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Focus so far: Correctness 
and Progress 

•  Models 
–  Accurate (we never lied to you) 

–  But idealized (so we forgot to mention a few things) 

•  Protocols 
–  Elegant 
–  Important 
–  But naïve 
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New Focus: Performance 

•  Models 
– More complicated (not the same as complex!) 

–  Still focus on principles (not soon obsolete) 

•  Protocols 
–  Elegant (in their fashion) 
–  Important (why else would we pay attention) 
–  And realistic (your mileage may vary) 
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Kinds of Architectures 
•  SISD (Uniprocessor) 

–  Single instruction stream 
–  Single data stream  

•  SIMD (Vector) 
–  Single instruction 
–  Multiple data 

•  MIMD (Multiprocessors) 
–  Multiple instruction 
–  Multiple data.  
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Kinds of Architectures 
•  SISD (Uniprocessor) 

–  Single instruction stream 
–  Single data stream  

•  SIMD (Vector) 
–  Single instruction 
–  Multiple data 

•  MIMD (Multiprocessors) 
–  Multiple instruction 
–  Multiple data.  

Our space 

(1) 
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MIMD Architectures 

•  Memory Contention 
•  Communication Contention  
•  Communication Latency 

Shared Bus 

memory 

Distributed 
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Today: Revisit Mutual Exclusion 

•  Think of performance, not just 
correctness and progress 

•  Begin to understand how performance 
depends on our software properly 
utilizing the multiprocessor machine’s 
hardware 

•  And get to know a collection of 
locking algorithms…  

 
(1) 
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What Should you do if you 
can’t get a lock? 

•  Keep trying 
–  “spin” or “busy-wait” 
–  Good if delays are short 

•  Give up the processor 
–  Good if delays are long 
–  Always good on uniprocessor 

(1) 
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What Should you do if you 
can’t get a lock? 

•  Keep trying 
–  “spin” or “busy-wait” 
–  Good if delays are short 

•  Give up the processor 
–  Good if delays are long 
–  Always good on uniprocessor 

our focus 
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Basic Spin-Lock 

CS 

Resets lock  
upon exit 

spin  
lock 

critical  
section 

. . . 
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Basic Spin-Lock 

CS 

Resets lock  
upon exit 

spin  
lock 

critical  
section 

. . . 

…lock introduces 
sequential bottleneck 
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Basic Spin-Lock 

CS 

Resets lock  
upon exit 

spin  
lock 

critical  
section 

. . . 

…lock suffers from 
contention 
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Basic Spin-Lock 

CS 

Resets lock  
upon exit 

spin  
lock 

critical  
section 

. . . 
Notice: these are distinct 
phenomena 

…lock suffers from 
contention 
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Basic Spin-Lock 

CS 

Resets lock  
upon exit 

spin  
lock 

critical  
section 

. . . 

…lock suffers from 
contention 

Seq Bottleneck à no 
parallelism 
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Basic Spin-Lock 

CS 

Resets lock  
upon exit 

spin  
lock 

critical  
section 

. . . 
Contention à ??? 

…lock suffers from 
contention 
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Review: Test-and-Set 

•  Boolean value 
•  Test-and-set (TAS) 

–  Swap true with current value 
–  Return value tells if prior value was true 

or false 
•  Can reset just by writing false 
•  TAS aka “getAndSet” 
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Review: Test-and-Set 
public class AtomicBoolean { 
 boolean value; 
   
 public synchronized boolean 
getAndSet(boolean newValue) { 

   boolean prior = value; 
   value = newValue; 
   return prior; 
 } 
} 

(5) 
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Review: Test-and-Set 
public class AtomicBoolean { 
 boolean value; 
   
 public synchronized boolean 
getAndSet(boolean newValue) { 

   boolean prior = value; 
   value = newValue; 
   return prior; 
 } 
} 

Package 
java.util.concurrent.atomic 
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Review: Test-and-Set 
public class AtomicBoolean { 
 boolean value; 
   
 public synchronized boolean 
getAndSet(boolean newValue) { 

   boolean prior = value; 
   value = newValue; 
   return prior; 
 } 
} 

Swap old and new 
values 
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Review: Test-and-Set 
AtomicBoolean lock 
 = new AtomicBoolean(false) 
… 
boolean prior = lock.getAndSet(true) 
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Review: Test-and-Set 
AtomicBoolean lock 
 = new AtomicBoolean(false) 
… 
boolean prior = lock.getAndSet(true) 
  

(5) 

Swapping in true is called 
“test-and-set” or TAS 
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Test-and-Set Locks 

•  Locking 
–  Lock is free: value is false 
–  Lock is taken: value is true 

•  Acquire lock by calling TAS 
–  If result is false, you win 
–  If result is true, you lose  

•  Release lock by writing false 
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Test-and-set Lock 
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 
 
 void lock() { 
  while (state.getAndSet(true)) {} 
 } 
  
 void unlock() { 
  state.set(false); 
 }}  
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Test-and-set Lock 
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 
 
 void lock() { 
  while (state.getAndSet(true)) {} 
 } 
  
 void unlock() { 
  state.set(false); 
 }}  

Lock state is AtomicBoolean 
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Test-and-set Lock 
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 
 
 void lock() { 
  while (state.getAndSet(true)) {} 
 } 
  
 void unlock() { 
  state.set(false); 
 }}  

Keep trying until lock acquired 
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Test-and-set Lock 
class TASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 
 
 void lock() { 
  while (state.getAndSet(true)) {} 
 } 
  
 void unlock() { 
  state.set(false); 
 }}  

Release lock by resetting 
state to false 
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Space Complexity 

•  TAS spin-lock has small “footprint”  
•  N thread spin-lock uses O(1) space 
•  As opposed to O(n) Peterson/Bakery  
•  How did we overcome the Ω(n) lower 

bound?  
•  We used a RMW operation…  
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Performance 

•  Experiment 
–  n threads 
–  Increment shared counter 1 million times 

•  How long should it take? 
•  How long does it take? 
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Graph 

ideal ti
m

e 

threads 

no speedup 
because of 
sequential 
bottleneck 
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Mystery #1 

ti
m

e 

threads 

TAS lock 
 
 
Ideal 
 

(1) 

What is  
going 
on?  
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Test-and-Test-and-Set Locks 

•  Lurking stage 
– Wait until lock “looks” free 
–  Spin while read returns true (lock taken) 

•  Pouncing state 
–  As soon as lock “looks” available 
–  Read returns false (lock free) 
–  Call TAS to acquire lock 
–  If TAS loses, back to lurking 
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Test-and-test-and-set Lock 
class TTASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 
 
 void lock() { 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
 } 
}  
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Test-and-test-and-set Lock 
class TTASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 
 
 void lock() { 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
 } 
}  Wait until lock looks free 



Art of Multiprocessor Programming 34 

Test-and-test-and-set Lock 
class TTASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 
 
 void lock() { 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
 } 
}  

Then try to 
acquire it 
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Mystery #2 
TAS lock 
 
TTAS lock 
 
Ideal 
 

ti
m

e 

threads 
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Mystery 

•  Both 
–  TAS and TTAS 
–  Do the same thing (in our model) 

•  Except that  
–  TTAS performs much better than TAS 
– Neither approaches ideal 
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Opinion 

•  Our memory abstraction is broken 
•  TAS & TTAS methods 

–  Are provably the same (in our model) 

–  Except they aren’t (in field tests) 

•  Need a more detailed model … 
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Bus-Based Architectures 

Bus 

cache 

memory 

cache cache 
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Bus-Based Architectures 

Bus 

cache 

memory 

cache cache 

Random access memory 
(10s of cycles) 
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Bus-Based Architectures 

cache 

memory 

cache cache 

Shared Bus 
• Broadcast medium 
• One broadcaster at a time 
• Processors and memory all 
“snoop” 

Bus 
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Bus-Based Architectures 

Bus 

cache 

memory 

cache cache 

Per-Processor Caches 
• Small 
• Fast: 1 or 2 cycles 
• Address & state information 
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Jargon Watch 

•  Cache hit 
–  “I found what I wanted in my cache” 
–  Good Thing™ 
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Jargon Watch 

•  Cache hit 
–  “I found what I wanted in my cache” 
–  Good Thing™ 

•  Cache miss 
–  “I had to shlep all the way to memory 

for that data” 
–  Bad Thing™ 
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Cave Canem 

•  This model is still a simplification 
–  But not in any essential way 
–  Illustrates basic principles 

•  Will discuss complexities later 
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Bus 

Processor Issues Load Request 

cache 

memory 

cache cache 

data 
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Bus 

Processor Issues Load Request 

Bus 

cache 

memory 

cache cache 

data 

Gimme 
data 
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cache 

Bus 

Memory Responds 

Bus 

memory 

cache cache 

data 

Got your 
data right 

here  data 
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Bus 

Processor Issues Load Request 

memory 

cache cache data 

data 

Gimme 
data 
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Bus 

Processor Issues Load Request 

Bus 

memory 

cache cache data 

data 

Gimme 
data 
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Bus 

Processor Issues Load Request 

Bus 

memory 

cache cache data 

data 

I got 
data 
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Bus 

Other Processor Responds 

memory 

cache cache 

data 

I got 
data 

data data 
Bus 
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Bus 

Other Processor Responds 

memory 

cache cache 

data 

data data 
Bus 
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Modify Cached Data 

Bus 

data 

memory 

cache data 

data 

(1) 
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Modify Cached Data 

Bus 

data 

memory 

cache data 

data 

data 

(1) 
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memory 

Bus 

data 

Modify Cached Data 

cache data 

data 
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memory 

Bus 

data 

Modify Cached Data 

cache 

What’s up with the 
other copies? 

data 

data 
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Cache Coherence 

•  We have lots of copies of data 
– Original copy in memory  
–  Cached copies at processors 

•  Some processor modifies its own copy 
– What do we do with the others? 
– How to avoid confusion? 
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Write-Back Caches 

•  Accumulate changes in cache 
•  Write back when needed 

– Need the cache for something else 
–  Another processor wants it 

•  On first modification 
–  Invalidate other entries 
–  Requires non-trivial protocol …  
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Write-Back Caches 

•  Cache entry has three states 
–  Invalid: contains raw seething bits 
–  Valid: I can read but I can’t write 
–  Dirty: Data has been modified 

•  Intercept other load requests 
• Write back to memory before using cache 
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Bus 

Invalidate 

memory 

cache data data 

data 



Art of Multiprocessor Programming 61 

Bus 

Invalidate 

Bus 

memory 

cache data data 

data 

Mine, all 
mine! 
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Bus 

Invalidate 

Bus 

memory 

cache data data 

data 

cache 

Uh,oh 
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cache 
Bus 

Invalidate 

memory 

cache data 

data 

Other caches lose read permission 
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cache 
Bus 

Invalidate 

memory 

cache data 

data 

Other caches lose read permission 

This cache acquires write permission 
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cache 
Bus 

Invalidate 

memory 

cache data 

data 

Memory provides data only if not 
present in any cache, so no need to 

change it now (expensive) 

(2) 
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cache 
Bus 

Another Processor Asks for 
Data 

memory 

cache data 

data 

(2) 

Bus 
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cache data 
Bus 

Owner Responds 

memory 

cache data 

data 

(2) 

Bus 

Here it is! 
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Bus 

End of the Day … 

memory 

cache data 

data 

(1) 

Reading OK, no writing 

data data 
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Mutual Exclusion 

•  What do we want to optimize? 
–  Bus bandwidth used by spinning threads 
–  Release/Acquire latency 
–  Acquire latency for idle lock 
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Simple TASLock  

•  TAS invalidates cache lines 
•  Spinners 

– Miss in cache 
–  Go to bus 

•  Thread wants to release lock 
–  delayed behind spinners 
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Test-and-test-and-set 

•  Wait until lock “looks” free 
–  Spin on local cache 
– No bus use while lock busy 

•  Problem: when lock is released 
–  Invalidation storm … 
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Local Spinning while Lock is 
Busy 

Bus 

memory 

busy busy busy 

busy 
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Bus 

On Release 

memory 

free invalid invalid 

free 
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On Release 

Bus 

memory 

free invalid invalid 

free 

miss miss 

Everyone misses, 
rereads 

(1) 



Art of Multiprocessor Programming 75 

On Release 

Bus 

memory 

free invalid invalid 

free 

TAS(…) TAS(…) 

Everyone tries TAS 

(1) 
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Problems 

•  Everyone misses 
–  Reads satisfied sequentially 

•  Everyone does TAS 
–  Invalidates others’ caches 

•  Eventually quiesces after lock 
acquired 
– How long does this take?   
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Mystery Explained 
TAS lock 
 
TTAS lock 
 
Ideal 
 

ti
m

e 

threads 
Better than 
TAS but still 
not as good as 

ideal 
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Solution: Introduce Delay 

spin lock time 
d r1d r2d 

•  If the lock looks free 
•  But I fail to get it 

•  There must be lots of contention 
•  Better to back off than to collide again 
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Dynamic Example: 
Exponential Backoff 

time 
d 2d 4d spin lock 

 If I fail to get lock 
–  wait random duration before retry 
–  Each subsequent failure doubles 
expected wait 
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Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   
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Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   Fix minimum delay 
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Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   Wait until lock looks free 
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Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   If we win, return 



Art of Multiprocessor Programming 84 

Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   

Back off for random duration 
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Exponential Backoff Lock 
public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!lock.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   

Double max delay, within reason 
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Spin-Waiting Overhead 

TTAS Lock 

Backoff lock ti
m

e 

threads 
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Backoff: Other Issues 

•  Good 
–  Easy to implement 
–  Beats TTAS lock 

•  Bad 
– Must choose parameters carefully 
– Not portable across platforms 


