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Moore’s Law 

Clock speed 
flattening 

sharply 

Transistor 
count still 

rising 
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Vanishing from your Desktops: 
The Uniprocesor 

memory 

cpu 
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Your Server:  
The Shared Memory Multiprocessor 

(SMP) 

cache 

Bus Bus 

shared memory 

cache cache 
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Your New Server or Desktop:  
The Multicore Processor 

(CMP)  

cache 
Bus Bus 

shared memory 

cache cache All on the  
same chip 

Sun 
T2000 
Niagara 
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From the 2008 press… 
…Intel has announced a press conference in 
San Francisco on November 17th, where it 
will officially launch the Core i7 Nehalem 
processor… 
 
…Sun’s next generation Enterprise T5140 
and T5240 servers, based on the 3rd 
Generation UltraSPARC T2 Plus processor, 
were released two days ago…  
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Why do we care?  
•  Time no longer cures software bloat 

–  The “free ride” is over 
•  When you double your program’s path 

length 
–  You can’t just wait 6 months 
–  Your software must somehow exploit twice 

as much concurrency 
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Traditional Scaling Process 

User code 

Traditional 
Uniprocessor  

Speedup 
1.8x 

7x 
3.6x 

Time: Moore’s law 
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Multicore Scaling Process 

User code 

Multicore 

Speedup 1.8x 

7x 
3.6x 

Unfortunately, not so simple… 
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Real-World Scaling Process 

1.8x 2x 2.9x 

User code 

Multicore 

Speedup 

Parallelization and Synchronization  
require great care…  
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Multicore Programming:  
Course Overview 

•  Fundamentals 
– Models, algorithms, impossibility 

•  Real-World programming 
– Architectures 
– Techniques 
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Multicore Programming:  
Course Overview 

•  Fundamentals 
– Models, algorithms, impossibility 

•  Real-World programming 
– Architectures 
– Techniques 
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Sequential Computation 

memory 

object object 

thread 



Art of Multiprocessor Programming 14 

Concurrent Computation 

memory 

object object 
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Asynchrony 

•  Sudden unpredictable delays 
–  Cache misses (short) 
–  Page faults (long) 
–  Scheduling quantum used up (really long) 
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Model Summary 
•  Multiple threads 

–  Sometimes called processes 
•  Single shared memory 
•  Objects live in memory 
•  Unpredictable asynchronous delays 
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Road Map 
•  We are going to focus on principles 

first, then practice 
–  Start with idealized models 
–  Look at simplistic problems 
–  Emphasize correctness over pragmatism 
– “Correctness may be theoretical, but 

incorrectness has practical impact” 



Art of Multiprocessor Programming 18 

Concurrency Jargon 
•  Hardware 

–  Processors 
•  Software 

–  Threads, processes 
•  Sometimes OK to confuse them, 

sometimes not. 
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Parallel Primality Testing 
•  Challenge 

–  Print primes from 1 to 1010 

•  Given 
–  Ten-processor multiprocessor 
– One thread per processor 

•  Goal 
–  Get ten-fold speedup (or close) 
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Load Balancing 

•  Split the work evenly 
•  Each thread tests range of 109 

… 

… 109 1010 2·109 1 

P0 P1 P9 
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Procedure for Thread i 

void primePrint { 
  int i = ThreadID.get(); // IDs in {0..9} 
  for (j = i*109+1, j<(i+1)*109; j++) { 
    if (isPrime(j)) 
      print(j); 
  } 
} 
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Issues 
•  Higher ranges have fewer primes 
•  Yet larger numbers harder to test 
•  Thread workloads 

–  Uneven 
– Hard to predict 
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Issues 
•  Higher ranges have fewer primes 
•  Yet larger numbers harder to test 
•  Thread workloads 

–  Uneven 
– Hard to predict 

•  Need dynamic load balancing 
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17 

18 

19 

Shared Counter 

each thread 
takes a number 
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Procedure for Thread i 

int counter = new Counter(1); 
     
void primePrint { 
  long j = 0; 
  while (j < 1010) { 
    j = counter.getAndIncrement(); 
    if (isPrime(j)) 
      print(j); 
  } 
} 
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Counter counter = new Counter(1); 
     
void primePrint { 
  long j = 0; 
  while (j < 1010) { 
    j = counter.getAndIncrement(); 
    if (isPrime(j)) 
      print(j); 
  } 
} 

Procedure for Thread i 

Shared counter 
object 



Art of Multiprocessor Programming 27 

Where Things Reside 

cache 

Bus Bus 

cache cache 

1 

shared counter 

shared  
memory 

void primePrint { 
  int i = 
ThreadID.get(); // IDs 
in {0..9} 
  for (j = i*109+1, j<(i
+1)*109; j++) { 
    if (isPrime(j)) 
      print(j); 
  } 
} 

code 

Local  
variables 
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Procedure for Thread i 

Counter counter = new Counter(1); 
     
void primePrint { 
  long j = 0; 
  while (j < 1010) { 
    j = counter.getAndIncrement(); 
    if (isPrime(j)) 
      print(j); 
  } 
} 

Stop when every 
value taken 
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Counter counter = new Counter(1); 
     
void primePrint { 
  long j = 0; 
  while (j < 1010) { 
    j = counter.getAndIncrement(); 
    if (isPrime(j)) 
      print(j); 
  } 
} 

Procedure for Thread i 

Increment & return 
each new value 
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Counter Implementation 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    return value++; 
  } 
} 
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Counter Implementation 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    return value++; 
  } 
} OK for 

single 
thread

, 

not fo
r conc

urrent
 threa

ds 
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What It Means 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    return value++; 
  } 
} 
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What It Means 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    return value++; 
  } 
} 

 temp  = value; 
 value = temp + 1; 
 return temp; 
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time 

Not so good… 

Value… 1 

read  
1 

read  
1 

write  
2 

read  
2 

write  
3 

write  
2 

2 3 2 
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Is this problem inherent? 

If we could only glue reads and 
writes together…  

read 

write read 

write 
!! !! 
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Challenge 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    temp  = value; 
    value = temp + 1; 
    return temp; 
  } 
} 
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Challenge 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    temp  = value; 
    value = temp + 1; 
    return temp; 
  } 
} 

Make these steps 
atomic (indivisible) 
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Hardware Solution 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    temp  = value; 
    value = temp + 1; 
    return temp; 
  } 
} ReadModifyWrite() 

instruction 
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An Aside: Java™ 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    synchronized { 
      temp  = value; 
      value = temp + 1; 
      } 
    return temp; 
  } 
} 
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An Aside: Java™ 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    synchronized { 
      temp  = value; 
      value = temp + 1; 
      } 
    return temp; 
  } 
} 

Synchronized block 



Art of Multiprocessor Programming 41 

An Aside: Java™ 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    synchronized { 
      temp  = value; 
      value = temp + 1; 
      } 
    return temp; 
  } 
} 

Mutual Exclusion 
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Mutual Exclusion or “Alice & Bob 
share a pond” 

A B 
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Alice has a pet 

A B 
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Bob has a pet 

A B 
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The Problem 

A B 

The pets don’t 
get along 
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Formalizing the Problem 
•  Two types of formal properties in 

asynchronous computation:  
•  Safety Properties 

– Nothing bad happens ever 
•  Liveness Properties  

–  Something good happens eventually 
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Formalizing our Problem 
•  Mutual Exclusion 

–  Both pets never in pond simultaneously 
–  This is a safety property 

•  No Deadlock 
–  if only one wants in, it gets in 
–  if both want in, one gets in. 
–  This is a liveness property 
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Simple Protocol 
•  Idea 

–  Just look at the pond 
•  Gotcha 

– Not atomic 
–  Trees obscure the view 
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Interpretation 
•  Threads can’t “see” what other 

threads are doing 
•  Explicit communication required for 

coordination 
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Cell Phone Protocol 
•  Idea 

–  Bob calls Alice (or vice-versa) 
•  Gotcha 

–  Bob takes shower 
–  Alice recharges battery 
–  Bob out shopping for pet food … 
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Interpretation 
•  Message-passing doesn’t work 
•  Recipient might not be 

–  Listening 
–  There at all 

•  Communication must be 
–  Persistent (like writing) 
– Not transient (like speaking) 
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Can Protocol 

co
la

 

co
la
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Bob conveys a bit 

A B 

co
la
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Bob conveys a bit 

A B 

cola 
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Can Protocol 
•  Idea 

–  Cans on Alice’s windowsill 
–  Strings lead to Bob’s house 
–  Bob pulls strings, knocks over cans 

•  Gotcha 
–  Cans cannot be reused 
–  Bob runs out of cans 
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Interpretation 
•  Cannot solve mutual exclusion with 

interrupts 
–  Sender sets fixed bit in receiver’s space 
–  Receiver resets bit when ready 
–  Requires unbounded number of interrupt 

bits 
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Flag Protocol 

A B 
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Alice’s Protocol (sort of) 

A B 
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Bob’s Protocol (sort of) 

A B 
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Alice’s Protocol 

•  Raise flag 
•  Wait until Bob’s flag is down 
•  Unleash pet 
•  Lower flag when pet returns 
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Bob’s Protocol 

•  Raise flag 
•  Wait until Alice’s flag is down 
•  Unleash pet 
•  Lower flag when pet returns 
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Bob’s Protocol (2nd try) 

•  Raise flag 
•  While Alice’s flag is up 

–  Lower flag 
– Wait for Alice’s flag to go down 
–  Raise flag 

•  Unleash pet 
•  Lower flag when pet returns 
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Bob’s Protocol 

•  Raise flag 
•  While Alice’s flag is up 

–  Lower flag 
– Wait for Alice’s flag to go down 
–  Raise flag 

•  Unleash pet 
•  Lower flag when pet returns 

Bob defers 
to Alice 
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The Flag Principle 
•  Raise the flag 
•  Look at other’s flag 
•  Flag Principle: 

–  If each raises and looks, then 
–  Last to look must see both flags up 
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Proof of Mutual Exclusion 
•  Assume both pets in pond 

–  Derive a contradiction 
–  By reasoning backwards 

•  Consider the last time Alice and Bob 
each looked before letting the pets in 

•  Without loss of generality assume Alice 
was the last to look…  
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Proof 

time 

Alice’s last look 

Alice last raised her flag 

Bob’s last 
look 

Alice must have seen Bob’s Flag. A Contradiction 

Bob last raised 
flag 
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Proof of No Deadlock 
•  If only one pet wants in, it gets in. 
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Proof of No Deadlock 
•  If only one pet wants in, it gets in. 
•  Deadlock requires both continually 

trying to get in. 
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Proof of No Deadlock 
•  If only one pet wants in, it gets in. 
•  Deadlock requires both continually 

trying to get in. 
•  If Bob sees Alice’s flag, he gives her 

priority (a gentleman…) 
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Remarks 
•  Protocol is unfair 

–  Bob’s pet might never get in 
•  Protocol uses waiting 

–  If Bob is eaten by his pet, Alice’s pet 
might never get in 
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Moral of Story 

• Mutual Exclusion cannot be solved by 
– transient communication (cell phones) 
– interrupts (cans) 

• It can be solved by 
–  one-bit shared variables  
–  that can be read or written  
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The Fable Continues 
•  Alice and Bob fall in love & marry 
•  Then they fall out of love & divorce 

–  She gets the pets 
– He has to feed them 
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The Fable Continues 
•  Alice and Bob fall in love & marry 
•  Then they fall out of love & divorce 

–  She gets the pets 
– He has to feed them 

•  Leading to a new coordination problem: 
Producer-Consumer  
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Bob Puts Food in the Pond 

A 
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mmm… 

Alice releases her pets to Feed 

B 
mmm… 
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Producer/Consumer 
•  Alice and Bob can’t meet 

–  Each has restraining order on other 
–  So he puts food in the pond 
–  And later, she releases the pets 

•  Avoid 
–  Releasing pets when there’s no food 
–  Putting out food if uneaten food remains 
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Producer/Consumer 
•  Need a mechanism so that 

–  Bob lets Alice know when food has been put 
out 

–  Alice lets Bob know when to put out more 
food 
 



Art of Multiprocessor Programming 78 

Surprise Solution 

A B 

co
la
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Bob puts food in Pond 

A B 

co
la
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Bob knocks over Can 

A B 

cola 
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Alice Releases Pets 

A B 

cola 

yum… B 
yum… 
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Alice Resets Can when Pets are 
Fed 

A B 

co
la

 



Art of Multiprocessor Programming 83 

Pseudocode 

while (true) { 
  while (can.isUp()){}; 
  pet.release(); 
  pet.recapture(); 
  can.reset(); 
}   

Alice’s code 
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Pseudocode 

while (true) { 
  while (can.isUp()){}; 
  pet.release(); 
  pet.recapture(); 
  can.reset(); 
}   

Alice’s code 

while (true) { 
  while (can.isDown()){}; 
  pond.stockWithFood(); 
  leaveYard() 
  can.knockOver(); 
}   

Bob’s code 
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Correctness 
•  Mutual Exclusion 

–  Pets and Bob never together in pond 
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Correctness 
•  Mutual Exclusion 

–  Pets and Bob never together in pond 
•  No Starvation 

if Bob always willing to feed, and pets 
always famished, then pets eat infinitely 
often. 
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Correctness 
•  Mutual Exclusion 

–  Pets and Bob never together in pond 
•  No Starvation 

if Bob always willing to feed, and pets 
always famished, then pets eat infinitely 
often. 

•  Producer/Consumer 
The pets never enter pond unless there is 

food, and Bob never provides food if 
there is unconsumed food. 

safety 

liveness 

safety 
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Waiting 
•  Both solutions use waiting 

– while(mumble){} 
•  In some cases waiting is problematic 

–  If one participant is delayed 
–  So is everyone else 
–  But delays are common & unpredictable 
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The Fable drags on … 
•  Bob and Alice still have issues 
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The Fable drags on … 
•  Bob and Alice still have issues 
•  So they need to communicate 
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The Fable drags on … 
•  Bob and Alice still have issues 
•  So they need to communicate 
•  They agree to use billboards … 
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E 
1 

D 
2 C 

3 

Billboards are Large 

B 
3 A 

1 

Letter 
Tiles 

From Scrabble™ box 
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E 
1 

D 
2 C 

3 

Write One Letter at a Time … 

B 
3 A 

1 

W 
4 
A 

1 
S 

1 

H 
4 
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To post a message 

W 
4 
A 

1 
S 

1 
H 

4 
A 

1 
C 

3 
R 

1 
T 

1 
H 

4 
E 

1 

whe
w 
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S 
1 

Let’s send another message 

S 
1 
E 

1 
L 

1 
L 

1 
L 

1 
V 

4 

L 
1 A 

1 

M 
3 

A 
1 

A 
1 

P 
3 
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Uh-Oh 

A 
1 

C 
3 

R 
1 

T 
1 
H 

4 
E 

1 
S 

1 
E 

1 
L 

1 
L 

1 

L 
1 

OK 
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Readers/Writers 
•  Devise a protocol so that 

– Writer writes one letter at a time 
–  Reader reads one letter at a time 
–  Reader sees “snapshot” 

• Old message or new message 
• No mixed messages 
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Readers/Writers (continued) 
•  Easy with mutual exclusion 
•  But mutual exclusion requires waiting 

– One waits for the other 
–  Everyone executes sequentially 

•  Remarkably 
– We can solve R/W without mutual exclusion 
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Why do we care? 
•  We want as much of the code as 

possible to execute concurrently (in 
parallel) 

•  A larger sequential part implies reduced 
performance   

•  Amdahl’s law: this relation is not 
linear… 
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Amdahl’s Law 

OldExecutionTime
NewExecutionTimeSpeedup= 

…of computation given n CPUs instead of 1 
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Amdahl’s Law 

− +
pp
n

1

1
Speedup= 
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Amdahl’s Law 

− +
pp
n

1

1
Speedup= 

Parallel 
fraction 
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Amdahl’s Law 

− +
pp
n

1

1
Speedup= 

Parallel 
fraction 

Sequential 
fraction 
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Amdahl’s Law 

− +
pp
n

1

1
Speedup= 

Parallel 
fraction 

Number of 
processors 

Sequential 
fraction 
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Example 
•  Ten processors 
•  60% concurrent, 40% sequential 
•  How close to 10-fold speedup? 
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Example 
•  Ten processors 
•  60% concurrent, 40% sequential 
•  How close to 10-fold speedup? 

10
6.06.01

1

+−
Speedup = 2.17= 
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Example 
•  Ten processors 
•  80% concurrent, 20% sequential 
•  How close to 10-fold speedup? 
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Example 
•  Ten processors 
•  80% concurrent, 20% sequential 
•  How close to 10-fold speedup? 

10
8.08.01

1

+−
Speedup = 3.57= 
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Example 
•  Ten processors 
•  90% concurrent, 10% sequential 
•  How close to 10-fold speedup? 
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Example 
•  Ten processors 
•  90% concurrent, 10% sequential 
•  How close to 10-fold speedup? 

10
9.09.01

1

+−
Speedup = 5.26= 
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Example 
•  Ten processors 
•  99% concurrent, 01% sequential 
•  How close to 10-fold speedup? 
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Example 
•  Ten processors 
•  99% concurrent, 01% sequential 
•  How close to 10-fold speedup? 

10
99.099.01

1

+−
Speedup = 9.17= 
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Back to Real-World 
Multicore Scaling 

113 

1.8x 2x 2.9x 

User code 

Multicore 

Speedup 

Must not be managing to  
reduce sequential % of code  
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Back to Real-World 
Multicore Scaling 

114 

1.8x 2x 2.9x 

User code 

Multicore 

Speedup 

Not reducing 
sequential % of code  
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Diminishing Returns 

0

1

2

3

4

5

4 8 16 32

inf
ini
te

speedup
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Multicore Programming 
•  This is what this course is about…  

–  The % that is not easy to make concurrent 
yet may have a large impact on overall 
speedup 

•  Next:  
–  A more serious look at mutual exclusion 
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This work is licensed under a 
Creative Commons Attribution-ShareAlike 2.5 License.  

•  You are free: 
–  to Share — to copy, distribute and transmit the work  
–  to Remix — to adapt the work  

•  Under the following conditions: 
–  Attribution. You must attribute the work to “The Art of 

Multiprocessor Programming” (but not in any way that 
suggests that the authors endorse you or your use of the 
work).  

–  Share Alike. If you alter, transform, or build upon this work, 
you may distribute the resulting work only under the same, 
similar or a compatible license.  

•  For any reuse or distribution, you must make clear to others the 
license terms of this work. The best way to do this is with a link 
to 
–  http://creativecommons.org/licenses/by-sa/3.0/.  

•  Any of the above conditions can be waived if you get permission 
from the copyright holder.  

•  Nothing in this license impairs or restricts the author's moral 
rights.  


