
Art of Multiprocessor Programming

Introduction

Companion slides for
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

Art of Multiprocessor Programming 2

Moore’s Law

Clock speed
flattening

sharply

Transistor
count still

rising

Art of Multiprocessor Programming 3

Vanishing from your Desktops:
The Uniprocesor

memory

cpu

Art of Multiprocessor Programming 4

Your Server:
The Shared Memory Multiprocessor

(SMP)

cache

Bus Bus

shared memory

cache cache

Art of Multiprocessor Programming 5

Your New Server or Desktop:
The Multicore Processor

(CMP)

cache
Bus Bus

shared memory

cache cache All on the
same chip

Sun
T2000
Niagara

Art of Multiprocessor Programming 6

From the 2008 press…
…Intel has announced a press conference in
San Francisco on November 17th, where it
will officially launch the Core i7 Nehalem
processor…

…Sun’s next generation Enterprise T5140
and T5240 servers, based on the 3rd
Generation UltraSPARC T2 Plus processor,
were released two days ago…

Art of Multiprocessor Programming 7

Why do we care?
•  Time no longer cures software bloat

–  The “free ride” is over
•  When you double your program’s path

length
–  You can’t just wait 6 months
–  Your software must somehow exploit twice

as much concurrency

Art of Multiprocessor Programming 8

Traditional Scaling Process

User code

Traditional
Uniprocessor

Speedup
1.8x

7x
3.6x

Time: Moore’s law

Art of Multiprocessor Programming 9

Multicore Scaling Process

User code

Multicore

Speedup 1.8x

7x
3.6x

Unfortunately, not so simple…

Art of Multiprocessor Programming 10

Real-World Scaling Process

1.8x 2x 2.9x

User code

Multicore

Speedup

Parallelization and Synchronization
require great care…

Art of Multiprocessor Programming 11

Multicore Programming:
Course Overview

•  Fundamentals
– Models, algorithms, impossibility

•  Real-World programming
– Architectures
– Techniques

Art of Multiprocessor Programming 12

Multicore Programming:
Course Overview

•  Fundamentals
– Models, algorithms, impossibility

•  Real-World programming
– Architectures
– Techniques

Art of Multiprocessor Programming 13

Sequential Computation

memory

object object

thread

Art of Multiprocessor Programming 14

Concurrent Computation

memory

object object

Art of Multiprocessor Programming 15

Asynchrony

•  Sudden unpredictable delays
–  Cache misses (short)
–  Page faults (long)
–  Scheduling quantum used up (really long)

Art of Multiprocessor Programming 16

Model Summary
•  Multiple threads

–  Sometimes called processes
•  Single shared memory
•  Objects live in memory
•  Unpredictable asynchronous delays

Art of Multiprocessor Programming 17

Road Map
•  We are going to focus on principles

first, then practice
–  Start with idealized models
–  Look at simplistic problems
–  Emphasize correctness over pragmatism
– “Correctness may be theoretical, but

incorrectness has practical impact”

Art of Multiprocessor Programming 18

Concurrency Jargon
•  Hardware

–  Processors
•  Software

–  Threads, processes
•  Sometimes OK to confuse them,

sometimes not.

Art of Multiprocessor Programming 19

Parallel Primality Testing
•  Challenge

–  Print primes from 1 to 1010

•  Given
–  Ten-processor multiprocessor
– One thread per processor

•  Goal
–  Get ten-fold speedup (or close)

Art of Multiprocessor Programming 20

Load Balancing

•  Split the work evenly
•  Each thread tests range of 109

…

… 109 1010 2·109 1

P0 P1 P9

Art of Multiprocessor Programming 21

Procedure for Thread i

void primePrint {
 int i = ThreadID.get(); // IDs in {0..9}
 for (j = i*109+1, j<(i+1)*109; j++) {
 if (isPrime(j))
 print(j);
 }
}

Art of Multiprocessor Programming 22

Issues
•  Higher ranges have fewer primes
•  Yet larger numbers harder to test
•  Thread workloads

–  Uneven
– Hard to predict

Art of Multiprocessor Programming 23

Issues
•  Higher ranges have fewer primes
•  Yet larger numbers harder to test
•  Thread workloads

–  Uneven
– Hard to predict

•  Need dynamic load balancing

Art of Multiprocessor Programming 24

17

18

19

Shared Counter

each thread
takes a number

Art of Multiprocessor Programming 25

Procedure for Thread i

int counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Art of Multiprocessor Programming 26

Counter counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Procedure for Thread i

Shared counter
object

Art of Multiprocessor Programming 27

Where Things Reside

cache

Bus Bus

cache cache

1

shared counter

shared
memory

void primePrint {
 int i =
ThreadID.get(); // IDs
in {0..9}
 for (j = i*109+1, j<(i
+1)*109; j++) {
 if (isPrime(j))
 print(j);
 }
}

code

Local
variables

Art of Multiprocessor Programming 28

Procedure for Thread i

Counter counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Stop when every
value taken

Art of Multiprocessor Programming 29

Counter counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Procedure for Thread i

Increment & return
each new value

Art of Multiprocessor Programming 30

Counter Implementation

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
}

Art of Multiprocessor Programming 31

Counter Implementation

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
} OK for

single
thread

,

not fo
r conc

urrent
 threa

ds

Art of Multiprocessor Programming 32

What It Means

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
}

Art of Multiprocessor Programming 33

What It Means

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
}

 temp = value;
 value = temp + 1;
 return temp;

Art of Multiprocessor Programming 34

time

Not so good…

Value… 1

read
1

read
1

write
2

read
2

write
3

write
2

2 3 2

Art of Multiprocessor Programming 35

Is this problem inherent?

If we could only glue reads and
writes together…

read

write read

write
!! !!

Art of Multiprocessor Programming 36

Challenge

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = temp + 1;
 return temp;
 }
}

Art of Multiprocessor Programming 37

Challenge

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = temp + 1;
 return temp;
 }
}

Make these steps
atomic (indivisible)

Art of Multiprocessor Programming 38

Hardware Solution

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = temp + 1;
 return temp;
 }
} ReadModifyWrite()

instruction

Art of Multiprocessor Programming 39

An Aside: Java™

public class Counter {
 private long value;

 public long getAndIncrement() {
 synchronized {
 temp = value;
 value = temp + 1;
 }
 return temp;
 }
}

Art of Multiprocessor Programming 40

An Aside: Java™

public class Counter {
 private long value;

 public long getAndIncrement() {
 synchronized {
 temp = value;
 value = temp + 1;
 }
 return temp;
 }
}

Synchronized block

Art of Multiprocessor Programming 41

An Aside: Java™

public class Counter {
 private long value;

 public long getAndIncrement() {
 synchronized {
 temp = value;
 value = temp + 1;
 }
 return temp;
 }
}

Mutual Exclusion

Art of Multiprocessor Programming 42

Mutual Exclusion or “Alice & Bob
share a pond”

A B

Art of Multiprocessor Programming 43

Alice has a pet

A B

Art of Multiprocessor Programming 44

Bob has a pet

A B

Art of Multiprocessor Programming 45

The Problem

A B

The pets don’t
get along

Art of Multiprocessor Programming 46

Formalizing the Problem
•  Two types of formal properties in

asynchronous computation:
•  Safety Properties

– Nothing bad happens ever
•  Liveness Properties

–  Something good happens eventually

Art of Multiprocessor Programming 47

Formalizing our Problem
•  Mutual Exclusion

–  Both pets never in pond simultaneously
–  This is a safety property

•  No Deadlock
–  if only one wants in, it gets in
–  if both want in, one gets in.
–  This is a liveness property

Art of Multiprocessor Programming 48

Simple Protocol
•  Idea

–  Just look at the pond
•  Gotcha

– Not atomic
–  Trees obscure the view

Art of Multiprocessor Programming 49

Interpretation
•  Threads can’t “see” what other

threads are doing
•  Explicit communication required for

coordination

Art of Multiprocessor Programming 50

Cell Phone Protocol
•  Idea

–  Bob calls Alice (or vice-versa)
•  Gotcha

–  Bob takes shower
–  Alice recharges battery
–  Bob out shopping for pet food …

Art of Multiprocessor Programming 51

Interpretation
•  Message-passing doesn’t work
•  Recipient might not be

–  Listening
–  There at all

•  Communication must be
–  Persistent (like writing)
– Not transient (like speaking)

Art of Multiprocessor Programming 52

Can Protocol

co
la

co
la

Art of Multiprocessor Programming 53

Bob conveys a bit

A B

co
la

Art of Multiprocessor Programming 54

Bob conveys a bit

A B

cola

Art of Multiprocessor Programming 55

Can Protocol
•  Idea

–  Cans on Alice’s windowsill
–  Strings lead to Bob’s house
–  Bob pulls strings, knocks over cans

•  Gotcha
–  Cans cannot be reused
–  Bob runs out of cans

Art of Multiprocessor Programming 56

Interpretation
•  Cannot solve mutual exclusion with

interrupts
–  Sender sets fixed bit in receiver’s space
–  Receiver resets bit when ready
–  Requires unbounded number of interrupt

bits

Art of Multiprocessor Programming 57

Flag Protocol

A B

Art of Multiprocessor Programming 58

Alice’s Protocol (sort of)

A B

Art of Multiprocessor Programming 59

Bob’s Protocol (sort of)

A B

Art of Multiprocessor Programming 60

Alice’s Protocol

•  Raise flag
•  Wait until Bob’s flag is down
•  Unleash pet
•  Lower flag when pet returns

Art of Multiprocessor Programming 61

Bob’s Protocol

•  Raise flag
•  Wait until Alice’s flag is down
•  Unleash pet
•  Lower flag when pet returns

Art of Multiprocessor Programming 62

Bob’s Protocol (2nd try)

•  Raise flag
•  While Alice’s flag is up

–  Lower flag
– Wait for Alice’s flag to go down
–  Raise flag

•  Unleash pet
•  Lower flag when pet returns

Art of Multiprocessor Programming 63

Bob’s Protocol

•  Raise flag
•  While Alice’s flag is up

–  Lower flag
– Wait for Alice’s flag to go down
–  Raise flag

•  Unleash pet
•  Lower flag when pet returns

Bob defers
to Alice

Art of Multiprocessor Programming 64

The Flag Principle
•  Raise the flag
•  Look at other’s flag
•  Flag Principle:

–  If each raises and looks, then
–  Last to look must see both flags up

Art of Multiprocessor Programming 65

Proof of Mutual Exclusion
•  Assume both pets in pond

–  Derive a contradiction
–  By reasoning backwards

•  Consider the last time Alice and Bob
each looked before letting the pets in

•  Without loss of generality assume Alice
was the last to look…

Art of Multiprocessor Programming Art of Multiprocessor
Programming

66

Proof

time

Alice’s last look

Alice last raised her flag

Bob’s last
look

Alice must have seen Bob’s Flag. A Contradiction

Bob last raised
flag

Art of Multiprocessor Programming 67

Proof of No Deadlock
•  If only one pet wants in, it gets in.

Art of Multiprocessor Programming 68

Proof of No Deadlock
•  If only one pet wants in, it gets in.
•  Deadlock requires both continually

trying to get in.

Art of Multiprocessor Programming 69

Proof of No Deadlock
•  If only one pet wants in, it gets in.
•  Deadlock requires both continually

trying to get in.
•  If Bob sees Alice’s flag, he gives her

priority (a gentleman…)

Art of Multiprocessor Programming 70

Remarks
•  Protocol is unfair

–  Bob’s pet might never get in
•  Protocol uses waiting

–  If Bob is eaten by his pet, Alice’s pet
might never get in

Art of Multiprocessor Programming 71

Moral of Story

• Mutual Exclusion cannot be solved by
– transient communication (cell phones)
– interrupts (cans)

• It can be solved by
–  one-bit shared variables
–  that can be read or written

Art of Multiprocessor Programming 72

The Fable Continues
•  Alice and Bob fall in love & marry
•  Then they fall out of love & divorce

–  She gets the pets
– He has to feed them

Art of Multiprocessor Programming 73

The Fable Continues
•  Alice and Bob fall in love & marry
•  Then they fall out of love & divorce

–  She gets the pets
– He has to feed them

•  Leading to a new coordination problem:
Producer-Consumer

Art of Multiprocessor Programming 74

Bob Puts Food in the Pond

A

Art of Multiprocessor Programming 75

mmm…

Alice releases her pets to Feed

B
mmm…

Art of Multiprocessor Programming 76

Producer/Consumer
•  Alice and Bob can’t meet

–  Each has restraining order on other
–  So he puts food in the pond
–  And later, she releases the pets

•  Avoid
–  Releasing pets when there’s no food
–  Putting out food if uneaten food remains

Art of Multiprocessor Programming 77

Producer/Consumer
•  Need a mechanism so that

–  Bob lets Alice know when food has been put
out

–  Alice lets Bob know when to put out more
food

Art of Multiprocessor Programming 78

Surprise Solution

A B

co
la

Art of Multiprocessor Programming 79

Bob puts food in Pond

A B

co
la

Art of Multiprocessor Programming 80

Bob knocks over Can

A B

cola

Art of Multiprocessor Programming 81

Alice Releases Pets

A B

cola

yum… B
yum…

Art of Multiprocessor Programming 82

Alice Resets Can when Pets are
Fed

A B

co
la

Art of Multiprocessor Programming 83

Pseudocode

while (true) {
 while (can.isUp()){};
 pet.release();
 pet.recapture();
 can.reset();
}

Alice’s code

Art of Multiprocessor Programming 84

Pseudocode

while (true) {
 while (can.isUp()){};
 pet.release();
 pet.recapture();
 can.reset();
}

Alice’s code

while (true) {
 while (can.isDown()){};
 pond.stockWithFood();
 leaveYard()
 can.knockOver();
}

Bob’s code

Art of Multiprocessor Programming 85

Correctness
•  Mutual Exclusion

–  Pets and Bob never together in pond

Art of Multiprocessor Programming 86

Correctness
•  Mutual Exclusion

–  Pets and Bob never together in pond
•  No Starvation

if Bob always willing to feed, and pets
always famished, then pets eat infinitely
often.

Art of Multiprocessor Programming 87

Correctness
•  Mutual Exclusion

–  Pets and Bob never together in pond
•  No Starvation

if Bob always willing to feed, and pets
always famished, then pets eat infinitely
often.

•  Producer/Consumer
The pets never enter pond unless there is

food, and Bob never provides food if
there is unconsumed food.

safety

liveness

safety

Art of Multiprocessor Programming 88

Waiting
•  Both solutions use waiting

– while(mumble){}
•  In some cases waiting is problematic

–  If one participant is delayed
–  So is everyone else
–  But delays are common & unpredictable

Art of Multiprocessor Programming 89

The Fable drags on …
•  Bob and Alice still have issues

Art of Multiprocessor Programming 90

The Fable drags on …
•  Bob and Alice still have issues
•  So they need to communicate

Art of Multiprocessor Programming 91

The Fable drags on …
•  Bob and Alice still have issues
•  So they need to communicate
•  They agree to use billboards …

Art of Multiprocessor Programming Art of Multiprocessor
Programming

92

E
1

D
2 C

3

Billboards are Large

B
3 A

1

Letter
Tiles

From Scrabble™ box

Art of Multiprocessor Programming 93

E
1

D
2 C

3

Write One Letter at a Time …

B
3 A

1

W
4
A

1
S

1

H
4

Art of Multiprocessor Programming 94

To post a message

W
4
A

1
S

1
H

4
A

1
C

3
R

1
T

1
H

4
E

1

whe
w

Art of Multiprocessor Programming 95

S
1

Let’s send another message

S
1
E

1
L

1
L

1
L

1
V

4

L
1 A

1

M
3

A
1

A
1

P
3

Art of Multiprocessor Programming 96

Uh-Oh

A
1

C
3

R
1

T
1
H

4
E

1
S

1
E

1
L

1
L

1

L
1

OK

Art of Multiprocessor Programming 97

Readers/Writers
•  Devise a protocol so that

– Writer writes one letter at a time
–  Reader reads one letter at a time
–  Reader sees “snapshot”

• Old message or new message
• No mixed messages

Art of Multiprocessor Programming 98

Readers/Writers (continued)
•  Easy with mutual exclusion
•  But mutual exclusion requires waiting

– One waits for the other
–  Everyone executes sequentially

•  Remarkably
– We can solve R/W without mutual exclusion

Art of Multiprocessor Programming 99

Why do we care?
•  We want as much of the code as

possible to execute concurrently (in
parallel)

•  A larger sequential part implies reduced
performance

•  Amdahl’s law: this relation is not
linear…

Art of Multiprocessor Programming 100

Amdahl’s Law

OldExecutionTime
NewExecutionTimeSpeedup=

…of computation given n CPUs instead of 1

Art of Multiprocessor Programming 101

Amdahl’s Law

− +
pp
n

1

1
Speedup=

Art of Multiprocessor Programming 102

Amdahl’s Law

− +
pp
n

1

1
Speedup=

Parallel
fraction

Art of Multiprocessor Programming 103

Amdahl’s Law

− +
pp
n

1

1
Speedup=

Parallel
fraction

Sequential
fraction

Art of Multiprocessor Programming 104

Amdahl’s Law

− +
pp
n

1

1
Speedup=

Parallel
fraction

Number of
processors

Sequential
fraction

Art of Multiprocessor Programming 105

Example
•  Ten processors
•  60% concurrent, 40% sequential
•  How close to 10-fold speedup?

Art of Multiprocessor Programming 106

Example
•  Ten processors
•  60% concurrent, 40% sequential
•  How close to 10-fold speedup?

10
6.06.01

1

+−
Speedup = 2.17=

Art of Multiprocessor Programming 107

Example
•  Ten processors
•  80% concurrent, 20% sequential
•  How close to 10-fold speedup?

Art of Multiprocessor Programming 108

Example
•  Ten processors
•  80% concurrent, 20% sequential
•  How close to 10-fold speedup?

10
8.08.01

1

+−
Speedup = 3.57=

Art of Multiprocessor Programming 109

Example
•  Ten processors
•  90% concurrent, 10% sequential
•  How close to 10-fold speedup?

Art of Multiprocessor Programming 110

Example
•  Ten processors
•  90% concurrent, 10% sequential
•  How close to 10-fold speedup?

10
9.09.01

1

+−
Speedup = 5.26=

Art of Multiprocessor Programming 111

Example
•  Ten processors
•  99% concurrent, 01% sequential
•  How close to 10-fold speedup?

Art of Multiprocessor Programming 112

Example
•  Ten processors
•  99% concurrent, 01% sequential
•  How close to 10-fold speedup?

10
99.099.01

1

+−
Speedup = 9.17=

Art of Multiprocessor Programming

Back to Real-World
Multicore Scaling

113

1.8x 2x 2.9x

User code

Multicore

Speedup

Must not be managing to
reduce sequential % of code

Art of Multiprocessor Programming

Back to Real-World
Multicore Scaling

114

1.8x 2x 2.9x

User code

Multicore

Speedup

Not reducing
sequential % of code

Art of Multiprocessor Programming

Diminishing Returns

0

1

2

3

4

5

4 8 16 32

inf
ini
te

speedup

Art of Multiprocessor Programming 116

Multicore Programming
•  This is what this course is about…

–  The % that is not easy to make concurrent
yet may have a large impact on overall
speedup

•  Next:
–  A more serious look at mutual exclusion

Art of Multiprocessor Programming 117

This work is licensed under a
Creative Commons Attribution-ShareAlike 2.5 License.

•  You are free:
–  to Share — to copy, distribute and transmit the work
–  to Remix — to adapt the work

•  Under the following conditions:
–  Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that
suggests that the authors endorse you or your use of the
work).

–  Share Alike. If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same,
similar or a compatible license.

•  For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to
–  http://creativecommons.org/licenses/by-sa/3.0/.

•  Any of the above conditions can be waived if you get permission
from the copyright holder.

•  Nothing in this license impairs or restricts the author's moral
rights.

