•  Better to back off than to collide again 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

183 

Dynamic Example:
 Exponential Backoff 

time 
d 2d 4d spin lock 

 If I fail to get lock 
–  wait random duration before retry 
–  Each subsequent failure doubles
 expected wait 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

184 

Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

185 

Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   Fix minimum delay 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

186 

Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   Wait until lock looks free 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

187 

Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   If we win, return 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

188 

Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   

Back off for random duration 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

189 

Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   

Double max delay, within reason 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

190 

Spin-Waiting Overhead 

TTAS Lock 

Backoff lock ti
m

e 

threads 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

191 

Backoff: Other Issues 

•  Good 
–  Easy to implement 
–  Beats TTAS lock 

•  Bad 
– Must choose parameters carefully 
– Not portable across platforms 



Art of Multiprocessor
 Programming 

192 

            
This work is licensed under a
 Creative Commons Attribution-ShareAlike 2.5 License.  

•  You are free: 
–  to Share — to copy, distribute and transmit the work  
–  to Remix — to adapt the work  

•  Under the following conditions: 
–  Attribution. You must attribute the work to “The Art of

 Multiprocessor Programming” (but not in any way that
 suggests that the authors endorse you or your use of the
 work).  

–  Share Alike. If you alter, transform, or build upon this work,
 you may distribute the resulting work only under the same,
 similar or a compatible license.  

•  For any reuse or distribution, you must make clear to others the
 license terms of this work. The best way to do this is with a link
 to 
–  http://creativecommons.org/licenses/by-sa/3.0/.  

•  Any of the above conditions can be waived if you get permission
 from the copyright holder.  

•  Nothing in this license impairs or restricts the author's moral
 rights.  



exercícios – para 23/8 

•  analisar o código no slide 62 (alg
 Peterson) e discutir se há diferença se
 trocarmos as linhas 2 e 3; 

•  fazer um programa com threads, com
 pthreads+c ou Java, que tenha
 comportamento diferente do esperado
 quando se usam n threads; 

•  implementar um dos algoritmos de lock
 vistos na aula de hoje no mesmo
 programa. 

193 
mandar por email para noemi@inf.puc-rio.br 


