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Last Lecture: Spin-Locks 

CS 

Resets lock  
upon exit 

spin  
lock 

critical  
section 

. . . 
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Today: Concurrent Objects 

•  Adding threads should not lower 
throughput 
–  Contention effects 
– Mostly fixed by Queue locks 

•  Should increase throughput 
– Not possible if inherently sequential 
–  Surprising things are parallelizable 
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Coarse-Grained 
Synchronization 

•  Each method locks the object 
–  Avoid contention using queue locks  
–  Easy to reason about 

•  In simple cases 
–  Standard Java model 

•  Synchronized blocks and methods 

•  So, are we done?  
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Coarse-Grained 
Synchronization 

•  Sequential bottleneck 
–  Threads “stand in line” 

•  Adding more threads 
–  Does not improve throughput 
–  Struggle to keep it from getting worse 

•  So why even use a multiprocessor? 
– Well, some apps inherently parallel … 
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This Lecture 

•  Introduce four “patterns” 
–  Bag of tricks … 
– Methods that work more than once … 

•  For highly-concurrent objects 
•  Goal: 

–  Concurrent access 
– More threads, more throughput 
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First: 
Fine-Grained Synchronization 

•  Instead of using a single lock .. 
•  Split object into 

–  Independently-synchronized components 
•  Methods conflict when they access 

–  The same component … 
–  At the same time 
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Second: 
Optimistic Synchronization 

•  Search without locking … 
•  If you find it, lock and check … 

– OK: we are done 
– Oops: start over 

•  Evaluation 
–  Usually cheaper than locking 
– Mistakes are expensive 
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Third: 
Lazy Synchronization 

•  Postpone hard work 
•  Removing components is tricky 

–  Logical removal 
• Mark component to be deleted 

–  Physical removal 
•  Do what needs to be done 
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Fourth: 
Lock-Free Synchronization 

•  Don’t use locks at all 
–  Use compareAndSet() & relatives … 

•  Advantages 
– No Scheduler Assumptions/Support 

•  Disadvantages 
–  Complex 
–  Sometimes high overhead 
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Linked List 

•  Illustrate these patterns … 
•  Using a list-based Set 

–  Common application 
–  Building block for other apps 
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Set Interface 

•  Unordered collection of items 
•  No duplicates 
•  Methods 

– add(x) put x in set 
– remove(x) take x out of set 
– contains(x) tests if x in set 
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List-Based Sets 
public interface Set<T> { 
 public boolean add(T x); 
 public boolean remove(T x); 
 public boolean contains(T x); 
} 
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List Node 
public class Node { 
 public T item; 
 public int key; 
 public Node next; 
} 
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The List-Based Set 

a b c 

Sorted with Sentinel nodes 
(min & max possible keys) 

-∞ 

+∞ 
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Reasoning about Concurrent 
Objects 

•  Invariant 
–  Property that always holds 

•  Established because 
–  True when object is created 
–  Truth preserved by each method 

•  Each step of each method? 
–  o importante são passos visíveis externamente... 

•  sentinels are neither added nor removed 
•  nodes are sorted by unique keys 
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Specifically … 
•  Invariants preserved by 

– add() 
– remove() 
– contains() 

•  linearizability: 
–  o efeito de cada método deve se tornar 

visível instantaneamente em algum 
momento entre sua invocação e retorno 
•  com locks, seção crítica 



Art of Multiprocessor Programming 18 

Interference 

•  Invariants make sense only if  
– methods considered are the only 

modifiers 
•  Language encapsulation helps 

–  List nodes not visible outside class 
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Interference 

•  Freedom from interference needed 
even for removed nodes 
–  Some algorithms traverse removed 

nodes 
–  Careful with malloc() & free()! 

•  Garbage-collection helps here 
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Sequential List Based Set  

a c d 

a b c 

Add()  

Remove()  
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Sequential List Based Set  

a c d 

b 

a b c 

Add()  

Remove()  
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Course Grained Locking 

a b d 
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public boolean remove(T item) {  
  Node pred, curr;  
  int key = item.hashCode();  
  lock.lock(); 
  try {  
    pred = head; curr = pred.next;  
    while (curr.key < key) { 
      pred = curr; curr = curr.next; 
    }  
    if (key == curr.key) { 
      pred.next = curr.next; 
      return true; }  
    else return false;  
  }  
  finally lock.unlock(); 
} 
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Course Grained Locking 

a b d 

c 
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honk! 

Course Grained Locking 

a b d 

c 

Simple but hotspot + bottleneck  

honk! 
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Coarse-Grained Locking 

•  Easy, same as synchronized methods 
–  “One lock to rule them all …” 

•  Simple, clearly correct 
–  Deserves respect! 

•  Works poorly with contention 
– Queue locks help 
–  But bottleneck still an issue 
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Fine-grained Locking 

•  Requires careful thought 
–  “Do not meddle in the affairs of wizards, 

for they are subtle and quick to anger” 
•  Split object into pieces 

–  Each piece has own lock 
– Methods that work on disjoint pieces 

need not exclude each other 
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Hand-over-Hand locking 

a b c 
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Hand-over-Hand locking 

a b c 
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Hand-over-Hand locking 

a b c 
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Hand-over-Hand locking 

a b c 
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Hand-over-Hand locking 

a b c 
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Removing a Node 

a b c d 

remove(b) 
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Removing a Node 

a b c d 

remove(b) 
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Removing a Node 

a b c d 

remove(b) 
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Removing a Node 

a b c d 

remove(b) 



Art of Multiprocessor Programming 37 

Removing a Node 

a b c d 

remove(b) 
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Removing a Node 

a c d 

remove(b) 
Why do we need  
to always hold 2  
locks? 
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Concurrent Removes 

a b c d 

remove(c) 
remove(b) 
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Concurrent Removes 

a b c d 

remove(b) 
remove(c) 
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Concurrent Removes 

a b c d 

remove(b) 
remove(c) 
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Concurrent Removes 

a b c d 

remove(b) 
remove(c) 
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Concurrent Removes 

a b c d 

remove(b) 
remove(c) 
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Concurrent Removes 

a b c d 

remove(b) 
remove(c) 
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Concurrent Removes 

a b c d 

remove(b) 
remove(c) 
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Concurrent Removes 

a b c d 

remove(b) 
remove(c) 
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Uh, Oh 

a c d 

remove(b) 
remove(c) 
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Uh, Oh 

a c d 

Bad news, C not removed 

remove(b) 
remove(c) 
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Problem 

•  To delete node c 
–  Swing node b’s next field to d 

•  Problem is, 
–  Someone deleting b concurrently could  
   direct a pointer  
   to c 

b a c 

b a c 
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Insight 

•  If a node is locked 
– No one can delete node’s successor 

•  If a thread locks 
– Node to be deleted 
–  And its predecessor 
–  Then it works 
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Hand-Over-Hand Again 

a b c d 

remove(b) 
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Hand-Over-Hand Again 

a b c d 

remove(b) 
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Hand-Over-Hand Again 

a b c d 

remove(b) 
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Hand-Over-Hand Again 

a b c d 

remove(b) 
Found 

it! 
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Hand-Over-Hand Again 

a b c d 

remove(b) 
Found 

it! 
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Hand-Over-Hand Again 

a c d 

remove(b) 
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Removing a Node 

a b c d 

remove(b) 
remove(c) 
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Removing a Node 

a b c d 

remove(b) 
remove(c) 
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Removing a Node 

a b c d 

remove(b) 
remove(c) 
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Removing a Node 

a b c d 

remove(b) 
remove(c) 
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Removing a Node 

a b c d 

remove(b) 
remove(c) 
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Removing a Node 

a b c d 

remove(b) 
remove(c) 
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Removing a Node 

a b c d 

remove(b) 
remove(c) 
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Removing a Node 

a b c d 

remove(b) 
remove(c) 
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Removing a Node 

a b c d 

Must 
acquire  
Lock of b 

remove(c) 



Art of Multiprocessor Programming 66 

Removing a Node 

a b c d 

Cannot 
acquire 
lock of b 

remove(c) 
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Removing a Node 

a b c d 

Wait! 
remove(c) 
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Removing a Node 

a b d 

Proceed 
to 

remove(b) 
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Removing a Node 

a b d 

remove(b) 
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Removing a Node 

a b d 

remove(b) 
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Removing a Node 

a d 

remove(b) 



Art of Multiprocessor Programming 72 

Removing a Node 

a d 
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Remove method 

public boolean remove(Item item) { 
 int key = item.hashCode(); 
 Node pred, curr; 
 try { 
   … 
 } finally { 
  curr.unlock(); 
  pred.unlock(); 
 }} 
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Remove method 

public boolean remove(Item item) { 
 int key = item.hashCode(); 
 Node pred, curr; 
 try { 
   … 
 } finally { 
  curr.unlock(); 
  pred.unlock(); 
 }} 

Key used to order node 
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Remove method 

public boolean remove(Item item) { 
 int key = item.hashCode(); 
 Node pred, curr; 
 try { 
   … 
 } finally { 
  currNode.unlock(); 
  predNode.unlock(); 
 }} 

Predecessor and current nodes 
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Remove method 

public boolean remove(Item item) { 
 int key = item.hashCode(); 
 Node pred, curr; 
 try { 
   … 
 } finally { 
  curr.unlock(); 
  pred.unlock(); 
 }} 

Make sure 
locks released  
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Remove method 

public boolean remove(Item item) { 
 int key = item.hashCode(); 
 Node pred, curr; 
 try { 
   … 
 } finally { 
  curr.unlock(); 
  pred.unlock(); 
 }} 

Everything else  
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Remove method 

try { 
 pred = this.head; 
 pred.lock(); 
 curr = pred.next; 
 curr.lock(); 
 … 
} finally { … } 
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Remove method 

try { 
 pred = this.head; 
 pred.lock(); 
 curr = pred.next; 
 curr.lock(); 
 … 
} finally { … } 

lock pred == head  
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Remove method 

try { 
 pred = this.head; 
 pred.lock(); 
 curr = pred.next; 
 curr.lock(); 
 … 
} finally { … } 

Lock current 
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Remove method 

try { 
 pred = this.head; 
 pred.lock(); 
 curr = pred.next; 
 curr.lock(); 
 … 
} finally { … } 

Traversing list 
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Remove: searching 

while (curr.key <= key) { 
  if (item == curr.item) { 
   pred.next = curr.next; 
   return true; 
  } 
  pred.unlock(); 
  pred = curr; 
  curr = curr.next; 
  curr.lock(); 
 } 
 return false; 
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Remove: searching 

while (curr.key <= key) { 
  if (item == curr.item) { 
   pred.next = curr.next; 
   return true; 
  } 
  pred.unlock(); 
  pred = curr; 
  curr = curr.next; 
  curr.lock(); 
 } 
 return false; 

Search key range 
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Remove: searching 

while (curr.key <= key) { 
  if (item == curr.item) { 
   pred.next = curr.next; 
   return true; 
  } 
  pred.unlock(); 
  pred = curr; 
  curr = curr.next; 
  curr.lock(); 
 } 
 return false; 

At start of each loop: curr 
and pred locked 
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Remove: searching 

while (curr.key <= key) { 
  if (item == curr.item) { 
   pred.next = curr.next; 
   return true; 
  } 
  pred.unlock(); 
  pred = curr; 
  curr = curr.next; 
  curr.lock(); 
 } 
 return false; If item found, remove node 
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Remove: searching 

while (curr.key <= key) { 
  if (item == curr.item) { 
   pred.next = curr.next; 
   return true; 
  } 
  pred.unlock(); 
  pred = curr; 
  curr = curr.next; 
  curr.lock(); 
 } 
 return false; If node found, remove it 
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Remove: searching 

while (curr.key <= key) { 
  if (item == curr.item) { 
   pred.next = curr.next; 
   return true; 
  } 
  pred.unlock(); 
  pred = curr; 
  curr = curr.next; 
  curr.lock(); 
 } 
 return false; 

Unlock predecessor 



Art of Multiprocessor Programming 88 

Remove: searching 

while (curr.key <= key) { 
  if (item == curr.item) { 
   pred.next = curr.next; 
   return true; 
  } 
  pred.unlock(); 
  pred = curr; 
  curr = curr.next; 
  curr.lock(); 
 } 
 return false; 

Only one node locked! 
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Remove: searching 

while (curr.key <= key) { 
  if (item == curr.item) { 
   pred.next = curr.next; 
   return true; 
  } 
  pred.unlock(); 
  pred = curr; 
  curr = curr.next; 
  curr.lock(); 
 } 
 return false; 

demote current 
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Remove: searching 

while (curr.key <= key) { 
  if (item == curr.item) { 
   pred.next = curr.next; 
   return true; 
  } 
  pred.unlock(); 
  pred = currNode; 
  curr = curr.next; 
  curr.lock(); 
 } 
 return false; 

Find and lock new current 
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Remove: searching 
while (curr.key <= key) { 
  if (item == curr.item) { 
   pred.next = curr.next; 
   return true; 
  } 
  pred.unlock(); 
  pred = currNode; 
  curr = curr.next; 
  curr.lock(); 
 } 
 return false; 

Lock invariant restored 
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Remove: searching 

while (curr.key <= key) { 
  if (item == curr.item) { 
   pred.next = curr.next; 
   return true; 
  } 
  pred.unlock(); 
  pred = curr; 
  curr = curr.next; 
  curr.lock(); 
 } 
 return false; 

Otherwise, not present 



Art of Multiprocessor Programming 93 

Why does this work? 

•  To remove node e 
– Must lock e 
– Must lock e’s predecessor 

•  Therefore, if you lock a node 
–  It can’t be removed 
–  And neither can its successor 

linearization point:  
  - if e is present, when e’s predecessor is 
locked 
 



Art of Multiprocessor Programming 94 

Rep Invariant 

•  Easy to check that 
–  tail always reachable from head 
– Nodes sorted, no duplicates 
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Drawbacks 

•  Better than coarse-grained lock 
–  Threads can traverse in parallel 

•  Still not ideal 
–  Long chain of acquire/release 
–  Inefficient 

 thread may still be delayed by another 
using different part of the list... 

 but if the locks are fair, there will 
be no starvation 
 



Art of Multiprocessor Programming 96 

Optimistic Synchronization 

•  Find nodes without locking 
•  Lock nodes 
•  Check that everything is OK 
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Optimistic: Traverse without 
Locking 

b d e a 

add(c) Aha! 
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Optimistic: Lock and Load 

b d e a 

add(c) 
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What could go wrong? 

b d e a 

add(c) 

remove(b
) Aha! 
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public boolean remove(T item) {  
  int key = item.hashCode();  
  while (true) { 
    Node pred = head; Node curr = pred.next;  
    while (curr.key <= key) { 
      pred = curr; curr = curr.next; 
      while (curr.key < key) { 
        pred = curr; curr = curr.next; 
      }  
      pred.lock(); curr.lock();  
      try { 
        if (validate(pred, curr)) {  
          if (curr.key == key) { 
            pred.next = curr.next; 
            return true; }   

         else return false;  
        } 
      } finally { 
        pred.unlock(); curr.unlock(); 
      } 
    } 
  } 
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Optimistic: Linearization Point 

b d e a 

remove
(d) 

locks em pred e curr 
e validação ok 
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Invariants 

•  Careful: we may traverse deleted 
nodes 

•  But we establish properties by 
–  Validation 
–  After we lock target nodes 
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Correctness 

•  If 
– Nodes b and d both locked 
– Node b still accessible 
– Node d still successor to b 

•  Then 
– Neither will be deleted 
– OK to delete and return true 
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Unsuccessful Remove 

a b d e 

remove(c) 
Aha! 
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Validate (1) 

a b d e 

Yes, b still 
reachable 
from head 

remove(c) 
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Validate (2) 

a b d e 

remove(c) Yes, b still 
points to d 
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OK Computer 

a b d e 

remove(c) return false 
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Correctness 

•  If 
– Nodes b and d both locked 
– Node b still accessible 
– Node d still successor to b 

•  Then 
– Neither will be deleted 
– No thread can add c after b 
– OK to return false 
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Validation 
private boolean 
 validate(Node pred, 
          Node curr) { 
 Node node = head; 
 while (node.key <= pred.key) { 
  if (node == pred) 
   return pred.next == curr; 
  node = node.next; 
 } 
 return false; 
} 
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private boolean 
 validate(Node pred, 
          Node curr) { 
 Node node = head; 
 while (node.key <= pred.key) { 
  if (node == pred) 
   return pred.next == curr; 
  node = node.next; 
 } 
 return false; 
} 

Validation 

Predecessor & 
current nodes 
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private boolean 
 validate(Node pred, 
          Node curr) { 
 Node node = head; 
 while (node.key <= pred.key) { 
  if (node == pred) 
   return pred.next == curr; 
  node = node.next; 
 } 
 return false; 
} 

Validation 

Begin at the 
beginning 
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private boolean 
 validate(Node pred, 
          Node curr) { 
 Node node = head; 
 while (node.key <= pred.key) { 
  if (node == pred) 
   return pred.next == curr; 
  node = node.next; 
 } 
 return false; 
} 

Validation 

Search range of keys 
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private boolean 
 validate(Node pred, 
          Node curr) { 
 Node node = head; 
 while (node.key <= pred.key) { 
  if (node == pred) 
   return pred.next == curr; 
  node = node.next; 
 } 
 return false; 
} 

Validation 

Predecessor reachable 
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private boolean 
 validate(Node pred, 
          Node curry) { 
 Node node = head; 
 while (node.key <= pred.key) { 
  if (node == pred) 
   return pred.next == curr; 
  node = node.next; 
 } 
 return false; 
} 

Validation 

Is current node next? 
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private boolean 
 validate(Node pred, 
          Node curr) { 
 Node node = head; 
 while (node.key <= pred.key) { 
  if (node == pred) 
   return pred.next == curr; 
  node = node.next; 
 } 
 return false; 
} 

Validation 
Otherwise move on 
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private boolean 
 validate(Node pred, 
          Node curr) { 
 Node node = head; 
 while (node.key <= pred.key) { 
  if (node == pred) 
   return pred.next == curr; 
  node = node.next; 
 } 
 return false; 
} 

Validation 
Predecessor not reachable 



possíveis problemas 
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•  nós podem ter saído da lista 
– mas enquanto alguma thread os 

referenciar, não serão coletados.... 
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public boolean remove(T item) {  
  int key = item.hashCode();  
  while (true) { 
    Node pred = head; Node curr = pred.next;  
    while (curr.key <= key) { 
      pred = curr; curr = curr.next; 
      while (curr.key < key) { 
        pred = curr; curr = curr.next; 
      }  
      pred.lock(); curr.lock();  
      try { 
        if (validate(pred, curr)) {  
          if (curr.key == key) { 
            pred.next = curr.next; 
            return true; }   

         else return false;  
        } 
      } finally { 
        pred.unlock(); curr.unlock(); 
      } 
    } 
  } 

î nesse caso volta 
a fazer todo o percurso! 
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Optimistic List 

•  Limited hot-spots 
–  Targets of add(), remove(), contains() 
– No contention on traversals 

•  Moreover 
–  Traversals are wait-free 
–  Food for thought … 

–  not starvation-free 
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So Far, So Good 

•  Much less lock acquisition/release 
–  Performance 
–  Concurrency 

•  Problems 
– Need to traverse list twice 
–  contains() method acquires locks 
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Evaluation 

•  Optimistic is effective if 
–  cost of scanning twice without locks 

is less than 
–  cost of scanning once with locks 

•  Drawback 
–  contains() acquires locks 
–  90% of calls in many apps 



Art of Multiprocessor Programming 122 

Lazy List 

•  Like optimistic, except 
–  Scan once 
– contains(x) never locks … 

•  Key insight 
–  Removing nodes causes trouble 
–  Do it “lazily” 
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Lazy List 

• remove() 
–  Scans list (as before) 
–  Locks predecessor & current (as before) 

•  Logical delete 
– Marks current node as removed (new!) 

•  Physical delete 
–  Redirects predecessor’s next (as 

before) 
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Lazy Removal 

a a b c d 
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Lazy Removal 

a a b c d 

Present in list 
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Lazy Removal 

a a b c d 

Logically deleted 
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Lazy Removal 

a a b c d 

Physically deleted 



Art of Multiprocessor Programming 128 

Lazy Removal 

a a b d 

Physically deleted 
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Lazy List 

•  All Methods 
–  Scan through locked and marked nodes 
–  Removing a node doesn’t slow down 

other method calls … 
•  Must still lock pred and curr nodes. 
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Validation 

•  No need to rescan list! 
•  Check that pred is not marked 
•  Check that curr is not marked 
•  Check that pred points to curr 

mas não precisa percorrer a  
lista desde o início 
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Business as Usual 

a b c 



Art of Multiprocessor Programming 132 

Business as Usual 

a b c 
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Business as Usual 

a b c 
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Business as Usual 

a b c 

remove(b) 
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Business as Usual 

a b c 

a not 
marked 
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Business as Usual 

a b c 

a still 
points 
to b 
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Business as Usual 

a b c 

Logical 
delete 
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Business as Usual 

a b c 

physical 
delete 
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Business as Usual 

a b c 



Art of Multiprocessor Programming 140 

Validation 
private boolean 
  validate(Node pred, Node curr) { 
 return         
  !pred.marked &&    
  !curr.marked &&   
  pred.next == curr); 
  } 

objetivo da marca: evitar duplo percurso 
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private boolean 
  validate(Node pred, Node curr) { 
 return         
  !pred.marked &&    
  !curr.marked &&   
  pred.next == curr); 
  } 

List Validate Method 

Predecessor not  
Logically removed 
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private boolean 
  validate(Node pred, Node curr) { 
 return         
  !pred.marked &&    
  !curr.marked &&   
  pred.next == curr); 
  } 

List Validate Method 

Current not  
Logically removed 
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private boolean 
  validate(Node pred, Node curr) { 
 return         
  !pred.marked &&    
  !curr.marked &&   
  pred.next == curr); 
  } 

List Validate Method 

Predecessor still 
Points to current 
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Remove 
try { 
  pred.lock(); curr.lock(); 
  if (validate(pred,curr) { 
   if (curr.key == key) { 
    curr.marked = true; 
    pred.next = curr.next; 
    return true; 
   } else { 
    return false; 
   }}} finally { 

 pred.unlock(); 
 curr.unlock(); 

   }}} 
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Remove 
try { 
  pred.lock(); curr.lock(); 
  if (validate(pred,curr) { 
   if (curr.key == key) { 
    curr.marked = true; 
    pred.next = curr.next; 
    return true; 
   } else { 
    return false; 
   }}} finally { 

 pred.unlock(); 
 curr.unlock(); 

   }}} 

Validate 



Art of Multiprocessor Programming 146 

Remove 
try { 
  pred.lock(); curr.lock(); 
  if (validate(pred,curr) { 
   if (curr.key == key) { 
    curr.marked = true; 
    pred.next = curr.next; 
    return true; 
   } else { 
    return false; 
   }}} finally { 

 pred.unlock(); 
 curr.unlock(); 

   }}} 

Key found 
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Remove 
try { 
  pred.lock(); curr.lock(); 
  if (validate(pred,curr) { 
   if (curr.key == key) { 
    curr.marked = true; 
    pred.next = curr.next; 
    return true; 
   } else { 
    return false; 
   }}} finally { 

 pred.unlock(); 
 curr.unlock(); 

   }}} 

Logical remove 
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Remove 
try { 
  pred.lock(); curr.lock(); 
  if (validate(pred,curr) { 
   if (curr.key == key) { 
    curr.marked = true; 
    pred.next = curr.next; 
    return true; 
   } else { 
    return false; 
   }}} finally { 

 pred.unlock(); 
 curr.unlock(); 

   }}} 

physical remove 
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Contains 
public boolean contains(Item item) { 
  int key = item.hashCode(); 
  Node curr = this.head; 
  while (curr.key < key) { 
    curr = curr.next; 
  } 
  return curr.key == key && !curr.marked; 
} 
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Contains 
public boolean contains(Item item) { 
  int key = item.hashCode(); 
  Node curr = this.head; 
  while (curr.key < key) { 
    curr = curr.next; 
  } 
  return curr.key == key && !curr.marked; 
} 

Start at the head 
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Contains 
public boolean contains(Item item) { 
  int key = item.hashCode(); 
  Node curr = this.head; 
  while (curr.key < key) { 
    curr = curr.next; 
  } 
  return curr.key == key && !curr.marked; 
} 

Search key range 
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Contains 
public boolean contains(Item item) { 
  int key = item.hashCode(); 
  Node curr = this.head; 
  while (curr.key < key) { 
    curr = curr.next; 
  } 
  return curr.key == key && !curr.marked; 
} 

Traverse without locking 
(nodes may have been removed) 
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Contains 
public boolean contains(Item item) { 
  int key = item.hashCode(); 
  Node curr = this.head; 
  while (curr.key < key) { 
    curr = curr.next; 
  } 
  return curr.key == key && !curr.marked; 
} 

Present and undeleted? 
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Summary: Wait-free Contains 

a 0 0 0 a b c 0 e 1 d 

Use Mark bit + Fact that List is ordered  
1.  Not marked à  in the set 
2.  Marked or missing à not in the set  
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Lazy List 

a 0 0 0 a b c 0 e 1 d 

Lazy add() and remove() + Wait-free contains() 
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Evaluation 

•  Good: 
–  contains() doesn’t lock 
–  In fact, its wait-free!  
–  Good because typically high % contains() 
–  Uncontended calls don’t re-traverse 

•  Bad 
–  Contended add() and remove() calls do 

re-traverse 
–  Traffic jam if one thread delays 
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Traffic Jam 

•  Any concurrent data structure based 
on mutual exclusion has a weakness 

•  If one thread 
–  Enters critical section 
–  And “eats the big muffin” 

•  Cache miss, page fault, descheduled … 
–  Everyone else using that lock is stuck! 
– Need to trust the scheduler…. 
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Reminder: Lock-Free Data 
Structures 

•  No matter what … 
–  Guarantees minimal progress in any 

execution 
–  i.e. Some thread will always complete a 

method call 
–  Even if others halt at malicious times 
–  Implies that implementation can’t use 

locks 
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Lock-free Lists 

•  Next logical step 
•  Eliminate locking entirely 
•  contains() wait-free and add() and 

remove() lock-free 
•  Use only compareAndSet() 
•  What could go wrong? 
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não adianta fazer CAS atômico com 
as referências!!! 
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Remove Using CAS 

a 0 0 0 a b c 0 e 1 c 

Logical Removal = 
Set Mark Bit 

Physical 
Removal 
CAS pointer 

  
tem que levar em 
consideração estado do nó!  
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Problem… 

a 0 0 0 a b c 0 e 1 c 

Logical Removal = 
Set Mark Bit 

Physical 
Removal 
CAS 

0 d Problem:  
d not added to list… 
Must Prevent  
manipulation of  
removed node’s pointer 

Node added  
Before 
Physical  
Removal CAS 
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The Solution: Combine Bit and 
Pointer 

a 0 0 0 a b c 0 e 1 c 

Logical Removal = 
Set Mark Bit 

Physical 
Removal 
CAS 

0 d 

Mark-Bit and Pointer 
are CASed together 
(AtomicMarkableReference)  

Fail CAS: Node not  
added after logical   
Removal 
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Solution 

•  Use AtomicMarkableReference 
•  Atomically 

–  Swing reference and 
–  Update flag  

•  Remove in two steps 
–  Set mark bit in next field 
–  Redirect predecessor’s pointer 
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Marking a Node 

•  AtomicMarkableReference class 
–  Java.util.concurrent.atomic package 

address F 

mark bit 

Reference 
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Extracting Reference & Mark 

Public Object get(boolean[] marked);  
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Extracting Reference & 
Mark 

Public Object get(boolean[] marked);  

Returns 
reference 

Returns mark at 
array index 0! 



Art of Multiprocessor Programming 168 

Extracting Reference Only 

public boolean isMarked();  

Value of 
mark 
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Changing State 

Public boolean compareAndSet(                 
  Object expectedRef, 
  Object updateRef, 
  boolean expectedMark, 
  boolean updateMark);  
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Changing State 

Public boolean compareAndSet(                 
  Object expectedRef, 
  Object updateRef, 
  boolean expectedMark, 
  boolean updateMark);  

If this is the current 
reference … 

And this is the 
current mark … 
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Changing State 

Public boolean compareAndSet(                 
  Object expectedRef, 
  Object updateRef, 
  boolean expectedMark, 
  boolean updateMark);  

…then change to this 
new reference … 

… and this new 
mark 
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Changing State 

public boolean attemptMark(                 
  Object expectedRef, 
  boolean updateMark);  
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Changing State 

public boolean attemptMark(                 
  Object expectedRef, 
  boolean updateMark);  

If this is the current 
reference … 
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Changing State 

public boolean attemptMark(                 
  Object expectedRef, 
  boolean updateMark);  

.. then change to 
this new mark. 



Art of Multiprocessor Programming 175 

Traversing the List 

•  Q: what do you do when you find a 
“logically” deleted node in your path? 

•  A: finish the job. 
–  CAS the predecessor’s next field 
–  Proceed (repeat as needed) 
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Lock-Free Traversal 
(only Add and Remove) 

a b c d 
CAS 

Uh-oh 

pred curr pred curr 
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The Window Class 

class Window { 
 public Node pred; 
 public Node curr; 
 Window(Node pred, Node curr) { 
   this.pred = pred; this.curr = curr; 
 } 
} 
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The Window Class 

class Window { 
 public Node pred; 
 public Node curr; 
 Window(Node pred, Node curr) { 
   this.pred = pred; this.curr = curr; 
 } 
} 

A container for pred 
and current values 
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Using the Find Method 
 
  Window window = find(head, key); 
  Node pred = window.pred; 
  curr = window.curr;  
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Using the Find Method 
 
  Window window = find(head, key); 
  Node pred = window.pred; 
  curr = window.curr;  

Find returns window 
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Using the Find Method 
 
  Window window = find(head, key); 
  Node pred = window.pred; 
  curr = window.curr;  

Extract pred and curr 
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The Find Method 
 
  Window window = find(item); 
  

At some instant,  

pred curr succ 

item or … 
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The Find Method 
 
  Window window = find(item); 
  

At some instant,  

pred 
curr= null 

succ 

item not in list  
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Remove 
public boolean remove(T item) { 
Boolean snip;  
while (true) { 
 Window window = find(head, key); 
 Node pred = window.pred, curr = window.curr; 
  if (curr.key != key) { 
     return false; 
  } else { 
  Node succ = curr.next.getReference(); 
  snip = curr.next.attemptMark(succ, true); 
  if (!snip) continue; 
   pred.next.compareAndSet(curr, succ, false, 
false); 
     return true; 
}}} 



Art of Multiprocessor Programming 185 

Remove 
public boolean remove(T item) { 
Boolean snip;  
while (true) { 
 Window window = find(head, key); 
 Node pred = window.pred, curr = window.curr; 
  if (curr.key != key) { 
     return false; 
  } else { 
  Node succ = curr.next.getReference(); 
  snip = curr.next.attemptMark(succ, true); 
  if (!snip) continue; 
   pred.next.compareAndSet(curr, succ, false, 
false); 
     return true; 
}}} 

Keep trying  
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Remove 
public boolean remove(T item) { 
Boolean snip;  
while (true) { 
 Window window = find(head, key); 
 Node pred = window.pred, curr = window.curr; 
  if (curr.key != key) { 
     return false; 
  } else { 
  Node succ = curr.next.getReference(); 
  snip = curr.next.attemptMark(succ, true); 
  if (!snip) continue; 
   pred.next.compareAndSet(curr, succ, false, 
false); 
     return true; 
}}} Find neighbors 
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Remove 
public boolean remove(T item) { 
Boolean snip;  
while (true) { 
 Window window = find(head, key); 
 Node pred = window.pred, curr = window.curr; 
  if (curr.key != key) { 
     return false; 
  } else { 
  Node succ = curr.next.getReference(); 
  snip = curr.next.attemptMark(succ, true); 
  if (!snip) continue; 
   pred.next.compareAndSet(curr, succ, false, 
false); 
     return true; 
}}} She’s not there …  
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Remove 
public boolean remove(T item) { 
Boolean snip;  
while (true) { 
 Window window = find(head, key); 
 Node pred = window.pred, curr = window.curr; 
  if (curr.key != key) { 
     return false; 
  } else { 
  Node succ = curr.next.getReference(); 
  snip = curr.next.attemptMark(succ, true); 
  if (!snip) continue; 
   pred.next.compareAndSet(curr, succ, false, 
false); 
     return true; 
}}} 

Try to mark node as deleted  

se curr.next 
ainda referencia 
succ, marca curr 
como eliminado  
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Remove 
public boolean remove(T item) { 
Boolean snip;  
while (true) { 
 Window window = find(head, key); 
 Node pred = window.pred, curr = window.curr; 
  if (curr.key != key) { 
     return false; 
  } else { 
  Node succ = curr.next.getReference(); 
  snip = curr.next.attemptMark(succ, true); 
  if (!snip) continue; 
   pred.next.compareAndSet(curr, succ, false, 
false); 
     return true; 
}}} 

If it doesn’t 
work, just retry, 
if it does, job 
essentially done  
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Remove 
public boolean remove(T item) { 
Boolean snip;  
while (true) { 
 Window window = find(head, key); 
 Node pred = window.pred, curr = window.curr; 
  if (curr.key != key) { 
     return false; 
  } else { 
  Node succ = curr.next.getReference(); 
  snip = curr.next.attemptMark(succ, true); 
  if (!snip) continue; 
   pred.next.compareAndSet(curr, succ, false, 
false); 
     return true; 
}}} 

Try to advance reference 
(if we don’t succeed, someone else did or will). 

a 

faz pred.next 
apontar para succ 
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Add 
public boolean add(T item) { 
 boolean splice; 
 while (true) { 
   Window window = find(head, key); 
   Node pred = window.pred, curr = window.curr; 
   if (curr.key == key) { 
      return false; 
   } else { 
   Node node = new Node(item); 
   node.next = new AtomicMarkableRef(curr, false); 
   if (pred.next.compareAndSet(curr, node, false, 
false)) {return true;} 
}}} 
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Add 
public boolean add(T item) { 
 boolean splice; 
 while (true) { 
   Window window = find(head, key); 
   Node pred = window.pred, curr = window.curr; 
   if (curr.key == key) { 
      return false; 
   } else { 
   Node node = new Node(item); 
   node.next = new AtomicMarkableRef(curr, false); 
   if (pred.next.compareAndSet(curr, node, false, 
false)) {return true;} 
}}} Item already there. 
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Add 
public boolean add(T item) { 
 boolean splice; 
 while (true) { 
   Window window = find(head, key); 
   Node pred = window.pred, curr = window.curr; 
   if (curr.key == key) { 
      return false; 
   } else { 
   Node node = new Node(item); 
   node.next = new AtomicMarkableRef(curr, false); 
   if (pred.next.compareAndSet(curr, node, false, 
false)) {return true;} 
}}} 

create new node 
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Add 
public boolean add(T item) { 
 boolean splice; 
 while (true) { 
   Window window = find(head, key); 
   Node pred = window.pred, curr = window.curr; 
   if (curr.key == key) { 
      return false; 
   } else { 
   Node node = new Node(item); 
   node.next = new AtomicMarkableRef(curr, false); 
   if (pred.next.compareAndSet(curr, node, false, 
false)) {return true;} 
}}} 

Install new node, 
else retry loop 
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Wait-free Contains 

public boolean contains(Tt item) { 
    boolean marked;  
    int key = item.hashCode(); 
    Node curr = this.head; 
    while (curr.key < key) 
      curr = curr.next; 
    Node succ = curr.next.get(marked); 
    return (curr.key == key && !marked[0]) 
  }  
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Wait-free Contains 

public boolean contains(T item) { 
    boolean marked;  
    int key = item.hashCode(); 
    Node curr = this.head; 
    while (curr.key < key) 
      curr = curr.next; 
    Node succ = curr.next.get(marked); 
    return (curr.key == key && !marked[0]) 
  }  

Only diff is that we 
get and check 

marked  
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Lock-free Find 
public Window find(Node head, int key) { 
 Node pred = null, curr = null, succ = null; 
 boolean[] marked = {false}; boolean snip; 
 retry: while (true) { 
   pred = head; 
   curr = pred.next.getReference();  
   while (true) { 
    succ = curr.next.get(marked);  
    while (marked[0]) { 
    … 
    } 
    if (curr.key >= key) 
          return new Window(pred, curr); 
        pred = curr; 
        curr = succ;  
     } 

}} 
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Lock-free Find 
public Window find(Node head, int key) { 
 Node pred = null, curr = null, succ = null; 
 boolean[] marked = {false}; boolean snip; 
 retry: while (true) { 
   pred = head; 
   curr = pred.next.getReference();  
   while (true) { 
    succ = curr.next.get(marked);  
    while (marked[0]) { 
    … 
    } 
    if (curr.key >= key) 
          return new Window(pred, curr); 
        pred = curr; 
        curr = succ;  
     } 

}} 

If list changes 
while 

traversed, 
start over 
Lock-Free 
because we 

start over only 
if someone else 
makes progress 
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public Window find(Node head, int key) { 
 Node pred = null, curr = null, succ = null; 
 boolean[] marked = {false}; boolean snip; 
 retry: while (true) { 
   pred = head; 
   curr = pred.next.getReference();  
   while (true) { 
    succ = curr.next.get(marked);  
    while (marked[0]) { 
    … 
    } 
    if (curr.key >= key) 
          return new Window(pred, curr); 
        pred = curr; 
        curr = succ;  
     } 

}} 

Lock-free Find 
Start looking from head 
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public Window find(Node head, int key) { 
 Node pred = null, curr = null, succ = null; 
 boolean[] marked = {false}; boolean snip; 
 retry: while (true) { 
   pred = head; 
   curr = pred.next.getReference();  
   while (true) { 
    succ = curr.next.get(marked);  
    while (marked[0]) { 
    … 
    } 
    if (curr.key >= key) 
          return new Window(pred, curr); 
        pred = curr; 
        curr = succ;  
     } 

}} 

Lock-free Find 

Move down the list 
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public Window find(Node head, int key) { 
 Node pred = null, curr = null, succ = null; 
 boolean[] marked = {false}; boolean snip; 
 retry: while (true) { 
   pred = head; 
   curr = pred.next.getReference();  
   while (true) { 
    succ = curr.next.get(marked);  
    while (marked[0]) { 
    … 
    } 
    if (curr.key >= key) 
          return new Window(pred, curr); 
        pred = curr; 
        curr = succ;  
     } 

}} 

Lock-free Find 

Get ref to successor and 
current deleted bit 
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public Window find(Node head, int key) { 
 Node pred = null, curr = null, succ = null; 
 boolean[] marked = {false}; boolean snip; 
 retry: while (true) { 
   pred = head; 
   curr = pred.next.getReference();  
   while (true) { 
    succ = curr.next.get(marked);  
    while (marked[0]) { 
    … 
    } 
    if (curr.key >= key) 
          return new Window(pred, curr); 
        pred = curr; 
        curr = succ;  
     } 

}} 

Lock-free Find 

Try to remove deleted nodes in 
path…code details soon 
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public Window find(Node head, int key) { 
 Node pred = null, curr = null, succ = null; 
 boolean[] marked = {false}; boolean snip; 
 retry: while (true) { 
   pred = head; 
   curr = pred.next.getReference();  
   while (true) { 
    succ = curr.next.get(marked);  
    while (marked[0]) { 
    … 
    } 
    if (curr.key >= key) 
          return new Window(pred, curr); 
        pred = curr; 
        curr = succ;  
     } 

}} 

Lock-free Find 

If curr key that is greater or 
equal, return pred and curr 
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public Window find(Node head, int key) { 
 Node pred = null, curr = null, succ = null; 
 boolean[] marked = {false}; boolean snip; 
 retry: while (true) { 
   pred = head; 
   curr = pred.next.getReference();  
   while (true) { 
    succ = curr.next.get(marked);  
    while (marked[0]) { 
    … 
    } 
    if (curr.key >= key) 
          return new Window(pred, curr); 
        pred = curr; 
        curr = succ;  
     } 

}} 

Lock-free Find 

Otherwise advance window and 
loop again 
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Lock-free Find 

retry: while (true) { 
   … 
   while (marked[0]) { 
     snip = pred.next.compareAndSet(curr, 
succ, false, false); 
     if (!snip) continue retry; 
     curr = succ;  
     succ = curr.next.get(marked);  
   } 
… 
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Lock-free Find 

retry: while (true) { 
   … 
   while (marked[0]) { 
     snip = pred.next.compareAndSet(curr, 
succ, false, false); 
     if (!snip) continue retry; 
     curr = succ;  
     succ = curr.next.get(marked);  
   } 
… 

Try to snip out node  
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Lock-free Find 

retry: while (true) { 
   … 
   while (marked[0]) { 
     snip = pred.next.compareAndSet(curr, 
succ, false, false); 
     if (!snip) continue retry; 
     curr = succ;  
     succ = curr.next.get(marked);  
   } 
… 

if predecessor’s next field 
changed must retry whole 

traversal  
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Lock-free Find 

retry: while (true) { 
   … 
   while (marked[0]) { 
     snip = pred.next.compareAndSet(curr, 
succ, false, false); 
     if (!snip) continue retry; 
     curr = succ;  
     succ = curr.next.get(marked);  
   } 
… 

Otherwise move on to 
check if next node deleted 
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As Contains Ratio Increases   

Lock-free  
Lazy list 

Course Grained 
Fine Lock-coupling 

% Contains() 
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Summary 

•  Coarse-grained locking 
•  Fine-grained locking 
•  Optimistic synchronization 
•  Lock-free synchronization 
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“To Lock or Not to Lock” 

•  Locking vs. Non-blocking: Extremist views 
on both sides  

•  The answer: nobler to compromise, 
combine locking and non-blocking 
–  Example: Lazy list combines  blocking add() 

and remove() and a wait-free contains() 
–  Remember: Blocking/non-blocking is a 

property of a method 



Art of Multiprocessor Programming 212 

            
This work is licensed under a 
Creative Commons Attribution-ShareAlike 2.5 License.  

•  You are free: 
–  to Share — to copy, distribute and transmit the work  
–  to Remix — to adapt the work  
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