
Linked Lists: Locking, Lock-
Free, and Beyond …

Companion slides for
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

Art of Multiprocessor Programming 2

Last Lecture: Spin-Locks

CS

Resets lock
upon exit

spin
lock

critical
section

. . .

Art of Multiprocessor Programming 3

Today: Concurrent Objects

•  Adding threads should not lower
throughput
–  Contention effects
– Mostly fixed by Queue locks

•  Should increase throughput
– Not possible if inherently sequential
–  Surprising things are parallelizable

Art of Multiprocessor Programming 4

Coarse-Grained
Synchronization

•  Each method locks the object
–  Avoid contention using queue locks
–  Easy to reason about

•  In simple cases
–  Standard Java model

•  Synchronized blocks and methods

•  So, are we done?

Art of Multiprocessor Programming 5

Coarse-Grained
Synchronization

•  Sequential bottleneck
–  Threads “stand in line”

•  Adding more threads
–  Does not improve throughput
–  Struggle to keep it from getting worse

•  So why even use a multiprocessor?
– Well, some apps inherently parallel …

Art of Multiprocessor Programming 6

This Lecture

•  Introduce four “patterns”
–  Bag of tricks …
– Methods that work more than once …

•  For highly-concurrent objects
•  Goal:

–  Concurrent access
– More threads, more throughput

Art of Multiprocessor Programming 7

First:
Fine-Grained Synchronization

•  Instead of using a single lock ..
•  Split object into

–  Independently-synchronized components
•  Methods conflict when they access

–  The same component …
–  At the same time

Art of Multiprocessor Programming 8

Second:
Optimistic Synchronization

•  Search without locking …
•  If you find it, lock and check …

– OK: we are done
– Oops: start over

•  Evaluation
–  Usually cheaper than locking
– Mistakes are expensive

Art of Multiprocessor Programming 9

Third:
Lazy Synchronization

•  Postpone hard work
•  Removing components is tricky

–  Logical removal
• Mark component to be deleted

–  Physical removal
•  Do what needs to be done

Art of Multiprocessor Programming 10

Fourth:
Lock-Free Synchronization

•  Don’t use locks at all
–  Use compareAndSet() & relatives …

•  Advantages
– No Scheduler Assumptions/Support

•  Disadvantages
–  Complex
–  Sometimes high overhead

Art of Multiprocessor Programming 11

Linked List

•  Illustrate these patterns …
•  Using a list-based Set

–  Common application
–  Building block for other apps

Art of Multiprocessor Programming 12

Set Interface

•  Unordered collection of items
•  No duplicates
•  Methods

– add(x) put x in set
– remove(x) take x out of set
– contains(x) tests if x in set

Art of Multiprocessor Programming 13

List-Based Sets
public interface Set<T> {
 public boolean add(T x);
 public boolean remove(T x);
 public boolean contains(T x);
}

Art of Multiprocessor Programming 14

List Node
public class Node {
 public T item;
 public int key;
 public Node next;
}

Art of Multiprocessor Programming 15

The List-Based Set

a b c

Sorted with Sentinel nodes
(min & max possible keys)

-∞

+∞

Art of Multiprocessor Programming 16

Reasoning about Concurrent
Objects

•  Invariant
–  Property that always holds

•  Established because
–  True when object is created
–  Truth preserved by each method

•  Each step of each method?
–  o importante são passos visíveis externamente...

•  sentinels are neither added nor removed
•  nodes are sorted by unique keys

Art of Multiprocessor Programming 17

Specifically …
•  Invariants preserved by

– add()
– remove()
– contains()

•  linearizability:
–  o efeito de cada método deve se tornar

visível instantaneamente em algum
momento entre sua invocação e retorno
•  com locks, seção crítica

Art of Multiprocessor Programming 18

Interference

•  Invariants make sense only if
– methods considered are the only

modifiers
•  Language encapsulation helps

–  List nodes not visible outside class

Art of Multiprocessor Programming 19

Interference

•  Freedom from interference needed
even for removed nodes
–  Some algorithms traverse removed

nodes
–  Careful with malloc() & free()!

•  Garbage-collection helps here

Art of Multiprocessor Programming 20

Sequential List Based Set

a c d

a b c

Add()

Remove()

Art of Multiprocessor Programming 21

Sequential List Based Set

a c d

b

a b c

Add()

Remove()

Art of Multiprocessor Programming 22

Course Grained Locking

a b d

Art of Multiprocessor Programming 23

public boolean remove(T item) {
 Node pred, curr;
 int key = item.hashCode();
 lock.lock();
 try {
 pred = head; curr = pred.next;
 while (curr.key < key) {
 pred = curr; curr = curr.next;
 }
 if (key == curr.key) {
 pred.next = curr.next;
 return true; }
 else return false;
 }
 finally lock.unlock();
}

Art of Multiprocessor Programming 24

Course Grained Locking

a b d

c

Art of Multiprocessor Programming 25

honk!

Course Grained Locking

a b d

c

Simple but hotspot + bottleneck

honk!

Art of Multiprocessor Programming 26

Coarse-Grained Locking

•  Easy, same as synchronized methods
–  “One lock to rule them all …”

•  Simple, clearly correct
–  Deserves respect!

•  Works poorly with contention
– Queue locks help
–  But bottleneck still an issue

Art of Multiprocessor Programming 27

Fine-grained Locking

•  Requires careful thought
–  “Do not meddle in the affairs of wizards,

for they are subtle and quick to anger”
•  Split object into pieces

–  Each piece has own lock
– Methods that work on disjoint pieces

need not exclude each other

Art of Multiprocessor Programming 28

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 29

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 30

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 31

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 32

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 33

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming 34

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming 35

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming 36

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming 37

Removing a Node

a b c d

remove(b)

Art of Multiprocessor Programming 38

Removing a Node

a c d

remove(b)
Why do we need
to always hold 2
locks?

Art of Multiprocessor Programming 39

Concurrent Removes

a b c d

remove(c)
remove(b)

Art of Multiprocessor Programming 40

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 41

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 42

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 43

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 44

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 45

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 46

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 47

Uh, Oh

a c d

remove(b)
remove(c)

Art of Multiprocessor Programming 48

Uh, Oh

a c d

Bad news, C not removed

remove(b)
remove(c)

Art of Multiprocessor Programming 49

Problem

•  To delete node c
–  Swing node b’s next field to d

•  Problem is,
–  Someone deleting b concurrently could
 direct a pointer
 to c

b a c

b a c

Art of Multiprocessor Programming 50

Insight

•  If a node is locked
– No one can delete node’s successor

•  If a thread locks
– Node to be deleted
–  And its predecessor
–  Then it works

Art of Multiprocessor Programming 51

Hand-Over-Hand Again

a b c d

remove(b)

Art of Multiprocessor Programming 52

Hand-Over-Hand Again

a b c d

remove(b)

Art of Multiprocessor Programming 53

Hand-Over-Hand Again

a b c d

remove(b)

Art of Multiprocessor Programming 54

Hand-Over-Hand Again

a b c d

remove(b)
Found

it!

Art of Multiprocessor Programming 55

Hand-Over-Hand Again

a b c d

remove(b)
Found

it!

Art of Multiprocessor Programming 56

Hand-Over-Hand Again

a c d

remove(b)

Art of Multiprocessor Programming 57

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 58

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 59

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 60

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 61

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 62

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 63

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 64

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 65

Removing a Node

a b c d

Must
acquire
Lock of b

remove(c)

Art of Multiprocessor Programming 66

Removing a Node

a b c d

Cannot
acquire
lock of b

remove(c)

Art of Multiprocessor Programming 67

Removing a Node

a b c d

Wait!
remove(c)

Art of Multiprocessor Programming 68

Removing a Node

a b d

Proceed
to

remove(b)

Art of Multiprocessor Programming 69

Removing a Node

a b d

remove(b)

Art of Multiprocessor Programming 70

Removing a Node

a b d

remove(b)

Art of Multiprocessor Programming 71

Removing a Node

a d

remove(b)

Art of Multiprocessor Programming 72

Removing a Node

a d

Art of Multiprocessor Programming 73

Remove method

public boolean remove(Item item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

Art of Multiprocessor Programming 74

Remove method

public boolean remove(Item item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

Key used to order node

Art of Multiprocessor Programming 75

Remove method

public boolean remove(Item item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 currNode.unlock();
 predNode.unlock();
 }}

Predecessor and current nodes

Art of Multiprocessor Programming 76

Remove method

public boolean remove(Item item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

Make sure
locks released

Art of Multiprocessor Programming 77

Remove method

public boolean remove(Item item) {
 int key = item.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }}

Everything else

Art of Multiprocessor Programming 78

Remove method

try {
 pred = this.head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

Art of Multiprocessor Programming 79

Remove method

try {
 pred = this.head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

lock pred == head

Art of Multiprocessor Programming 80

Remove method

try {
 pred = this.head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

Lock current

Art of Multiprocessor Programming 81

Remove method

try {
 pred = this.head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …
} finally { … }

Traversing list

Art of Multiprocessor Programming 82

Remove: searching

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Art of Multiprocessor Programming 83

Remove: searching

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Search key range

Art of Multiprocessor Programming 84

Remove: searching

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

At start of each loop: curr
and pred locked

Art of Multiprocessor Programming 85

Remove: searching

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false; If item found, remove node

Art of Multiprocessor Programming 86

Remove: searching

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false; If node found, remove it

Art of Multiprocessor Programming 87

Remove: searching

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Unlock predecessor

Art of Multiprocessor Programming 88

Remove: searching

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Only one node locked!

Art of Multiprocessor Programming 89

Remove: searching

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

demote current

Art of Multiprocessor Programming 90

Remove: searching

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = currNode;
 curr = curr.next;
 curr.lock();
 }
 return false;

Find and lock new current

Art of Multiprocessor Programming 91

Remove: searching
while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = currNode;
 curr = curr.next;
 curr.lock();
 }
 return false;

Lock invariant restored

Art of Multiprocessor Programming 92

Remove: searching

while (curr.key <= key) {
 if (item == curr.item) {
 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Otherwise, not present

Art of Multiprocessor Programming 93

Why does this work?

•  To remove node e
– Must lock e
– Must lock e’s predecessor

•  Therefore, if you lock a node
–  It can’t be removed
–  And neither can its successor

linearization point:
 - if e is present, when e’s predecessor is
locked

Art of Multiprocessor Programming 94

Rep Invariant

•  Easy to check that
–  tail always reachable from head
– Nodes sorted, no duplicates

Art of Multiprocessor Programming 95

Drawbacks

•  Better than coarse-grained lock
–  Threads can traverse in parallel

•  Still not ideal
–  Long chain of acquire/release
–  Inefficient

 thread may still be delayed by another
using different part of the list...

 but if the locks are fair, there will
be no starvation

Art of Multiprocessor Programming 96

Optimistic Synchronization

•  Find nodes without locking
•  Lock nodes
•  Check that everything is OK

Art of Multiprocessor Programming 97

Optimistic: Traverse without
Locking

b d e a

add(c) Aha!

Art of Multiprocessor Programming 98

Optimistic: Lock and Load

b d e a

add(c)

Art of Multiprocessor Programming 99

What could go wrong?

b d e a

add(c)

remove(b
) Aha!

Art of Multiprocessor Programming 100

public boolean remove(T item) {
 int key = item.hashCode();
 while (true) {
 Node pred = head; Node curr = pred.next;
 while (curr.key <= key) {
 pred = curr; curr = curr.next;
 while (curr.key < key) {
 pred = curr; curr = curr.next;
 }
 pred.lock(); curr.lock();
 try {
 if (validate(pred, curr)) {
 if (curr.key == key) {
 pred.next = curr.next;
 return true; }

 else return false;
 }
 } finally {
 pred.unlock(); curr.unlock();
 }
 }
 }

Art of Multiprocessor Programming 101

Optimistic: Linearization Point

b d e a

remove
(d)

locks em pred e curr
e validação ok

Art of Multiprocessor Programming 102

Invariants

•  Careful: we may traverse deleted
nodes

•  But we establish properties by
–  Validation
–  After we lock target nodes

Art of Multiprocessor Programming 103

Correctness

•  If
– Nodes b and d both locked
– Node b still accessible
– Node d still successor to b

•  Then
– Neither will be deleted
– OK to delete and return true

Art of Multiprocessor Programming 104

Unsuccessful Remove

a b d e

remove(c)
Aha!

Art of Multiprocessor Programming 105

Validate (1)

a b d e

Yes, b still
reachable
from head

remove(c)

Art of Multiprocessor Programming 106

Validate (2)

a b d e

remove(c) Yes, b still
points to d

Art of Multiprocessor Programming 107

OK Computer

a b d e

remove(c) return false

Art of Multiprocessor Programming 108

Correctness

•  If
– Nodes b and d both locked
– Node b still accessible
– Node d still successor to b

•  Then
– Neither will be deleted
– No thread can add c after b
– OK to return false

Art of Multiprocessor Programming 109

Validation
private boolean
 validate(Node pred,
 Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Art of Multiprocessor Programming 110

private boolean
 validate(Node pred,
 Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Validation

Predecessor &
current nodes

Art of Multiprocessor Programming 111

private boolean
 validate(Node pred,
 Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Validation

Begin at the
beginning

Art of Multiprocessor Programming 112

private boolean
 validate(Node pred,
 Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Validation

Search range of keys

Art of Multiprocessor Programming 113

private boolean
 validate(Node pred,
 Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Validation

Predecessor reachable

Art of Multiprocessor Programming 114

private boolean
 validate(Node pred,
 Node curry) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Validation

Is current node next?

Art of Multiprocessor Programming 115

private boolean
 validate(Node pred,
 Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Validation
Otherwise move on

Art of Multiprocessor Programming 116

private boolean
 validate(Node pred,
 Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Validation
Predecessor not reachable

possíveis problemas

Art of Multiprocessor Programming 117

•  nós podem ter saído da lista
– mas enquanto alguma thread os

referenciar, não serão coletados....

Art of Multiprocessor Programming 118

public boolean remove(T item) {
 int key = item.hashCode();
 while (true) {
 Node pred = head; Node curr = pred.next;
 while (curr.key <= key) {
 pred = curr; curr = curr.next;
 while (curr.key < key) {
 pred = curr; curr = curr.next;
 }
 pred.lock(); curr.lock();
 try {
 if (validate(pred, curr)) {
 if (curr.key == key) {
 pred.next = curr.next;
 return true; }

 else return false;
 }
 } finally {
 pred.unlock(); curr.unlock();
 }
 }
 }

î nesse caso volta
a fazer todo o percurso!

Art of Multiprocessor Programming 119

Optimistic List

•  Limited hot-spots
–  Targets of add(), remove(), contains()
– No contention on traversals

•  Moreover
–  Traversals are wait-free
–  Food for thought …

–  not starvation-free

Art of Multiprocessor Programming 120

So Far, So Good

•  Much less lock acquisition/release
–  Performance
–  Concurrency

•  Problems
– Need to traverse list twice
–  contains() method acquires locks

Art of Multiprocessor Programming 121

Evaluation

•  Optimistic is effective if
–  cost of scanning twice without locks

is less than
–  cost of scanning once with locks

•  Drawback
–  contains() acquires locks
–  90% of calls in many apps

Art of Multiprocessor Programming 122

Lazy List

•  Like optimistic, except
–  Scan once
– contains(x) never locks …

•  Key insight
–  Removing nodes causes trouble
–  Do it “lazily”

Art of Multiprocessor Programming 123

Lazy List

• remove()
–  Scans list (as before)
–  Locks predecessor & current (as before)

•  Logical delete
– Marks current node as removed (new!)

•  Physical delete
–  Redirects predecessor’s next (as

before)

Art of Multiprocessor Programming 124

Lazy Removal

a a b c d

Art of Multiprocessor Programming 125

Lazy Removal

a a b c d

Present in list

Art of Multiprocessor Programming 126

Lazy Removal

a a b c d

Logically deleted

Art of Multiprocessor Programming 127

Lazy Removal

a a b c d

Physically deleted

Art of Multiprocessor Programming 128

Lazy Removal

a a b d

Physically deleted

Art of Multiprocessor Programming 129

Lazy List

•  All Methods
–  Scan through locked and marked nodes
–  Removing a node doesn’t slow down

other method calls …
•  Must still lock pred and curr nodes.

Art of Multiprocessor Programming 130

Validation

•  No need to rescan list!
•  Check that pred is not marked
•  Check that curr is not marked
•  Check that pred points to curr

mas não precisa percorrer a
lista desde o início

Art of Multiprocessor Programming 131

Business as Usual

a b c

Art of Multiprocessor Programming 132

Business as Usual

a b c

Art of Multiprocessor Programming 133

Business as Usual

a b c

Art of Multiprocessor Programming 134

Business as Usual

a b c

remove(b)

Art of Multiprocessor Programming 135

Business as Usual

a b c

a not
marked

Art of Multiprocessor Programming 136

Business as Usual

a b c

a still
points
to b

Art of Multiprocessor Programming 137

Business as Usual

a b c

Logical
delete

Art of Multiprocessor Programming 138

Business as Usual

a b c

physical
delete

Art of Multiprocessor Programming 139

Business as Usual

a b c

Art of Multiprocessor Programming 140

Validation
private boolean
 validate(Node pred, Node curr) {
 return
 !pred.marked &&
 !curr.marked &&
 pred.next == curr);
 }

objetivo da marca: evitar duplo percurso

Art of Multiprocessor Programming 141

private boolean
 validate(Node pred, Node curr) {
 return
 !pred.marked &&
 !curr.marked &&
 pred.next == curr);
 }

List Validate Method

Predecessor not
Logically removed

Art of Multiprocessor Programming 142

private boolean
 validate(Node pred, Node curr) {
 return
 !pred.marked &&
 !curr.marked &&
 pred.next == curr);
 }

List Validate Method

Current not
Logically removed

Art of Multiprocessor Programming 143

private boolean
 validate(Node pred, Node curr) {
 return
 !pred.marked &&
 !curr.marked &&
 pred.next == curr);
 }

List Validate Method

Predecessor still
Points to current

Art of Multiprocessor Programming 144

Remove
try {
 pred.lock(); curr.lock();
 if (validate(pred,curr) {
 if (curr.key == key) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }}} finally {

 pred.unlock();
 curr.unlock();

 }}}

Art of Multiprocessor Programming 145

Remove
try {
 pred.lock(); curr.lock();
 if (validate(pred,curr) {
 if (curr.key == key) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }}} finally {

 pred.unlock();
 curr.unlock();

 }}}

Validate

Art of Multiprocessor Programming 146

Remove
try {
 pred.lock(); curr.lock();
 if (validate(pred,curr) {
 if (curr.key == key) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }}} finally {

 pred.unlock();
 curr.unlock();

 }}}

Key found

Art of Multiprocessor Programming 147

Remove
try {
 pred.lock(); curr.lock();
 if (validate(pred,curr) {
 if (curr.key == key) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }}} finally {

 pred.unlock();
 curr.unlock();

 }}}

Logical remove

Art of Multiprocessor Programming 148

Remove
try {
 pred.lock(); curr.lock();
 if (validate(pred,curr) {
 if (curr.key == key) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else {
 return false;
 }}} finally {

 pred.unlock();
 curr.unlock();

 }}}

physical remove

Art of Multiprocessor Programming 149

Contains
public boolean contains(Item item) {
 int key = item.hashCode();
 Node curr = this.head;
 while (curr.key < key) {
 curr = curr.next;
 }
 return curr.key == key && !curr.marked;
}

Art of Multiprocessor Programming 150

Contains
public boolean contains(Item item) {
 int key = item.hashCode();
 Node curr = this.head;
 while (curr.key < key) {
 curr = curr.next;
 }
 return curr.key == key && !curr.marked;
}

Start at the head

Art of Multiprocessor Programming 151

Contains
public boolean contains(Item item) {
 int key = item.hashCode();
 Node curr = this.head;
 while (curr.key < key) {
 curr = curr.next;
 }
 return curr.key == key && !curr.marked;
}

Search key range

Art of Multiprocessor Programming 152

Contains
public boolean contains(Item item) {
 int key = item.hashCode();
 Node curr = this.head;
 while (curr.key < key) {
 curr = curr.next;
 }
 return curr.key == key && !curr.marked;
}

Traverse without locking
(nodes may have been removed)

Art of Multiprocessor Programming 153

Contains
public boolean contains(Item item) {
 int key = item.hashCode();
 Node curr = this.head;
 while (curr.key < key) {
 curr = curr.next;
 }
 return curr.key == key && !curr.marked;
}

Present and undeleted?

Art of Multiprocessor Programming 154

Summary: Wait-free Contains

a 0 0 0 a b c 0 e 1 d

Use Mark bit + Fact that List is ordered
1.  Not marked à in the set
2.  Marked or missing à not in the set

Art of Multiprocessor Programming 155

Lazy List

a 0 0 0 a b c 0 e 1 d

Lazy add() and remove() + Wait-free contains()

Art of Multiprocessor Programming 156

Evaluation

•  Good:
–  contains() doesn’t lock
–  In fact, its wait-free!
–  Good because typically high % contains()
–  Uncontended calls don’t re-traverse

•  Bad
–  Contended add() and remove() calls do

re-traverse
–  Traffic jam if one thread delays

Art of Multiprocessor Programming 157

Traffic Jam

•  Any concurrent data structure based
on mutual exclusion has a weakness

•  If one thread
–  Enters critical section
–  And “eats the big muffin”

•  Cache miss, page fault, descheduled …
–  Everyone else using that lock is stuck!
– Need to trust the scheduler….

Art of Multiprocessor Programming 158

Reminder: Lock-Free Data
Structures

•  No matter what …
–  Guarantees minimal progress in any

execution
–  i.e. Some thread will always complete a

method call
–  Even if others halt at malicious times
–  Implies that implementation can’t use

locks

Art of Multiprocessor Programming 159

Lock-free Lists

•  Next logical step
•  Eliminate locking entirely
•  contains() wait-free and add() and

remove() lock-free
•  Use only compareAndSet()
•  What could go wrong?

Remove Using CAS

Art of Multiprocessor Programming 160

não adianta fazer CAS atômico com
as referências!!!

Art of Multiprocessor Programming 161

Remove Using CAS

a 0 0 0 a b c 0 e 1 c

Logical Removal =
Set Mark Bit

Physical
Removal
CAS pointer

tem que levar em
consideração estado do nó!

Art of Multiprocessor Programming 162

Problem…

a 0 0 0 a b c 0 e 1 c

Logical Removal =
Set Mark Bit

Physical
Removal
CAS

0 d Problem:
d not added to list…
Must Prevent
manipulation of
removed node’s pointer

Node added
Before
Physical
Removal CAS

Art of Multiprocessor Programming 163

The Solution: Combine Bit and
Pointer

a 0 0 0 a b c 0 e 1 c

Logical Removal =
Set Mark Bit

Physical
Removal
CAS

0 d

Mark-Bit and Pointer
are CASed together
(AtomicMarkableReference)

Fail CAS: Node not
added after logical
Removal

Art of Multiprocessor Programming 164

Solution

•  Use AtomicMarkableReference
•  Atomically

–  Swing reference and
–  Update flag

•  Remove in two steps
–  Set mark bit in next field
–  Redirect predecessor’s pointer

Art of Multiprocessor Programming 165

Marking a Node

•  AtomicMarkableReference class
–  Java.util.concurrent.atomic package

address F

mark bit

Reference

Art of Multiprocessor Programming 166

Extracting Reference & Mark

Public Object get(boolean[] marked);

Art of Multiprocessor Programming 167

Extracting Reference &
Mark

Public Object get(boolean[] marked);

Returns
reference

Returns mark at
array index 0!

Art of Multiprocessor Programming 168

Extracting Reference Only

public boolean isMarked();

Value of
mark

Art of Multiprocessor Programming 169

Changing State

Public boolean compareAndSet(
 Object expectedRef,
 Object updateRef,
 boolean expectedMark,
 boolean updateMark);

Art of Multiprocessor Programming 170

Changing State

Public boolean compareAndSet(
 Object expectedRef,
 Object updateRef,
 boolean expectedMark,
 boolean updateMark);

If this is the current
reference …

And this is the
current mark …

Art of Multiprocessor Programming 171

Changing State

Public boolean compareAndSet(
 Object expectedRef,
 Object updateRef,
 boolean expectedMark,
 boolean updateMark);

…then change to this
new reference …

… and this new
mark

Art of Multiprocessor Programming 172

Changing State

public boolean attemptMark(
 Object expectedRef,
 boolean updateMark);

Art of Multiprocessor Programming 173

Changing State

public boolean attemptMark(
 Object expectedRef,
 boolean updateMark);

If this is the current
reference …

Art of Multiprocessor Programming 174

Changing State

public boolean attemptMark(
 Object expectedRef,
 boolean updateMark);

.. then change to
this new mark.

Art of Multiprocessor Programming 175

Traversing the List

•  Q: what do you do when you find a
“logically” deleted node in your path?

•  A: finish the job.
–  CAS the predecessor’s next field
–  Proceed (repeat as needed)

Art of Multiprocessor Programming 176

Lock-Free Traversal
(only Add and Remove)

a b c d
CAS

Uh-oh

pred curr pred curr

Art of Multiprocessor Programming 177

The Window Class

class Window {
 public Node pred;
 public Node curr;
 Window(Node pred, Node curr) {
 this.pred = pred; this.curr = curr;
 }
}

Art of Multiprocessor Programming 178

The Window Class

class Window {
 public Node pred;
 public Node curr;
 Window(Node pred, Node curr) {
 this.pred = pred; this.curr = curr;
 }
}

A container for pred
and current values

Art of Multiprocessor Programming 179

Using the Find Method

 Window window = find(head, key);
 Node pred = window.pred;
 curr = window.curr;

Art of Multiprocessor Programming 180

Using the Find Method

 Window window = find(head, key);
 Node pred = window.pred;
 curr = window.curr;

Find returns window

Art of Multiprocessor Programming 181

Using the Find Method

 Window window = find(head, key);
 Node pred = window.pred;
 curr = window.curr;

Extract pred and curr

Art of Multiprocessor Programming©
Herlihy-Shavit 2007

182

The Find Method

 Window window = find(item);

At some instant,

pred curr succ

item or …

Art of Multiprocessor Programming©
Herlihy-Shavit 2007

183

The Find Method

 Window window = find(item);

At some instant,

pred
curr= null

succ

item not in list

Art of Multiprocessor Programming 184

Remove
public boolean remove(T item) {
Boolean snip;
while (true) {
 Window window = find(head, key);
 Node pred = window.pred, curr = window.curr;
 if (curr.key != key) {
 return false;
 } else {
 Node succ = curr.next.getReference();
 snip = curr.next.attemptMark(succ, true);
 if (!snip) continue;
 pred.next.compareAndSet(curr, succ, false,
false);
 return true;
}}}

Art of Multiprocessor Programming 185

Remove
public boolean remove(T item) {
Boolean snip;
while (true) {
 Window window = find(head, key);
 Node pred = window.pred, curr = window.curr;
 if (curr.key != key) {
 return false;
 } else {
 Node succ = curr.next.getReference();
 snip = curr.next.attemptMark(succ, true);
 if (!snip) continue;
 pred.next.compareAndSet(curr, succ, false,
false);
 return true;
}}}

Keep trying

Art of Multiprocessor Programming 186

Remove
public boolean remove(T item) {
Boolean snip;
while (true) {
 Window window = find(head, key);
 Node pred = window.pred, curr = window.curr;
 if (curr.key != key) {
 return false;
 } else {
 Node succ = curr.next.getReference();
 snip = curr.next.attemptMark(succ, true);
 if (!snip) continue;
 pred.next.compareAndSet(curr, succ, false,
false);
 return true;
}}} Find neighbors

Art of Multiprocessor Programming 187

Remove
public boolean remove(T item) {
Boolean snip;
while (true) {
 Window window = find(head, key);
 Node pred = window.pred, curr = window.curr;
 if (curr.key != key) {
 return false;
 } else {
 Node succ = curr.next.getReference();
 snip = curr.next.attemptMark(succ, true);
 if (!snip) continue;
 pred.next.compareAndSet(curr, succ, false,
false);
 return true;
}}} She’s not there …

Art of Multiprocessor Programming 188

Remove
public boolean remove(T item) {
Boolean snip;
while (true) {
 Window window = find(head, key);
 Node pred = window.pred, curr = window.curr;
 if (curr.key != key) {
 return false;
 } else {
 Node succ = curr.next.getReference();
 snip = curr.next.attemptMark(succ, true);
 if (!snip) continue;
 pred.next.compareAndSet(curr, succ, false,
false);
 return true;
}}}

Try to mark node as deleted

se curr.next
ainda referencia
succ, marca curr
como eliminado

Art of Multiprocessor Programming 189

Remove
public boolean remove(T item) {
Boolean snip;
while (true) {
 Window window = find(head, key);
 Node pred = window.pred, curr = window.curr;
 if (curr.key != key) {
 return false;
 } else {
 Node succ = curr.next.getReference();
 snip = curr.next.attemptMark(succ, true);
 if (!snip) continue;
 pred.next.compareAndSet(curr, succ, false,
false);
 return true;
}}}

If it doesn’t
work, just retry,
if it does, job
essentially done

Art of Multiprocessor Programming 190

Remove
public boolean remove(T item) {
Boolean snip;
while (true) {
 Window window = find(head, key);
 Node pred = window.pred, curr = window.curr;
 if (curr.key != key) {
 return false;
 } else {
 Node succ = curr.next.getReference();
 snip = curr.next.attemptMark(succ, true);
 if (!snip) continue;
 pred.next.compareAndSet(curr, succ, false,
false);
 return true;
}}}

Try to advance reference
(if we don’t succeed, someone else did or will).

a

faz pred.next
apontar para succ

Art of Multiprocessor Programming 191

Add
public boolean add(T item) {
 boolean splice;
 while (true) {
 Window window = find(head, key);
 Node pred = window.pred, curr = window.curr;
 if (curr.key == key) {
 return false;
 } else {
 Node node = new Node(item);
 node.next = new AtomicMarkableRef(curr, false);
 if (pred.next.compareAndSet(curr, node, false,
false)) {return true;}
}}}

Art of Multiprocessor Programming 192

Add
public boolean add(T item) {
 boolean splice;
 while (true) {
 Window window = find(head, key);
 Node pred = window.pred, curr = window.curr;
 if (curr.key == key) {
 return false;
 } else {
 Node node = new Node(item);
 node.next = new AtomicMarkableRef(curr, false);
 if (pred.next.compareAndSet(curr, node, false,
false)) {return true;}
}}} Item already there.

Art of Multiprocessor Programming 193

Add
public boolean add(T item) {
 boolean splice;
 while (true) {
 Window window = find(head, key);
 Node pred = window.pred, curr = window.curr;
 if (curr.key == key) {
 return false;
 } else {
 Node node = new Node(item);
 node.next = new AtomicMarkableRef(curr, false);
 if (pred.next.compareAndSet(curr, node, false,
false)) {return true;}
}}}

create new node

Art of Multiprocessor Programming 194

Add
public boolean add(T item) {
 boolean splice;
 while (true) {
 Window window = find(head, key);
 Node pred = window.pred, curr = window.curr;
 if (curr.key == key) {
 return false;
 } else {
 Node node = new Node(item);
 node.next = new AtomicMarkableRef(curr, false);
 if (pred.next.compareAndSet(curr, node, false,
false)) {return true;}
}}}

Install new node,
else retry loop

Art of Multiprocessor Programming 195

Wait-free Contains

public boolean contains(Tt item) {
 boolean marked;
 int key = item.hashCode();
 Node curr = this.head;
 while (curr.key < key)
 curr = curr.next;
 Node succ = curr.next.get(marked);
 return (curr.key == key && !marked[0])
 }

Art of Multiprocessor Programming 196

Wait-free Contains

public boolean contains(T item) {
 boolean marked;
 int key = item.hashCode();
 Node curr = this.head;
 while (curr.key < key)
 curr = curr.next;
 Node succ = curr.next.get(marked);
 return (curr.key == key && !marked[0])
 }

Only diff is that we
get and check

marked

Art of Multiprocessor Programming 197

Lock-free Find
public Window find(Node head, int key) {
 Node pred = null, curr = null, succ = null;
 boolean[] marked = {false}; boolean snip;
 retry: while (true) {
 pred = head;
 curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) {
 …
 }
 if (curr.key >= key)
 return new Window(pred, curr);
 pred = curr;
 curr = succ;
 }

}}

Art of Multiprocessor Programming 198

Lock-free Find
public Window find(Node head, int key) {
 Node pred = null, curr = null, succ = null;
 boolean[] marked = {false}; boolean snip;
 retry: while (true) {
 pred = head;
 curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) {
 …
 }
 if (curr.key >= key)
 return new Window(pred, curr);
 pred = curr;
 curr = succ;
 }

}}

If list changes
while

traversed,
start over
Lock-Free
because we

start over only
if someone else
makes progress

Art of Multiprocessor Programming 199

public Window find(Node head, int key) {
 Node pred = null, curr = null, succ = null;
 boolean[] marked = {false}; boolean snip;
 retry: while (true) {
 pred = head;
 curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) {
 …
 }
 if (curr.key >= key)
 return new Window(pred, curr);
 pred = curr;
 curr = succ;
 }

}}

Lock-free Find
Start looking from head

Art of Multiprocessor Programming 200

public Window find(Node head, int key) {
 Node pred = null, curr = null, succ = null;
 boolean[] marked = {false}; boolean snip;
 retry: while (true) {
 pred = head;
 curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) {
 …
 }
 if (curr.key >= key)
 return new Window(pred, curr);
 pred = curr;
 curr = succ;
 }

}}

Lock-free Find

Move down the list

Art of Multiprocessor Programming 201

public Window find(Node head, int key) {
 Node pred = null, curr = null, succ = null;
 boolean[] marked = {false}; boolean snip;
 retry: while (true) {
 pred = head;
 curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) {
 …
 }
 if (curr.key >= key)
 return new Window(pred, curr);
 pred = curr;
 curr = succ;
 }

}}

Lock-free Find

Get ref to successor and
current deleted bit

Art of Multiprocessor Programming 202

public Window find(Node head, int key) {
 Node pred = null, curr = null, succ = null;
 boolean[] marked = {false}; boolean snip;
 retry: while (true) {
 pred = head;
 curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) {
 …
 }
 if (curr.key >= key)
 return new Window(pred, curr);
 pred = curr;
 curr = succ;
 }

}}

Lock-free Find

Try to remove deleted nodes in
path…code details soon

Art of Multiprocessor Programming 203

public Window find(Node head, int key) {
 Node pred = null, curr = null, succ = null;
 boolean[] marked = {false}; boolean snip;
 retry: while (true) {
 pred = head;
 curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) {
 …
 }
 if (curr.key >= key)
 return new Window(pred, curr);
 pred = curr;
 curr = succ;
 }

}}

Lock-free Find

If curr key that is greater or
equal, return pred and curr

Art of Multiprocessor Programming 204

public Window find(Node head, int key) {
 Node pred = null, curr = null, succ = null;
 boolean[] marked = {false}; boolean snip;
 retry: while (true) {
 pred = head;
 curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) {
 …
 }
 if (curr.key >= key)
 return new Window(pred, curr);
 pred = curr;
 curr = succ;
 }

}}

Lock-free Find

Otherwise advance window and
loop again

Art of Multiprocessor Programming 205

Lock-free Find

retry: while (true) {
 …
 while (marked[0]) {
 snip = pred.next.compareAndSet(curr,
succ, false, false);
 if (!snip) continue retry;
 curr = succ;
 succ = curr.next.get(marked);
 }
…

Art of Multiprocessor Programming 206

Lock-free Find

retry: while (true) {
 …
 while (marked[0]) {
 snip = pred.next.compareAndSet(curr,
succ, false, false);
 if (!snip) continue retry;
 curr = succ;
 succ = curr.next.get(marked);
 }
…

Try to snip out node

Art of Multiprocessor Programming 207

Lock-free Find

retry: while (true) {
 …
 while (marked[0]) {
 snip = pred.next.compareAndSet(curr,
succ, false, false);
 if (!snip) continue retry;
 curr = succ;
 succ = curr.next.get(marked);
 }
…

if predecessor’s next field
changed must retry whole

traversal

Art of Multiprocessor Programming 208

Lock-free Find

retry: while (true) {
 …
 while (marked[0]) {
 snip = pred.next.compareAndSet(curr,
succ, false, false);
 if (!snip) continue retry;
 curr = succ;
 succ = curr.next.get(marked);
 }
…

Otherwise move on to
check if next node deleted

Art of Multiprocessor Programming 209

As Contains Ratio Increases

Lock-free
Lazy list

Course Grained
Fine Lock-coupling

% Contains()

Art of Multiprocessor Programming 210

Summary

•  Coarse-grained locking
•  Fine-grained locking
•  Optimistic synchronization
•  Lock-free synchronization

Art of Multiprocessor Programming 211

“To Lock or Not to Lock”

•  Locking vs. Non-blocking: Extremist views
on both sides

•  The answer: nobler to compromise,
combine locking and non-blocking
–  Example: Lazy list combines blocking add()

and remove() and a wait-free contains()
–  Remember: Blocking/non-blocking is a

property of a method

Art of Multiprocessor Programming 212

This work is licensed under a
Creative Commons Attribution-ShareAlike 2.5 License.

•  You are free:
–  to Share — to copy, distribute and transmit the work
–  to Remix — to adapt the work

•  Under the following conditions:
–  Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

–  Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

•  For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to
–  http://creativecommons.org/licenses/by-sa/3.0/.

•  Any of the above conditions can be waived if you get permission
from the copyright holder.

•  Nothing in this license impairs or restricts the author's moral
rights.

