Mutual Exclusion

Companion slides for

The Art of Multiprocessor
Programming

by Maurice Herlihy & Nir Shavit

Mutual Exclusion

» Today we will try o formalize our
understanding of mutual exclusion

* We will also use the opportunity to
show you how to argue about and
prove various properties in an
asynchronous concurrent setting

Art of Multiprocessor
Programming

Mutual Exclusion

* Formal problem definitions
» Solutions for 2 threads

» Solutions for nthreads

- Fair solutions

» Inherent costs

Art of Multiprocessor
Programming

Warning

* You will never use these protocols
- Get over it

* You are advised to understand them
- The same issues show up everywhere
- Except hidden and more complex

Art of Multiprocessor
Programming

Why is Concurrent Programming
so Hard?

- Try preparing a seven-course banquet
- By yourself
- With one friend
- With twenty-seven friends ...
- Before we can talk about programs
- Need a language
- Describing time and concurrency

Art of Multiprocessor 5
Programming

Time

- "Absolute, true and mathematical
time, of itself and from its own
nature, flows equably without

relation to anything external.” (T.
Newton, 1689)

+ "Time is, like, Nature's way of making
sure that everything doesn't hapd:en
all at once.” (Anonymous, circa 1968)

R

Art of Multiprocessor 6
Programming

Events

*+ An event a, of thread A is
- Instantaneous
- No simultaneous events (break ties)

|

R ———

Art of Multiprocessor 7
Programming

Threads

* A thread A is (formally) a sequence
ay, qy, ... of events

- "Trace" model
- Notation: ay & q; indicates order

Qo al
1
--u*

Art of Multiprocessor
Programming

Example Thread Events

* Assign to shared variable
» Assign to local variable

* Invoke method

* Return from method

* Lots of other things ...

Art of Multiprocessor
Programming

Threads are State Machines

Events are
transitions

Art of Multiprocessor 10
Programming

States

- Thread State

- Program counter
- Local variables

- System state
- Object fields (shared variables)
- Union of thread states

Art of Multiprocessor
Programming

11

Concurrency

* Thread A
e 1]] g

Art of Multiprocessor
Programming

12

Concurrency

* Thread A
e 1]] g
* Thread B

_

Art of Multiprocessor 13
Programming

Interleavings

- Events of two or more threads
- Interleaved
- Not necessarily independent (why?)

e 1 i

Art of Multiprocessor 14
Programming

Tntervals

* An interval Ay=(ap,qy) is
- Time between events a,and q,

ag a
| |
| |

M4 >

Art of Multiprocessor
Programming

15

Intervals may Overlap

Art of Multiprocessor 16
Programming

Intervals may be Disjoint

Art of Multiprocessor 17
Programming

Precedence

Interval A, precedes interval B,

bo

<E>:a1
1

Art of Multiprocessor 18
Programming

by

’rlme

Precedence

=
I e i
* Notation: A;> B,
* Formally,

- End event of Ay before start event of B,

- Also called “happens before" or
“precedes”

Art of Multiprocessor 19
Programming

Precedence Ordering
=,
= L

+ Remark: Ay B, is just like saying
- 1066 AD > 1492 AD,

- Middle Ages > Renaissance,

* Oh waift,

- what about this week vs this month?

Art of Multiprocessor
Programming

20

Precedence Ordering

Loy

- Never true that A> A
- If A>Bthen not true that B> A
- If ASB& B>Cthen A>C

* Funny thing: A5>B & B >A might both
be falsel

Art of Multiprocessor
Programming

21

Partial Orders

(you may know this already)

+ Trreflexive:

- Never true that A> A
 Antisymmetric:

- If A> Bthen not true that B> A

* Transitive.

-TfA>B&B>CthenA>C

Art of Multiprocessor
Programming

22

Total Orders

(you may know this already)

+ Also
- Irreflexive
- Antisymmetric
- Transitive
+ Except that for every distinct A, B,
- Either A5 BorB> A

Art of Multiprocessor
Programming

23

Repeated Events

while (mumble) {

dg, dj,
}
k-th occurrence
of event q,
[ao" k-th occurrence of

[Aok V interval A, =(a.a;)

Art of Multiprocessor 24
Programming

Implementing a Counter

temp
value

value;
teTE~i:§i1\
Make these steps

indivisible using
Art of Multiprocessor I oC kS 25

Programming

Locks (Mutual Exclusion)

public interface Lock {
public void lock();

public void unlock();
}

Art of Multiprocessor
Programming

26

Locks (Mutual Exclusion)

[public void lock(); [acquire lock

Art of Multiprocessor
Programming

27

Locks (Mutual Exclusion)

[PubHC void lock();]; acquire lock

[pub'l'ic void un'Iock();; release lock

Art of Multiprocessor
Programming

28

Using Locks

public class Counter {
private long value;
private Lock lock;
public long getAndIncrement() {
lock.lock();
try {
int temp = value;
value = value + 1;
} finally {
lock.unlock();
}

return temp;

}}

Art of Multiprocessor
Programming

29

Using Locks

[1ock.1ock();

v

Art of Multiprocessor
Programming

acquire Lock

30

Using Locks

[

} finally {
-IOCk-Uﬂ-lOCk(),F RZIZC(SZ IOCk
} (no matter what)

Art of Multiprocessor
Programming

31

Using Locks

|

int temp = value;
value = value + 1;

T

Art of Multiprocessor
Programming

Critical
section

32

Mutual Exclusion

. Let CSk ¢ be thread i's k-th critical
section execution

Art of Multiprocessor
Programming

33

Mutual Exclusion

. Let CSk ¢ be thread i's k-th critical
section execution

+ And CS;™ @ be thread j's m-th critical
section execution

Art of Multiprocessor 34
Programming

Mutual Exclusion

. Let CSk ¢ be thread i's k-th critical
section execution

© And CS;™ @ be j's m-th execution
* Then either

P@®r®e

Art of Multiprocessor
Programming

35

Mutual Exclusion

. Let CSk ¢ be thread i's k-th critical
section execution

© And CS;™ @ be j's m-th execution
* Then either
-P@®r® o

[%ik-) csm |

Art of Multiprocessor
Programming

36

Mutual Exclusion

+ Let €S ¢= be thread i's k-th critical
section execution

+ And CS;™ @ be j's m-th execution
* Then either

- & or ¢

[%ik-) csm |

Art of Multiprocessor 37
Programming

Deadlock-Free

- If some thread calls lock()
- And never returns

- Then other threads must complete lock()
and unlock() calls infinitely often

+ System as a whole makes progress
- Even if individuals starve

Art of Multiprocessor 38
Programming

Starvation-Free

- If some thread calls lock()
- It will eventually return

» Individual threads make progress

Art of Multiprocessor
Programming

39

Two-Thread vs n -Thread
Solutions

- Two-thread solutions first
- Tllustrate most basic ideas
- Fits on one slide

- Then n-Thread solutions

Art of Multiprocessor
Programming

40

Two-Thread Conventions

class .. implements Lock {

7/ thread-local index, 0 or 1
public void lock() {

int 1 = ThreadID.get();
int j =1 - 1;

Art of Multiprocessor
Programming

41

Two-Thread Conventions

[int i

ThreadID.get();
int j =1 '

Henceforth: i is current
thread, j is other thread

Art of Multiprocessor
Programming

42

LockOne

class LockOne implements Lock {
private volatile boolean[] flag =
new boolean[2]:
public void lock() {
flag[i] = true;
while (flag[j]) {}
}

Art of Multiprocessor
Programming

43

LockOne

|f1ag|1|

true,;

Art of Multiprocessor
Programming

Set my flag

44

LockOne

while (flag[j]l) {}

Set my flag

Wait for other
flag to go false

Art of Multiprocessor
Programming

45

LockOne Satisfies Mutual
Exclusion

+ Assume CS,J overlaps CSgk

» Consider each thread's last (j-th
and k-th) read and write in the
lock() method before entering

- Derive a contradiction

Art of Multiprocessor 46
Programming

From the Code

- write,(flag[A]=true) > read,(flag[B

]==false) >CS,

- writey(flag[B]=true) 2> ready(flag[A
]J==false) > CS;

class LockOne implements Lock {

public void Tock(Q) {
flag[i] = true;
while (Flag[j]) {3}
}

Art of Multiprocessor
Programming

47

From the Assumption

* read,(flag[B]==false) > writey(fla
g[B]=true)

* readg(flag[A]==false) > write,(fla
g[B]=true)

Art of Multiprocessor
Programming

48

Combining

* Assumptions:
- read,(flag[B]==false) 2> writey(flag[B]=true)
- readp(flag[A]==false) > write,(flag[A]=true)

* From the code
- write,(flag[A]=true) 2> read,(flag[B]==false)
- writeg(flag[B]=true) = ready(flag[A]==false)

Art of Multiprocessor 49
Programming

Combining

- read,(flag[B]==false) 2> writey(flag[B]=true)

- writeg(flag[B]=true) > ready(flag[A]==false)

Art of Multiprocessor
Programming

50

Combining

- read,(flag[B]==false) 2> writey(flag[B]=true)
readg(flag[A]==false) > write,(flag[A]=true)

“-
4

| 4
- writeg(flag[B]=true) > ready(flag[A]==false)

Art of Multiprocessor
Programming

51

Combining

- read,(flag[B]==false) 2> writey(flag[B]=true)
.«==preadg(flag[A]==false) > write,(flag[A]=true)

N
|

- wrn“A(flag[A] =true) 2> read,(flag[B]==false)
- writey(flag[B]=true) > readg(flag[A]==false)

Art of Multiprocessor
Programming

52

Combining

- read,(flag[B]==false) 2> writey(flag[B]=true)
.«==preadg(flag[A]==false) > write,(flag[A]=true)

: - weitga{flaglA]=frue) 3" read,(flag[B]==false)
'\‘ - writeg(flag[B]=true) > ready(flag[A]==false)

Art of Multiprocessor
Programming

53

Combining

- redes 1g[B]=true)

md;(ﬂngﬂ-]a-&rlmﬁe(lag[A]=1rue)

- wri

(flag[A]=true) > read,(flaff[B]==false)
- writep :

e dB(flag[A] =false)

Art of Multiprocessor
Programming

54

Cyclel

Art of Multiprocessor
Programming

99

Deadlock Freedom

- LockOne Fails deadlock-freedom
- Concurrent execution can deadlock

flag[i] = true; flag[j] = true;
while (flag[jl){} while (flag[i]l){}

- Sequential executions OK

Art of Multiprocessor
Programming

56

LockTwo

public class LockTwo implements Lock {
private volatile int victim;

public void lock() {

victim = 1;

while (victim == 1) {};

}

public void unlock() {}
}

Art of Multiprocessor
Programming

Y

LockTwo

Let other go
\ — .
[victim = q; first

Art of Multiprocessor
Programming

LockTwo

Wait for

permission
[whi1e (victim == i) {}:

Art of Multiprocessor
Programming

LockTwo

Nothing to do

[pub1ic void unlock() {}

Art of Multiprocessor
Programming

60

LockTwo Claims

- Satisfies mutual exclusion

- If thread 1in CS public void LockTwo() {
- Thenvictim == j victim = i;
- Cannot be both 0 and 1 }

- Not deadlock free

- Sequential execution deadlocks
- Concurrent execution does not

Art of Multiprocessor
Programming

while (victim == i) {}.

61

Peterson’'s Algorithm

1 public void lock() {
2 flag[i] = true;
3 victim = 1;
while (flag[j] && victim == i) {};
}
public void unlock() {
flag[i] = false;
}

o N Oy wu

Art of Multiprocessor
Programming

Peterson’'s Algorithm

Announce I'm

Z interested
lf1ag|i| = true;

Art of Multiprocessor
Programming

Peterson’'s Algorithm

Announce I'm
interested

;.c':ue ' Defer to other

flag[i
1ctim

Art of Multiprocessor 64
Programming

Peterson’'s Algorithm

Announce I'm
interested

Defer to other

while (flag[j] && victim == 1) {};

Wait while other
iInterested & I'm
the victim

Art of Multiprocessor
Programming

65

Peterson’'s Algorithm

Announce I'm
interested

Defer to other

while (flag[j] && victim == 1) {};

Wait while other
}[ﬂ ag[i] = \fisﬁl interested & I'm

N Tonger the victim
interested

Art of Multiprocessor
Programming

66

Mutual Exclusion

flag[i] true;
victim = 1;
while (flag[j] && victim == 1) {};

» ITf thread O in - If thread 1 in

critical section, critical section,
- flag[0]=true, - flag[1]=true,
- victim =1 - victim =0

Cannot both be true

Art of Multiprocessor 67
Programming

Deadlock Free

while (flag[j] && victim == i) {}:

- Thread blocked

- only at while loop
- only if it is the victim

* One or the other must not be the victim

Art of Multiprocessor
Programming

68

Starvation Free

Thread i1 blocked

T public void Tock({

Only |f J flag[i] = true;

repeatedly re R

-enters so that , while (ﬂag[J] && victim == i) {};
flag[j] == true and public void unlock() {

victim == 1 flag[i] = false;

}

When j re-enters

- it sets victim to j.

- S0 1 getsin

Art of Multiprocessor 69

Programming

The Filter Algorithm for n
Threads

There are n-1 "waiting rooms” called
levels
+ At each level]
- At least one enters level /I
- At least one blocked if \I/
many try
* Only one thread makes it through

ncs

\

\
\
\

Art of Multiprocessor
Programming

70

Filter

class Filter implements Lock {
volatile int[] level; // level[i] for thread i
volatile int[] victim; // victim[L] for level L

public Filter(int n) { 0 ‘ n-1

level = new intinl; |.ve| [0J0]4]0]J0]0]0]0]
victim = new int[n];

for (int i = 1; i < n; i+ { (] 1
level[i] = O; L
3 kZ4
}. —
Thread 2 at level 4 [

Art of Multiprocessor . 71
Programming victim

Filter

class Filter implements Lock {

public void lock(){
for (int L =1; L < n; L++) {
level[1] L;
victim[L] = 1;

while ((3k =1 Tevel[k] >= L) &&

victim[L] == 1);
1}
public void unlock() {
level[1] = 0;

I}

Art of Multiprocessor
Programming

72

Filter

[for (intL=1; L <n; L++) {

One level at a time

Art of Multiprocessor 73
Programming

Filter

[1evel[i]

Art of Multiprocessor
Programming

Announce
iIntention to
enter level L

74

Filter

class Filter implements Lock {
int level[n];
int victim[n];
public void lock() {
for (int L =1; L < n; L++) {

level[i] = L:
|v1ct1m[L] = i;
while ((d) 1eve1[k] >= L) &&
victim
1} . ..
public void release(int i)™\ Give priority to
LG = anyone but me

I}

Art of Multiprocessor 75
Programming

Filter

Wait as long as someone else is at same or
higher level, and I'm designated victim

[wh1"|e ((Ak !'= 1) level[k] >= L) &&]
victim[L] == 1);

Art of Multiprocessor 76
Programming

Filter

[whﬂe (@k '= 1) Tevel[k] >= L) &&]
victim[L] == 1);

Thread enters level L when it completes
the loop

Art of Multiprocessor
Programming

77

Claim

- Start at level L=0
- At most n-L threads enter level L
- Mutual exclusion at level L=n-1

ncs L=0

Art of Multiprocessor
Programming

78

Induction Hypothesis

- No more than n-L+1 at level L-1
* Induction step: by contradiction

- Assume all at level

L-1 enter level L ncs) assume
» A last to write \] /
victim[L] \ | L-1 has n-L+1
\ [L has n-L

* B is any other _
thread at level L _c.s_/ N\

Art of Multiprocessor 79
Programming

Proof Structure

ncs

Assumed to enter L-1

\ l l l/ n-L+1 = 4
Last to \ / \
write £ By way of contradiction
victimiL] all enter L

Show that A must have seen
B at level L and since victim[L] ==
could not have entered

Art of Multiprocessor 80
Programming

From the Code

(1) writeg(level[B]=L)=>writey(victim[L]=B)

|

level[i] = L;]

victim[L] = 1;

Art of Multiprocessor
Programming

81

From the Code

(2) write,(victim[L]=A)=>read,(level[B])

ictim[L] = 1;
while ((3k !'= i) level[k] >= L)

Art of Multiprocessor
Programming

By Assumption

(3) writeg(victim[L]=B)=2>write,(victim[L]=A)

By assumption, A is the last
thread to write victim[L]

Art of Multiprocessor 83
Programming

Combining Observations

(1) writeg(level[B]=L)=>writey(victim[L]=B)

(3) writeg(victim[L]=B)=>write, (victim[

_]=A)

(2) write,(victim[L]=A)=>read,(level[B]

Art of Multiprocessor
Programming

)

84

Combining Observations

(1) writeg(level[B]=L)=>
(3) writeg(victim[L]=B)=>write, (victim[

(2)

NE

Pread,(level[B]

public void Tock() {
for (int L =1; L < n; L++) {
level[i] = L;
victim[L] = 1;
while ((k !'= i) Tevel[k] >= L)
&& victim[L] == 1) {};

1}

FTOgranrmnyg

85

A)

Combining Observations

(1) writeg(level[B]=L)=>
(3) writeg(victim[L]=B)=2>write,(victim[L]=A)

(2) %dA(Ievel[B:)]

Thus, A read level[B] 2 L,
A was last to write victim[L],
so it could not have entered level L!

Art of Multiprocessor 86
Programming

No Starvation

» Filter Lock satisfies properties:

- Just like Peterson Alg at any level

- S0 no one starves

» But what about fairness?

- Threads can be overtaken by others

Art of Multiprocessor 87
Programming

Bounded Waiting

+ Want stronger fairness guarantees
» Thread not "overtaken" too much
* Need to adjust definitions

Art of Multiprocessor
Programming

88

Bounded Waiting

» Divide Tock () method into 2 parts:

- Doorway interval:

* Written D,

- always finishes in finite steps
- Waiting interval:

* Written W,

* may take unbounded steps

Art of Multiprocessor
Programming

89

Bakery Algorithm

- Provides First-Come-First-Served
- How?
- Take a "number”

- Wait until lower numbers have been
served

» Lexicographic order

- (a,i) > (b))
*Ifa>b,ora=bandi> |

Art of Multiprocessor
Programming

90

Bakery Algorithm

class Bakery implements Lock {
volatile boolean[] flag;
volatile Label[] Tabel;
public Bakery (int n) {
flag = new boolean[n];
label = new Label[n];
for (int 1 = 0; i < n; i++) {
flag[i] = false; Tlabel[i] = O;
}
}

Art of Multiprocessor
Programming

91

Bakery Algorithm

volatile boolean[] flag;

el e Lebal(F Tabel: ‘ ‘
0 n-1

HEGEEGEE
[oJo]4fofo]5[o]o]

"

CS

Art of Multiprocessor 92
Programming

Bakery Algorithm

class Bakery implements Lock {

public void Tock(O {
flag[i] = true;
label[1] = max(label[0], ..,1abel[n-1])+1;
while (dk flag[k]
&& (label[1],1) > (label[k],k)):
}

Art of Multiprocessor
Programming

93

Bakery Algorithm

Doorway
/\

¢

lag[1]
abel[1]

true;
max(label[0], ..,1abel[n-1])+1;

]

Art of Multiprocessor
Programming

94

Bakery Algorithm

I'm interested
[Flag[i]l = true;

Art of Multiprocessor 95
Programming

Bakery Algorithm
Take increasing

label (read
labels in some

~__arhitrary order)

[labe1[i] = max(1abel[0], ..,Tabel[n-11)+1;]

Art of Multiprocessor 96
Programming

Bakery Algorithm

Someone is
interested

[while Ak flaglk]
Art of Multiprocessor 97

Programming

Bakery Algorithm

Someone is
interested

while

&& (label[i],1) > (1abe1[k],k));]

V

With lower (label,i) in
lexicographic order

Art of Multiprocessor 98
Programming

Bakery Algorithm

class Bakery implements Lock {

public void unlock() {
flag[i] = false;

}

}

Art of Multiprocessor
Programming

99

Bakery Algorithm

No longer

interested
| flagl[i] = false;

labels are always increasing

Art of Multiprocessor 100
Programming

No Deadlock

* There is always one thread with
earliest label

» Ties are impossible (why?)

Art of Multiprocessor 101
Programming

First-Come-First-Served

y If DA -> DBThen A'S

label is earlier

- write,(label

Al) >

ready(label[A]) >

class Bakery implements Lock {

public void lock() {
flag[i] = true;
Tlabel[i] = max(1abel[0],
., label[n-1])+1;

writeg(label[B]) while (3"&;1?%;2_1 1 s
readg(flag[A]) } (labe1[k],k));
+ So B is locked out
while flag[A] is
true
Art of Multiprocessor 102

Programming

Mutual Exclusion

° Suppose A (]nd B in class Bakery implements Lock {

CS together public void Tock() {
flag[i] = true;
» Suppose A has labeT[i] = max(label[0],
II l b I .., label[n-1])+1;
earitier iape while (Jk flag[k]

- When B entered, it | qaverpd iy is 2
must have seen i

- flag[A] is false, or
- label[A] > label[B]

Art of Multiprocessor 103
Programming

Mutual Exclusion

* Labels are strictly increasing so
» B must have seen flag[A] == false

Art of Multiprocessor 104
Programming

Mutual Exclusion

* Labels are strictly increasing so
» B must have seen flag[A] == false

* Labelingg & ready(flag[A]) & write
A(flag[A]) » Labeling,

Art of Multiprocessor 105
Programming

Mutual Exclusion

* Labels are strictly increasing so
» B must have seen flag[A] == false

* Labelingg & ready(flag[A]) & write
A(flag[A]) » Labeling,

* Which contradicts the assumption
that A has an earlier label

Art of Multiprocessor 106
Programming

Bakery Y232K Bug

class Bakery implements Lock {

public void Tock() {
flag[i] = true;
label[1] max(label [0], ..,1abel[n-1])+1;
while (dk flag[k]
&& (label[i],i) > (label[k],k)):

}

Art of Multiprocessor 107
Programming

Bakery Y232K Bug

Mutex breaks if

label[1]
ver
[1abe1 [i] = max(label[0], ..,Tlabel[n-1]1)+1:

Art of Multiprocessor 108
Programming

Does Overflow Actually
Matter?

* Yes

- Y2K

- 18 January 2038 (Unix time_t rollover)
- 16-bit counters

* No

- 64-bit counters

* Maybe

- 32-bit counters

Art of Multiprocessor 109
Programming

.. Spin locks e desempenho

* material cap 7 livro Herlihy

Art of Multiprocessor 110
Programming

Revisit Mutual Exclusion...

» Think of performance, not just
correctness and progress

* Begin to understand how performance
depends on our software properly
utilizing the multiprocessor machine’s
hardware

» And get to know a collection of
locking algorithms...

Art of Multiprocessor 111 (1)
Programming® Herlihy-Shavit
2007

What Should you do if you can't
get a lock?

+ Keep trying

- "spin” or "busy-wait"

- Good if delays are short
* Give up the processor

- Good if delays are long
- Always good on uniprocessor

Art of Multiprocessor 112 (1)
Programming® Herlihy-Shavit
2007

What Should you do if you can't

get a lock?

y @eep trying

- "spin” or "busy-wait"
- Good if delays are short

: bive up the

- Good if delays are long
- Always good on uniprocessor

proc

Art of Multiprocessor
Programming® Herlihy-Shavit
2007

~N

our focus

113

Basic Spin-Lock

=
“;'55
(X

spin critical Resets lock
lock section upon exit
Art of Multiprocessor 114

Programming® Herlihy-Shavit
2007

Basic Spin-Lock

.lock introduces

@%“ sequential bottleneck
R JER

spin critical Resets lock
" / lock section upon exit
Art of Multiprocessor 115

Programming® Herlihy-Shavit
2007

Basic Spin-Lock

..lock suffers from
contention
”‘ o |— 1y
spin critical Resets lock
" lock section upon exit
Art of Multiprocessor 116

Programming® Herlihy-Shavit
2007

Basic Spin-Lock

.lock suffers from

\@ /‘) contention

\J}

spin critical Resets I_ock
/ lock section upon exit

Notice: these are distinct
phenomena

Art of Multiprocessor 117
Programming® Herlihy-Shavit
2007

Basic Spin-Lock

.lock suffers from

\@ /‘) contention

\J

spin critical Resets I_ock
/ lock section upon exit

Seq Bottleneck 2 no
parallelism

Art of Multiprocessor 118
Programming® Herlihy-Shavit
2007

Basic Spin-Lock

.lock suffers from

contention
spin critical Resets I_ock
/ lock section upon exit

Contention > ?2??

Art of Multiprocessor 119
Programming® Herlihy-Shavit
2007

Review: Test-and-Set

- Boolean value
+ Test-and-set (TAS)

- Swap true with current value

- Return value tells if prior value was true
or false

» Can reset just by writing false
* TAS aka "getAndSet”

Art of Multiprocessor 120
Programming® Herlihy-Shavit
2007

Review: Test-and-Set

public class AtomicBoolean {

}

boolean value;

public synchronized boolean
getAndSet(boolean newvalue) {

boolean prior = value;
value = newvalue;
return prior;

}

Art of Multiprocessor
Programming® Herlihy-Shavit
2007

121(5)

Review: Test-and-Set

[pub]ic class AtomicBoolean {]

Package
java.util.concurrent.atomic

Art of Multiprocessor 122
Programming® Herlihy-Shavit
2007

Review: Test-and-Set

(fub11c synchronized boolean B
getAndSet(boolean newvalue) {

boolean prior = value;
value = newvalue;

\ return prior; ‘\\\\\J/____)

Swap old and new

values

Art of Multiprocessor
Programming® Herlihy-Shavit
2007

123

Review: Test-and-Set

AtomicBoolean lock
= new AtomicBoolean(false)

boolean prior = lock.getAndSet(true)

Art of Multiprocessor 124
Programming® Herlihy-Shavit
2007

Review: Test-and-Set

1ock.getAndSet(true)]

\/

Swapping in true is called
"test-and-set” or TAS

[Boo]ean prior

Art of Multiprocessor 125(5)
Programming® Herlihy-Shavit
2007

Test-and-Set Locks

» Locking

- Lock is free: value is false
- Lock is taken: value is true

- Acquire
- If resu
- If resu

- Release

ock by calling TAS

t is false, you win
t is true, you lose

ock by writing false

Art of Multiprocessor
Programming® Herlihy-Shavit
2007

126

Test-and-set Lock

class TASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {

while (state.getAndSet(true)) {}
}

void unlock() {
state.set(false);

3}

Art of Multiprocessor
Programming® Herlihy-Shavit
2007

127

Test-and-set Lock

AtomicBoolean state =
new AtomicBoolean(false);

Lock state is AtomicBoolean

Art of Multiprocessor 128
Programming® Herlihy-Shavit
2007

Test-and-set Lock

[wh11e (state.getAndset(true)) {}]

o

Keep trying until lock acquired

Art of Multiprocessor 129
Programming® Herlihy-Shavit
2007

Test-and-set Lock

Release lock by resetting
state to false

[state.set(fa]se);

Art of Multiprocessor 130
Programming® Herlihy-Shavit
2007

Space Complexity

* TAS spin-lock has small "footprint”
* N thread spin-lock uses O(1) space
» As opposed to O(n) Peterson/Bakery

» How did we overcome the Q(n) lower
bound?

+ We used a RMW operation...

Art of Multiprocessor 131
Programming® Herlihy-Shavit
2007

Performance

» Experiment
- h threads
- Increment shared counter 1 million times

* How long should it take?
* How long does it take?

Art of Multiprocessor 132
Programming® Herlihy-Shavit
2007

time

Graph

no speedup
because of
sequential

4)

%ﬂeneck y

threads

Art of Multiprocessor
Programming® Herlihy-Shavit
2007

ideal

133

time

Mystery #1

threads

Art of Multiprocessor
Programming® Herlihy-Shavit
2007

TAS lock

What is

_

going
on?

~N

J

134 (1)

Test-and-Test-and-Set Locks

* Lurking stage
- Wait until lock “looks" free
- Spin while read returns true (lock taken)

* Pouncing state

- As soon as lock “looks" available
- Read returns false (lock free)
- Call TAS to acquire lock

- If TAS loses, back to lurking

Art of Multiprocessor 135
Programming® Herlihy-Shavit
2007

Test-and-test-and-set Lock

class TTASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (true) {
while (state.get()) {}
if (!state.getAndSet(true))
return;
}

}

Art of Multiprocessor 136
Programming® Herlihy-Shavit
2007

Test-and-test-and-set Lock

while (state.get()) {}

Wait until lock looks free

Art of Multiprocessor 137
Programming® Herlihy-Shavit
2007

Test-and-test-and-set Lock

Then try to
acquire it
{if (!state.getAndSet(true))
return,

Art of Multiprocessor 138
Programming® Herlihy-Shavit
2007

time

Mystery #2

s

threads

Art of Multiprocessor
Programming® Herlihy-Shavit
2007

TTAS lock

Ideal

139

Mystery

* Both

- TASand TTAS

- Do the same thing (in our model)
+ Except that

- TTAS performs much better than TAS
- Neither approaches ideal

Art of Multiprocessor 140
Programming® Herlihy-Shavit
2007

Opinion

» Our memory abstraction is broken

* TAS & TTAS methods

- Are provably the same (in our model)
- Except they aren't (in field tests)

- Need a more detailed model ...

Art of Multiprocessor 141
Programming® Herlihy-Shavit
2007

Bus-Based Architectures

MIM

<>
memory

Art of Multiprocessor 142
Programming® Herlihy-Shavit
2007

Bus-Based Architectures
N

Random access memory
(10s of cycles)

<| M S >/
memory

Art of Multiprocessor 143
Programming® Herlihy-Shavit
2007

HQJJLRaszd_Amhj_tactu(es
S

hared Bus
‘broadcast medium
*One broadcaster at a time
*Processors and memory all

9 “shoop” M‘/
| |
< >

Bus

=
memory

Art of Multiprocessor 144
Programming® Herlihy-Shavit
2007

Per-Processor Caches
BUS-(*Small

‘Fast: 1 or 2 cycles
*Address & state information

memory

Art of Multiprocessor 145
Programming® Herlihy-Shavit
2007

Jargon Watch

+ Cache hit

- "T found what I wanted in my cache”
- Good Thing™

Art of Multiprocessor 146
Programming® Herlihy-Shavit
2007

Jargon Watch

+ Cache hit

- "T found what I wanted in my cache”
- Good Thing™

- Cache miss

- "T had to shlep all the way to memory for
that data”

- Bad Thing™

Art of Multiprocessor 147
Programming® Herlihy-Shavit
2007

Cave Canem

» This model is still a simplification
- But not in any essential way
- Illustrates basic principles

» Will discuss complexities later

Art of Multiprocessor 148
Programming® Herlihy-Shavit
2007

Processor Issues Load Request

g8
<

Bus
== >
memory I

Art of Multiprocessor 149
Programming® Herlihy-Shavit
2007

Drecessor Issues Load Request
Gimme
Oo,

memory I

Art of Multiprocessor 150
Programming® Herlihy-Shavit
2007

Memory Responds

JNERN

iy

, M
Oo, memory

Art of Multiprocessor 151
Programming® Herlihy-Shavit
2007

memory

Art of Multiprocessor 152
Programming® Herlihy-Shavit
2007

memory

Art of Multiprocessor 153
Programming® Herlihy-Shavit
2007

Processor Issues Load Request
I got

memory

Art of Multiprocessor 154
Programming® Herlihy-Shavit
2007

(Qther Processor Responds

data
£ B
| | |

=
memory

Art of Multiprocessor 155
Programming® Herlihy-Shavit
2007

Other Processor Responds

0 =

==
memory

Art of Multiprocessor 156
Programming® Herlihy-Shavit
2007

Modify Cached Data

QIM

EE K |

==
memory I

Art of Multiprocessor 157 (1)
Programming® Herlihy-Shavit
2007

Modify Cached Data

25 B

| data | S| |
e . >

memory I

Art of Multiprocessor 158 (1)
Programming® Herlihy-Shavit
2007

Modify Cached Data

QIM

daTa | data |

Bus

==
memory I

Art of Multiprocessor 159
Programming® Herlihy-Shavit
2007

Modify Cached Data

What's up with the
other copies?

=

Bus
ﬁo

Art of Multiprocessor
Programming® Herlihy-Shavit

2007

160

Cache Coherence

* We have lots of copies of data

- Original copy in memory

- Cached copies at processors

+ Some processor modifies its own copy

- What do we do with the others?
- How to avoid confusion?

Art of Multiprocessor 161
Programming® Herlihy-Shavit
2007

Write-Back Caches

» Accumulate changes in cache

* Write back when needed
- Need the cache for something else
- Another processor wants it

- On first modification
- Invalidate other entries
- Requires non-trivial protocol ...

Art of Multiprocessor 162
Programming® Herlihy-Shavit
2007

Write-Back Caches

* Cache entry has three states
- Invalid: contains raw seething bits
- Valid: T can read but I can't write

- Dirty: Data has been modified
* Intercept other load requests
» Write back to memory before using cache

Art of Multiprocessor 163
Programming® Herlihy-Shavit
2007

Tnvalidate

QIM

| data NIEETE
Bus

==
memory

Art of Multiprocessor 164
Programming® Herlihy-Shavit
2007

Tnvalidate
Mine, all

memory

Art of Multiprocessor 165
Programming® Herlihy-Shavit
2007

Tnvalidate

memory

Art of Multiprocessor
Programming® Herlihy-Shavit
2007

166

Tnunlidante

Other caches lose read permission

é/f!l’@

==
memory

Art of Multiprocessor 167
Programming® Herlihy-Shavit
2007

Tnuanlidnte

[Other caches lose read permission]

data |

<

_[This cache acquires write permission]

Art of Multiprocessor 168
Programming® Herlihy-Shavit
2007

Tnvalidate

P/ A A

r

.

Memory provides data only if not A

present in any cache, so no need to

change it now (expensive)

memory

Art of Multiprocessor
Programming® Herlihy-Shavit
2007

169(2)

Another Processor Asks for
Data

memory

Art of Multiprocessor 170(2)
Programming® Herlihy-Shavit
2007

Qwner Responds

memory

Art of Multiprocessor 171(2)
Programming® Herlihy-Shavit
2007

End of the Day ...

A

| data | | data | | |

>

|
memlReading OK, no wr'i’rigg_rl

Art of Multiprocessor 172 (1
Programming® Herlihy-Shavit
2007

Mutual Exclusion

* What do we want to optimize?

- Bus bandwidth used by spinning threads
- Release/Acquire latency

- Acquire latency for idle lock

Art of Multiprocessor 173
Programming® Herlihy-Shavit
2007

Simple TASLock

» TAS invalidates cache lines
- Spihners

- Miss in cache

- Go to bus

- Thread wants to release lock
- delayed behind spinners

Art of Multiprocessor
Programming® Herlihy-Shavit
2007

174

Test-and-test-and-set

- Wait until lock "looks" free

- Spin on local cache

- No bus use while lock busy
 Problem: when lock is released
- Invalidation storm ...

Art of Multiprocessor 175
Programming® Herlihy-Shavit
2007

Local Spinning while Lock is
Busy

MIM

<> >
memory IEEM

Art of Multiprocessor 176
Programming® Herlihy-Shavit
2007

On Release

L

memory I

Art of Multiprocessor 177
Programming® Herlihy-Shavit
2007

On Release
Everyone misses,
rereads

memory I

Art of Multiprocessor 178 (1)
Programming® Herlihy-Shavit
2007

On Release
Everyone tries TAS

memory I

Art of Multiprocessor 179 (1)
Programming® Herlihy-Shavit
2007

Problems

+ Everyone misses
- Reads satisfied sequentially
+ Everyone does TAS
- Invalidates others' caches
+ Eventually quiesces after lock
acquired
- How long does this take?

Art of Multiprocessor 180
Programming® Herlihy-Shavit
2007

Mystery Explained

TTAS lock

time

Ideal

B&tter than
TAS but still

not as good as
ideal)

Art of Multiprocessor 181
Programming® Herlihy-Shavit
2007

threads

Solution: Introduce Delay

- If the lock looks free

But I fail fo get it

- There must be lots of contention

Better to back off Tha%llide again

time -- ! | spin lock
r,d r1d

Art of Multiprocessor 182
Programming® Herlihy-Shavit
2007

Dynamic Example:
Exponential Backoff
N

=
w G-

4d spin lock

time --

If I fail to get lock
- wait random duration before retry

- Each subsequent failure doubles
expected wait

Art of Multiprocessor 183
Programming® Herlihy-Shavit
2007

Exponential Backoff Lock

public class Backoff implements lock {

public void Tock() {
int delay = MIN_DELAY;
while (true) {
while (state.get()) {}
if (!lock.getAndSet(true))
return;
sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;
31}

Art of Multiprocessor 184
Programming® Herlihy-Shavit
2007

Exponential Backoff Lock

int delay = MIN_DELAY;

Fix minimum delay

Art of Multiprocessor 185
Programming® Herlihy-Shavit
2007

Exponential Backoff Lock

while (state.get()) {}

Wait until lock looks free

Art of Multiprocessor 186
Programming® Herlihy-Shavit
2007

Exponential Backoff Lock

[if (!lock.getAndset(true))
return:

If we win, return

Art of Multiprocessor 187
Programming® Herlihy-Shavit
2007

Exponential Backoff Lock

Back off for random duration

[s'l eep(random() % delay);

Art of Multiprocessor 188
Programming® Herlihy-Shavit
2007

Exponential Backoff Lock

Double max delay, within reason

{1‘f (deTay < MAX_DELAY)]
delay = 2 * delay;

Art of Multiprocessor 189
Programming® Herlihy-Shavit
2007

Spin-Waiting Overhead

TTAS Lock

time

Backoff lock

threads

Art of Multiprocessor 190
Programming® Herlihy-Shavit
2007

Backoff: Other Issues

+ Good

- Easy to implement
- Beats TTAS lock

+ Bad

- Must choose parameters carefully
- Not portable across platforms

Art of Multiprocessor 191
Programming® Herlihy-Shavit
2007

SONE RIGHTS RESERVED

This work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work
Under the following conditions:
- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that

sug%\sts that the authors endorse you or your use of the
work).

- Share Alike. If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same,
similar or a compatible license.

For any reuse or _distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission
from the copyright holder.

Not}t\ing in this license impairs or restricts the author's moral
rights.

Art of Multiprocessor 192
Programming

exercicios - para 23/8

+ analisar o cédigo no slide 62 (alg
Peterson) e discutir se ha diferenca se
trocarmos as linhas 2 e 3;

» fazer um programa com threads, com
pthreads+c ou Java, que tenha
comportamento diferente do esperado
quando se usam h threads;

+ implementar um dos algoritmos de lock
vistos na aula de hoje no mesmo
programa.

193

mandar por email para noemi@inf.puc-rio.br

