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Mutual Exclusion 

•  Today we will try to formalize our
 understanding of mutual exclusion 

•  We will also use the opportunity to
 show you how to argue about and
 prove various properties in an
 asynchronous concurrent setting 
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Mutual Exclusion 

•  Formal problem definitions 
•  Solutions for 2 threads 
•  Solutions for n threads 
•  Fair solutions 
•  Inherent costs 
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Warning 

•  You will never use these protocols 
–  Get over it 

•  You are advised to understand them 
–  The same issues show up everywhere 
–  Except hidden and more complex 
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Why is Concurrent Programming
 so Hard? 

•  Try preparing a seven-course banquet 
–  By yourself 
– With one friend 
– With twenty-seven friends … 

•  Before we can talk about programs 
– Need a language 
–  Describing time and concurrency 
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•  “Absolute, true and mathematical
 time, of itself and from its own
 nature, flows equably without
 relation to anything external.” (I.
 Newton, 1689) 

•  “Time is, like, Nature’s way of making
 sure that everything doesn’t happen
 all at once.” (Anonymous, circa 1968) 

Time 

time 
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time 

•  An event  a0 of thread A is 
–  Instantaneous 
– No simultaneous events (break ties) 

a0 

Events 
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time 

•  A thread A is (formally) a sequence
 a0, a1, ... of events  
–  “Trace” model 
– Notation: a0  a1 indicates order 

a0 

Threads 

a1 a2 … 
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•  Assign to shared variable 
•  Assign to local variable 
•  Invoke method 
•  Return from method 
•  Lots of other things … 

Example Thread Events 
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Threads are State Machines 

Events are
 transitions 

a0 

a1 a2 

a3 
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States 

•  Thread State 
–  Program counter 
–  Local variables 

•  System state 
– Object fields (shared variables) 
–  Union of thread states 
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time 

•  Thread A 

Concurrency 
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time 

time 

•  Thread A 

•  Thread B 

Concurrency 
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time 

Interleavings 

•  Events of two or more threads 
–  Interleaved 
– Not necessarily independent (why?) 
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time 

•  An interval  A0 =(a0,a1) is 
–  Time between events a0 and a1  

a0 a1 

Intervals 

A0 
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time 

Intervals may Overlap 

a0 a1 A0 

b0 b1 B0 



Art of Multiprocessor
 Programming 

17 

time 

Intervals may be Disjoint 

a0 a1 A0 

b0 b1 B0 
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time 

Precedence 

a0 a1 A0 

b0 b1 B0 

Interval A0 precedes interval B0 
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Precedence 

•  Notation: A0  B0 
•  Formally, 

–  End event of A0 before start event of B0 

–  Also called “happens before” or
 “precedes”  
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Precedence Ordering 

•  Remark: A0  B0 is just like saying  
–  1066 AD  1492 AD,  
– Middle Ages  Renaissance, 

•  Oh wait,  
–  what about this week vs this month? 
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Precedence Ordering 

•  Never true that A  A  
•  If A B then not true that B A 
•  If A B & B C then A C 
•  Funny thing: A B & B A might both

 be false!  
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Partial Orders 
(you may know this already) 

•  Irreflexive: 
– Never true that A  A  

•  Antisymmetric: 
–  If A  B then not true that B  A  

•  Transitive: 
–  If A  B & B  C then A  C 
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Total Orders 
(you may know this already) 

•  Also 
–  Irreflexive 
–  Antisymmetric 
–  Transitive 

•  Except that for every distinct A, B, 
–  Either A  B or B  A  
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Repeated Events 
while (mumble) { 

  a0; a1; 

}   

a0
k 

k-th occurrence
 of event a0 

A0
k 

k-th occurrence of
 interval A0 =(a0,a1) 
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Implementing a Counter 

public class Counter { 
  private long value; 

  public long getAndIncrement() { 
    temp  = value; 
    value = temp + 1; 
    return temp; 
  } 
} 

Make these steps
 indivisible using

 locks 
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Locks (Mutual Exclusion) 

public interface Lock { 

 public void lock(); 

 public void unlock(); 
} 
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Locks (Mutual Exclusion) 

public interface Lock { 

 public void lock(); 

 public void unlock(); 
} 

acquire lock 
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Locks (Mutual Exclusion) 

public interface Lock { 

 public void lock(); 

 public void unlock(); 
} 

release lock 

acquire lock 
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Using Locks 
public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 
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Using Locks 
public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 

acquire Lock 
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Using Locks 
public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 

Release lock 
(no matter what) 
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Using Locks 
public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 

Critical
 section 
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Mutual Exclusion 
•  Let CSi

k      be thread i’s k-th critical
 section execution 
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Mutual Exclusion 
•  Let CSi

k      be thread i’s k-th critical
 section execution 

•  And CSj
m      be thread j’s m-th critical

 section execution 
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Mutual Exclusion 
•  Let CSi

k      be thread i’s k-th critical
 section execution 

•  And CSj
m      be j’s m-th execution 

•  Then either 
–             or 
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Mutual Exclusion 
•  Let CSi

k      be thread i’s k-th critical
 section execution 

•  And CSj
m      be j’s m-th execution 

•  Then either 
–             or 

CSi
k  CSj

m 
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Mutual Exclusion 
•  Let CSi

k      be thread i’s k-th critical
 section execution 

•  And CSj
m      be j’s m-th execution 

•  Then either 
–             or 

CSi
k  CSj

m 
CSj

m  CSi
k 
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Deadlock-Free	


•  If some thread calls lock() 
–  And never returns 
–  Then other threads must complete lock()

 and unlock() calls infinitely often 
•  System as a whole makes progress 

–  Even if individuals starve 
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Starvation-Free	


•  If some thread calls lock() 
–  It will eventually return 

•  Individual threads make progress 
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Two-Thread vs n -Thread
 Solutions 

•  Two-thread solutions first 
–  Illustrate most basic ideas 
–  Fits on one slide 

•  Then n-Thread solutions  
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class … implements Lock { 
  … 
  // thread-local index, 0 or 1 
  public void lock() { 
    int i = ThreadID.get(); 
    int j = 1 - i;  
  … 

  } 
} 

Two-Thread Conventions 
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class … implements Lock { 
  … 
  // thread-local index, 0 or 1 
  public void lock() { 
    int i = ThreadID.get(); 
    int j = 1 - i;  
  … 

  }   
} 

Two-Thread Conventions 

Henceforth: i is current
 thread, j is other thread 
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LockOne 
class LockOne implements Lock { 
private volatile boolean[] flag =  
                        new boolean[2]; 
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 
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LockOne 
class LockOne implements Lock { 
private volatile boolean[] flag =  
                        new boolean[2];  
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 

Set my flag 
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class LockOne implements Lock { 
private volatile boolean[] flag =  
                        new boolean[2];  
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 

LockOne 

Wait for other
 flag to go false 

Set my flag 
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•  Assume CSA
j overlaps CSB

k 
•  Consider each thread's last (j-th

 and k-th) read and write in the
 lock() method before entering  

•  Derive a contradiction 

LockOne Satisfies Mutual
 Exclusion 
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•  writeA(flag[A]=true)  readA(flag[B
]==false) CSA 

•  writeB(flag[B]=true)  readB(flag[A
]==false)  CSB 

From the Code 

class LockOne implements Lock { 
…  
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 
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•  readA(flag[B]==false)  writeB(fla
g[B]=true) 

•  readB(flag[A]==false)  writeA(fla
g[B]=true) 

From the Assumption 
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•  Assumptions: 
–  readA(flag[B]==false)  writeB(flag[B]=true) 
–  readB(flag[A]==false)  writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true)  readA(flag[B]==false) 
–  writeB(flag[B]=true)  readB(flag[A]==false) 

Combining 
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•  Assumptions: 
–  readA(flag[B]==false)  writeB(flag[B]=true) 
–  readB(flag[A]==false)  writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true)  readA(flag[B]==false) 
–  writeB(flag[B]=true)  readB(flag[A]==false) 

Combining 
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•  Assumptions: 
–  readA(flag[B]==false)  writeB(flag[B]=true) 
–  readB(flag[A]==false)  writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true)  readA(flag[B]==false) 
–  writeB(flag[B]=true)  readB(flag[A]==false) 

Combining 
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•  Assumptions: 
–  readA(flag[B]==false)  writeB(flag[B]=true) 
–  readB(flag[A]==false)  writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true)  readA(flag[B]==false) 
–  writeB(flag[B]=true)  readB(flag[A]==false) 

Combining 



Art of Multiprocessor
 Programming 

53 

•  Assumptions: 
–  readA(flag[B]==false)  writeB(flag[B]=true) 
–  readB(flag[A]==false)  writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true)  readA(flag[B]==false) 
–  writeB(flag[B]=true)  readB(flag[A]==false) 

Combining 
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•  Assumptions: 
–  readA(flag[B]==false)  writeB(flag[B]=true) 
–  readB(flag[A]==false)  writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true)  readA(flag[B]==false) 
–  writeB(flag[B]=true)  readB(flag[A]==false) 

Combining 
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Cycle! 



Art of Multiprocessor
 Programming 

56 

Deadlock Freedom 

•  LockOne Fails deadlock-freedom 
–  Concurrent execution can deadlock 

–  Sequential executions OK 

  flag[i] = true;    flag[j] = true; 
  while (flag[j]){}  while (flag[i]){} 
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LockTwo 
public class LockTwo implements Lock { 
 private volatile int victim; 
 public void lock() { 
  victim = i; 
  while (victim == i) {};  
 } 

 public void unlock() {} 
} 
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LockTwo 
public class LockTwo implements Lock { 
 private volatile int victim; 
 public void lock() { 
  victim = i; 
  while (victim == i) {};  
 } 

 public void unlock() {} 
} 

Let other go
 first 
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LockTwo 
public class LockTwo implements Lock { 
 private volatile int victim; 
 public void lock() { 
 victim = i; 
  while (victim == i) {};  
 } 

 public void unlock() {} 
} 

Wait for
 permission 
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LockTwo 
public class Lock2 implements Lock { 
 private volatile int victim; 
 public void lock() { 
  victim = i; 
  while (victim == i) {};  
 } 

 public void unlock() {} 
} 

Nothing to do 
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public void LockTwo() { 
  victim = i; 
  while (victim == i) {};  
 } 

LockTwo Claims 

•  Satisfies mutual exclusion 
–  If thread i in CS 
–  Then victim == j 
–  Cannot be both 0 and 1 

•  Not deadlock free 
–  Sequential execution deadlocks 
–  Concurrent execution does not 
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Peterson’s Algorithm 

1  public void lock() { 
2   flag[i] = true;  
3   victim  = i;  
4   while (flag[j] && victim == i) {}; 
5  } 
6  public void unlock() { 
7   flag[i] = false; 
8  } 
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Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m
 interested 
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Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m
 interested 

Defer to other 
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Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m
 interested 

Defer to other 

Wait while other
 interested & I’m

 the victim 
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Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
 } 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m
 interested 

Defer to other 

Wait while other
 interested & I’m

 the victim No longer
 interested 
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public void lock() { 
  flag[i] = true;  
  victim  = i; 
  while (flag[j] && victim == i) {}; 

Mutual Exclusion 

•  If thread 1 in
 critical section, 
–  flag[1]=true,  
–  victim = 0 

•  If thread 0 in
 critical section, 
–  flag[0]=true,  
–  victim = 1 

Cannot both be true 



Art of Multiprocessor
 Programming 

68 

Deadlock Free 

•  Thread blocked  
–  only at while loop 
–  only if it is the victim 

•  One or the other must not be the victim 

public void lock() { 
  … 
  while (flag[j] && victim == i) {}; 
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Starvation Free 

•  Thread i blocked
 only if j
 repeatedly re
-enters so that 

  flag[j] == true and
 victim == i 

•  When j re-enters 
–  it sets victim to j. 
–  So i gets in 

public void lock() { 
  flag[i] = true;  
  victim    = i; 
  while (flag[j] && victim == i) {}; 
} 

public void unlock() { 
  flag[i] = false;   
} 
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The Filter Algorithm for n
 Threads 

There are n-1 “waiting rooms” called
 levels 

•  At each level  
–  At least one enters level 
–  At least one blocked if  
   many try 

•  Only one thread makes it through 

ncs 

cs 
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Filter 
class Filter implements Lock { 
  volatile int[] level;  // level[i] for thread i 
  volatile int[] victim; // victim[L] for level L 

  public Filter(int n) { 

  level  = new int[n]; 

  victim = new int[n];  

  for (int i = 1; i < n; i++) { 

      level[i] = 0; 

  }} 

… 

} 

n-1	


n-1	


0	


1	


0	
 0	
 0	
 0	
 0	
 0	
4	


2	


2	


Thread 2 at level 4	


0	


4	


level	


victim	
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Filter 
class Filter implements Lock { 
  … 

  public void lock(){ 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i level[k] >= L) && 
             victim[L] == i );  
    }}  
  public void unlock() { 
    level[i] = 0; 
  }} 
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class Filter implements Lock { 
  … 

  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 

Filter 

One level at a time 
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class Filter implements Lock { 
  … 

  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i) level[k] >= L) && 
             victim[L] == i); // busy wait 
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 

Filter 

Announce
 intention to
 enter level L 
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class Filter implements Lock { 
  int level[n];   
  int victim[n];  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 

Filter 

Give priority to
 anyone but me 
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class Filter implements Lock { 
  int level[n];   
  int victim[n];  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 

Filter 
Wait as long as someone else is at same or

 higher level, and I’m designated victim 
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class Filter implements Lock { 
  int level[n];   
  int victim[n];  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 

Filter 

Thread enters level L when it completes
 the loop 
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Claim 
•  Start at level L=0 
•  At most n-L threads enter level L 
•  Mutual exclusion at level L=n-1 

ncs 

cs L=n-1 

L=1 

L=n-2 

L=0 
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Induction Hypothesis 

•  Assume all at level
 L-1 enter level L 

•  A last to write
 victim[L]  

•  B is any other
 thread at level L 

•   No more than n-L+1 at level L-1  
•   Induction step: by contradiction  

ncs 

cs 

L-1 has n-L+1 
L has n-L 

assume	


prove	
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Proof Structure 
ncs 

cs 

Assumed to enter L-1	


By way of contradiction 
all enter L	


n-L+1 = 4 
n-L+1 = 4 

A	
 B	


Last to  
write 
victim[L]	


Show that A must have seen  
B at level L and since victim[L] == A 
could not have entered 	
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From the Code 

(1) writeB(level[B]=L)writeB(victim[L]=B) 

public void lock() { 
 for (int L = 1; L < n; L++) { 
   level[i] = L; 
   victim[L]  = i; 

   while ((∃ k != i) level[k] >= L) 
          && victim[L] == i) {}; 
   }}     
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From the Code 

(2) writeA(victim[L]=A)readA(level[B]) 

public void lock() { 
 for (int L = 1; L < n; L++) { 
   level[i] = L; 
   victim[L]  = i; 

   while ((∃ k != i) level[k] >= L) 
          && victim[L] == i) {}; 
   }}     
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By Assumption 

By assumption, A is the last
 thread to write victim[L] 

(3) writeB(victim[L]=B)writeA(victim[L]=A) 
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Combining Observations 

(1) writeB(level[B]=L)writeB(victim[L]=B) 
(3) writeB(victim[L]=B)writeA(victim[L]=A) 
(2) writeA(victim[L]=A)readA(level[B]) 
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public void lock() { 
 for (int L = 1; L < n; L++) { 
   level[i]  = L; 
   victim[L] = i; 

   while ((∃ k != i) level[k] >= L) 
          && victim[L] == i) {}; 
   }}     

Combining Observations 

(1) writeB(level[B]=L)writeB(victim[L]=B) 
(3) writeB(victim[L]=B)writeA(victim[L]=A) 
(2) writeA(victim[L]=A)readA(level[B]) 
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Combining Observations 

(1) writeB(level[B]=L)writeB(victim[L]=B) 
(3) writeB(victim[L]=B)writeA(victim[L]=A) 
(2) writeA(victim[L]=A)readA(level[B]) 

Thus, A read level[B] ≥ L,  
A was last to write victim[L], 
so it could not have entered level L! 
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No Starvation 

•  Filter Lock satisfies properties: 
–  Just like Peterson Alg at any level 
–  So no one starves  

•  But what about fairness? 
–  Threads can be overtaken by others  
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Bounded Waiting 

•  Want stronger fairness guarantees 
•  Thread not “overtaken” too much 
•  Need to adjust definitions …. 
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Bounded Waiting 

•  Divide lock() method into 2 parts: 
–  Doorway interval: 

• Written DA 
•  always finishes in finite steps 

– Waiting interval: 
• Written WA 

• may take unbounded steps 
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Bakery Algorithm 

•  Provides First-Come-First-Served 
•  How? 

–  Take a “number” 
– Wait until lower numbers have been

 served 
•  Lexicographic order 

–  (a,i) > (b,j) 
•  If a > b, or a = b and i > j 
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Bakery Algorithm 
class Bakery implements Lock { 

  volatile boolean[] flag; 

  volatile Label[] label; 

  public Bakery (int n) { 

    flag  = new boolean[n]; 

    label = new Label[n]; 

    for (int i = 0; i < n; i++) {  

       flag[i] = false; label[i] = 0; 

    } 

  } 
 … 
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Bakery Algorithm 
class Bakery implements Lock { 

  volatile boolean[] flag; 

  volatile Label[] label; 

  public Bakery (int n) { 

    flag  = new boolean[n]; 

    label = new Label[n]; 

    for (int i = 0; i < n; i++) {  

       flag[i] = false; label[i] = 0; 

    } 

  } 
 … 

n-1	
0	

f	
 f	
 f	
 f	
 t	
 f	
t	


2	


f	


0	
 0	
 0	
 0	
 5	
 0	
4	
 0	


6	


CS	
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Bakery Algorithm 

class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 
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Bakery Algorithm 

class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

Doorway 
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Bakery Algorithm 

class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

I’m interested 
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Bakery Algorithm 

class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

Take increasing
 label (read

 labels in some
 arbitrary order) 
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Bakery Algorithm 

class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

Someone is
 interested 
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Bakery Algorithm 
class Bakery implements Lock { 
  boolean flag[n]; 
  int label[n]; 

 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

Someone is
 interested 

With lower (label,i) in
 lexicographic order 
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Bakery Algorithm 

class Bakery implements Lock { 

    … 

 public void unlock() {   
   flag[i] = false; 
 } 
} 
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Bakery Algorithm 

class Bakery implements Lock { 

    … 

 public void unlock() {   
   flag[i] = false; 
 } 
} 

No longer
 interested 

labels are always increasing 	
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No Deadlock 

•  There is always one thread with
 earliest label 

•  Ties are impossible (why?) 
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First-Come-First-Served 
•  If DA  DBthen A’s

 label is earlier 
–  writeA(label[A]) 

 readB(label[A]) 
 writeB(label[B]) 
 readB(flag[A]) 

•  So B is locked out
 while flag[A] is
 true 

class Bakery implements Lock { 

public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], 
                 …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) >
 (label[k],k)); 

 } 
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Mutual Exclusion 
•  Suppose A and B in

 CS together 
•  Suppose A has

 earlier label 
•  When B entered, it

 must have seen 
–  flag[A] is false, or 
–  label[A] > label[B] 

class Bakery implements Lock { 

public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], 
                 …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) >
 (label[k],k)); 

 } 
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Mutual Exclusion 

•  Labels are strictly increasing so  
•  B must have seen flag[A] == false 
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Mutual Exclusion 

•  Labels are strictly increasing so  
•  B must have seen flag[A] == false 
•  LabelingB  readB(flag[A])  write

A(flag[A])  LabelingA 
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Mutual Exclusion 

•  Labels are strictly increasing so  
•  B must have seen flag[A] == false 
•  LabelingB  readB(flag[A])  write

A(flag[A])  LabelingA 
•  Which contradicts the assumption

 that A has an earlier label 
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Bakery Y232K Bug 
class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 
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Bakery Y232K Bug 
class Bakery implements Lock { 
  … 
 public void lock() {   
  flag[i]  = true;   
  label[i] = max(label[0], …,label[n-1])+1; 

  while (∃k flag[k] 
           && (label[i],i) > (label[k],k)); 
 } 

Mutex breaks if
 label[i]
 overflows 
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Does Overflow Actually
 Matter? 

•  Yes 
–  Y2K 
–  18 January 2038 (Unix time_t rollover) 
–  16-bit counters 

•  No 
–  64-bit counters 

•  Maybe 
–  32-bit counters 



... spin locks e desempenho 

•  material cap 7 livro Herlihy 

Art of Multiprocessor
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Revisit Mutual Exclusion... 

•  Think of performance, not just
 correctness and progress 

•  Begin to understand how performance
 depends on our software properly
 utilizing the multiprocessor machine’s
 hardware 

•  And get to know a collection of
 locking algorithms…  

(1) 
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What Should you do if you can’t
 get a lock? 

•  Keep trying 
–  “spin” or “busy-wait” 
–  Good if delays are short 

•  Give up the processor 
–  Good if delays are long 
–  Always good on uniprocessor 

(1) 
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What Should you do if you can’t
 get a lock? 

•  Keep trying 
–  “spin” or “busy-wait” 
–  Good if delays are short 

•  Give up the processor 
–  Good if delays are long 
–  Always good on uniprocessor 

our focus 
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Basic Spin-Lock 

CS	


Resets lock  
upon exit 

spin  
lock 

critical  
section 

.	
.	
.	
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Basic Spin-Lock 

CS	


Resets lock  
upon exit 

spin  
lock 

critical  
section 

.	
.	
.	


…lock introduces
 sequential bottleneck	
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Basic Spin-Lock 

CS	


Resets lock  
upon exit 

spin  
lock 

critical  
section 

.	
.	
.	


…lock suffers from
 contention	
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Basic Spin-Lock 

CS	


Resets lock  
upon exit 

spin  
lock 

critical  
section 

.	
.	
.	

Notice: these are distinct
 phenomena	


…lock suffers from
 contention	
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Basic Spin-Lock 

CS	


Resets lock  
upon exit 

spin  
lock 

critical  
section 

.	
.	
.	


…lock suffers from
 contention	


Seq Bottleneck  no
 parallelism	
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Basic Spin-Lock 

CS	


Resets lock  
upon exit 

spin  
lock 

critical  
section 

.	
.	
.	

Contention  ???	


…lock suffers from
 contention	
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Review: Test-and-Set 

•  Boolean value 
•  Test-and-set (TAS) 

–  Swap true with current value 
–  Return value tells if prior value was true

 or false 
•  Can reset just by writing false 
•  TAS aka “getAndSet” 
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Review: Test-and-Set 
public class AtomicBoolean { 
 boolean value; 

 public synchronized boolean
 getAndSet(boolean newValue) { 

   boolean prior = value; 
   value = newValue; 
   return prior; 
 } 
} 

(5) 
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Review: Test-and-Set 
public class AtomicBoolean { 
 boolean value; 

 public synchronized boolean
 getAndSet(boolean newValue) { 

   boolean prior = value; 
   value = newValue; 
   return prior; 
 } 
} 

Package 
java.util.concurrent.atomic 
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Review: Test-and-Set 
public class AtomicBoolean { 
 boolean value; 

 public synchronized boolean
 getAndSet(boolean newValue) { 

   boolean prior = value; 
   value = newValue; 
   return prior; 
 } 
} 

Swap old and new
 values 
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Review: Test-and-Set 
AtomicBoolean lock 
 = new AtomicBoolean(false) 
… 
boolean prior = lock.getAndSet(true) 
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Review: Test-and-Set 
AtomicBoolean lock 
 = new AtomicBoolean(false) 
… 
boolean prior = lock.getAndSet(true) 

(5) 

Swapping in true is called
 “test-and-set” or TAS 
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Test-and-Set Locks 

•  Locking 
–  Lock is free: value is false 
–  Lock is taken: value is true 

•  Acquire lock by calling TAS 
–  If result is false, you win 
–  If result is true, you lose  

•  Release lock by writing false 
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Test-and-set Lock 
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (state.getAndSet(true)) {} 
 } 

 void unlock() { 
  state.set(false); 
 }}  
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Test-and-set Lock 
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (state.getAndSet(true)) {} 
 } 

 void unlock() { 
  state.set(false); 
 }}  

Lock state is AtomicBoolean 
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Test-and-set Lock 
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (state.getAndSet(true)) {} 
 } 

 void unlock() { 
  state.set(false); 
 }}  

Keep trying until lock acquired 
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Test-and-set Lock 
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (state.getAndSet(true)) {} 
 } 

 void unlock() { 
  state.set(false); 
 }}  

Release lock by resetting
 state to false 
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Space Complexity	


•  TAS spin-lock has small “footprint”  
•  N thread spin-lock uses O(1) space 
•  As opposed to O(n) Peterson/Bakery  
•  How did we overcome the Ω(n) lower

 bound?  
•  We used a RMW operation… 	
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Performance 

•  Experiment 
–  n threads 
–  Increment shared counter 1 million times 

•  How long should it take? 
•  How long does it take? 
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Graph 

ideal ti
m

e 

threads 

no speedup
 because of
 sequential
 bottleneck 
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Mystery #1 

ti
m

e 

threads 

TAS lock 

Ideal 

(1) 

What is  
going
 on?  
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Test-and-Test-and-Set Locks 

•  Lurking stage 
– Wait until lock “looks” free 
–  Spin while read returns true (lock taken) 

•  Pouncing state 
–  As soon as lock “looks” available 
–  Read returns false (lock free) 
–  Call TAS to acquire lock 
–  If TAS loses, back to lurking 
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Test-and-test-and-set Lock 
class TTASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
 } 
}  
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Test-and-test-and-set Lock 
class TTASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
 } 
}  Wait until lock looks free 
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Test-and-test-and-set Lock 
class TTASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 

 void lock() { 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
 } 
}  

Then try to
 acquire it 
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Mystery #2 
TAS lock 

TTAS lock 

Ideal ti
m

e 

threads 
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Mystery 

•  Both 
–  TAS and TTAS 
–  Do the same thing (in our model) 

•  Except that   
–  TTAS performs much better than TAS 
– Neither approaches ideal 
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Opinion 

•  Our memory abstraction is broken 
•  TAS & TTAS methods 

–  Are provably the same (in our model) 

–  Except they aren’t (in field tests) 

•  Need a more detailed model … 
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Bus-Based Architectures 

Bus 

cache 

memory 

cache cache 
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Bus-Based Architectures 

Bus 

cache 

memory 

cache cache 

Random access memory
 (10s of cycles) 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

144 

Bus-Based Architectures 

cache 

memory 

cache cache 

Shared Bus 
• broadcast medium 
• One broadcaster at a time 
• Processors and memory all
 “snoop” 

Bus 
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Bus-Based Architectures 

Bus 

cache 

memory 

cache cache 

Per-Processor Caches 
• Small 
• Fast: 1 or 2 cycles 
• Address & state information 
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Jargon Watch 

•  Cache hit 
–  “I found what I wanted in my cache” 
–  Good Thing™ 
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Jargon Watch 

•  Cache hit 
–  “I found what I wanted in my cache” 
–  Good Thing™ 

•  Cache miss 
–  “I had to shlep all the way to memory for

 that data” 
–  Bad Thing™ 
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Cave Canem 

•  This model is still a simplification 
–  But not in any essential way 
–  Illustrates basic principles 

•  Will discuss complexities later 
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Bus 

Processor Issues Load Request 

cache 

memory 

cache cache 

data 
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Bus 

Processor Issues Load Request 

Bus 

cache 

memory 

cache cache 

data 

Gimme 
data 
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cache 

Bus 

Memory Responds 

Bus 

memory 

cache cache 

data 

Got your
 data
 right
 here  data 
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Bus 

Processor Issues Load Request 

memory 

cache cache data 

data 

Gimme 
data 
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Bus 

Processor Issues Load Request 

Bus 

memory 

cache cache data 

data 

Gimme 
data 
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Bus 

Processor Issues Load Request 

Bus 

memory 

cache cache data 

data 

I got
 data 
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Bus 

Other Processor Responds 

memory 

cache cache 

data 

I got
 data 

data data 
Bus 
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Bus 

Other Processor Responds 

memory 

cache cache 

data 

data data 
Bus 
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Modify Cached Data 

Bus 

data 

memory 

cache data 

data 

(1) 



Art of Multiprocessor
 Programming© Herlihy-Shavit

 2007 

158 

Modify Cached Data 

Bus 

data 

memory 

cache data 

data 

data 

(1) 
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memory 

Bus 

data 

Modify Cached Data 

cache data 

data 
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memory 

Bus 

data 

Modify Cached Data 

cache 

What’s up with the
 other copies? 

data 

data 
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Cache Coherence 

•  We have lots of copies of data 
– Original copy in memory  
–  Cached copies at processors 

•  Some processor modifies its own copy 
– What do we do with the others? 
– How to avoid confusion? 
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Write-Back Caches 

•  Accumulate changes in cache 
•  Write back when needed 

– Need the cache for something else 
–  Another processor wants it 

•  On first modification 
–  Invalidate other entries 
–  Requires non-trivial protocol …  
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Write-Back Caches 

•  Cache entry has three states 
–  Invalid: contains raw seething bits 
–  Valid: I can read but I can’t write 
–  Dirty: Data has been modified 

•  Intercept other load requests 
• Write back to memory before using cache 
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Bus 

Invalidate 

memory 

cache data data 

data 
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Bus 

Invalidate 

Bus 

memory 

cache data data 

data 

Mine, all
 mine! 
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Bus 

Invalidate 

Bus 

memory 

cache data data 

data 

cache 

Uh,oh 
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cache 
Bus 

Invalidate 

memory 

cache data 

data 

Other caches lose read permission 
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cache 
Bus 

Invalidate 

memory 

cache data 

data 

Other caches lose read permission 

This cache acquires write permission 
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cache 
Bus 

Invalidate 

memory 

cache data 

data 

Memory provides data only if not
 present in any cache, so no need to

 change it now (expensive) 

(2) 
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cache 
Bus 

Another Processor Asks for
 Data 

memory 

cache data 

data 

(2) 

Bus 
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cache data 
Bus 

Owner Responds 

memory 

cache data 

data 

(2) 

Bus 

Here it is! 
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Bus 

End of the Day … 

memory 

cache data 

data 

(1) 

Reading OK, no writing 

data data 
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Mutual Exclusion 

•  What do we want to optimize? 
–  Bus bandwidth used by spinning threads 
–  Release/Acquire latency 
–  Acquire latency for idle lock 
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Simple TASLock  

•  TAS invalidates cache lines 
•  Spinners 

– Miss in cache 
–  Go to bus 

•  Thread wants to release lock 
–  delayed behind spinners 
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Test-and-test-and-set 

•  Wait until lock “looks” free 
–  Spin on local cache 
– No bus use while lock busy 

•  Problem: when lock is released 
–  Invalidation storm … 
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Local Spinning while Lock is
 Busy 

Bus 

memory 

busy busy busy 

busy 
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Bus 

On Release 

memory 

free invalid invalid 

free 
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On Release 

Bus 

memory 

free invalid invalid 

free 

miss miss 

Everyone misses,
 rereads 

(1) 
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On Release 

Bus 

memory 

free invalid invalid 

free 

TAS(…) TAS(…) 

Everyone tries TAS 

(1) 
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Problems 

•  Everyone misses 
–  Reads satisfied sequentially 

•  Everyone does TAS 
–  Invalidates others’ caches 

•  Eventually quiesces after lock
 acquired 
– How long does this take?   
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Mystery Explained 
TAS lock 

TTAS lock 

Ideal ti
m

e 

threads 
Better than

 TAS but still
 not as good as

 ideal 
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Solution: Introduce Delay 

spin lock time 
d r1d r2d 

•  If the lock looks free 
•  But I fail to get it 

•  There must be lots of contention 
•  Better to back off than to collide again 
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Dynamic Example:
 Exponential Backoff 

time 
d 2d 4d spin lock 

 If I fail to get lock 
–  wait random duration before retry 
–  Each subsequent failure doubles
 expected wait 
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Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   
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Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   Fix minimum delay 
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Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   Wait until lock looks free 
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Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   If we win, return 
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Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   

Back off for random duration 
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Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   

Double max delay, within reason 
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Spin-Waiting Overhead 

TTAS Lock 

Backoff lock ti
m

e 

threads 
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Backoff: Other Issues 

•  Good 
–  Easy to implement 
–  Beats TTAS lock 

•  Bad 
– Must choose parameters carefully 
– Not portable across platforms 
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This work is licensed under a
 Creative Commons Attribution-ShareAlike 2.5 License.  

•  You are free: 
–  to Share — to copy, distribute and transmit the work  
–  to Remix — to adapt the work  

•  Under the following conditions: 
–  Attribution. You must attribute the work to “The Art of

 Multiprocessor Programming” (but not in any way that
 suggests that the authors endorse you or your use of the
 work).  

–  Share Alike. If you alter, transform, or build upon this work,
 you may distribute the resulting work only under the same,
 similar or a compatible license.  

•  For any reuse or distribution, you must make clear to others the
 license terms of this work. The best way to do this is with a link
 to 
–  http://creativecommons.org/licenses/by-sa/3.0/.  

•  Any of the above conditions can be waived if you get permission
 from the copyright holder.  

•  Nothing in this license impairs or restricts the author's moral
 rights.  



exercícios – para 23/8 

•  analisar o código no slide 62 (alg
 Peterson) e discutir se há diferença se
 trocarmos as linhas 2 e 3; 

•  fazer um programa com threads, com
 pthreads+c ou Java, que tenha
 comportamento diferente do esperado
 quando se usam n threads; 

•  implementar um dos algoritmos de lock
 vistos na aula de hoje no mesmo
 programa. 
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mandar por email para noemi@inf.puc-rio.br 


