
Spin Locks and Contention

Companion slides for Chapter 7
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

Art of Multiprocessor Programming 2

Focus so far: Correctness
and Progress

•  Models
–  Accurate (we never lied to you)

–  But idealized (so we forgot to mention a few things)

•  Protocols
–  Elegant
–  Important
–  But naïve

Art of Multiprocessor Programming 3

New Focus: Performance

•  Models
– More complicated (not the same as complex!)

–  Still focus on principles (not soon obsolete)

•  Protocols
–  Elegant (in their fashion)
–  Important (why else would we pay attention)
–  And realistic (your mileage may vary)

Art of Multiprocessor Programming 4

Kinds of Architectures
•  SISD (Uniprocessor)

–  Single instruction stream
–  Single data stream

•  SIMD (Vector)
–  Single instruction
–  Multiple data

•  MIMD (Multiprocessors)
–  Multiple instruction
–  Multiple data.

Art of Multiprocessor Programming 5

Kinds of Architectures
•  SISD (Uniprocessor)

–  Single instruction stream
–  Single data stream

•  SIMD (Vector)
–  Single instruction
–  Multiple data

•  MIMD (Multiprocessors)
–  Multiple instruction
–  Multiple data.

Our space

(1)

Art of Multiprocessor Programming 6

MIMD Architectures

•  Memory Contention
•  Communication Contention
•  Communication Latency

Shared Bus

memory

Distributed

Art of Multiprocessor Programming 7

Today: Revisit Mutual Exclusion

•  Think of performance, not just
correctness and progress

•  Begin to understand how performance
depends on our software properly
utilizing the multiprocessor machine’s
hardware

•  And get to know a collection of
locking algorithms…

(1)

Art of Multiprocessor Programming 8

What Should you do if you
can’t get a lock?

•  Keep trying
–  “spin” or “busy-wait”
–  Good if delays are short

•  Give up the processor
–  Good if delays are long
–  Always good on uniprocessor

(1)

Art of Multiprocessor Programming 9

What Should you do if you
can’t get a lock?

•  Keep trying
–  “spin” or “busy-wait”
–  Good if delays are short

•  Give up the processor
–  Good if delays are long
–  Always good on uniprocessor

our focus

Art of Multiprocessor Programming 10

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

. . .

Art of Multiprocessor Programming 11

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

. . .

…lock introduces
sequential bottleneck

Art of Multiprocessor Programming 12

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

. . .

…lock suffers from
contention

Art of Multiprocessor Programming 13

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

. . .
Notice: these are distinct
phenomena

…lock suffers from
contention

Art of Multiprocessor Programming 14

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

. . .

…lock suffers from
contention

Seq Bottleneck à no
parallelism

Art of Multiprocessor Programming 15

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

. . .
Contention à ???

…lock suffers from
contention

Art of Multiprocessor Programming 16

Review: Test-and-Set

•  Boolean value
•  Test-and-set (TAS)

–  Swap true with current value
–  Return value tells if prior value was true

or false
•  Can reset just by writing false
•  TAS aka “getAndSet”

Art of Multiprocessor Programming 17

Review: Test-and-Set
public class AtomicBoolean {
 boolean value;

 public synchronized boolean
getAndSet(boolean newValue) {

 boolean prior = value;
 value = newValue;
 return prior;
 }
}

(5)

Art of Multiprocessor Programming 18

Review: Test-and-Set
public class AtomicBoolean {
 boolean value;

 public synchronized boolean
getAndSet(boolean newValue) {

 boolean prior = value;
 value = newValue;
 return prior;
 }
}

Package
java.util.concurrent.atomic

Art of Multiprocessor Programming 19

Review: Test-and-Set
public class AtomicBoolean {
 boolean value;

 public synchronized boolean
getAndSet(boolean newValue) {

 boolean prior = value;
 value = newValue;
 return prior;
 }
}

Swap old and new
values

Art of Multiprocessor Programming 20

Review: Test-and-Set
AtomicBoolean lock
 = new AtomicBoolean(false)
…
boolean prior = lock.getAndSet(true)

Art of Multiprocessor Programming 21

Review: Test-and-Set
AtomicBoolean lock
 = new AtomicBoolean(false)
…
boolean prior = lock.getAndSet(true)

(5)

Swapping in true is called
“test-and-set” or TAS

Art of Multiprocessor Programming 22

Test-and-Set Locks

•  Locking
–  Lock is free: value is false
–  Lock is taken: value is true

•  Acquire lock by calling TAS
–  If result is false, you win
–  If result is true, you lose

•  Release lock by writing false

Art of Multiprocessor Programming 23

Test-and-set Lock
class TASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (state.getAndSet(true)) {}
 }

 void unlock() {
 state.set(false);
 }}

Art of Multiprocessor Programming 24

Test-and-set Lock
class TASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (state.getAndSet(true)) {}
 }

 void unlock() {
 state.set(false);
 }}

Lock state is AtomicBoolean

Art of Multiprocessor Programming 25

Test-and-set Lock
class TASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (state.getAndSet(true)) {}
 }

 void unlock() {
 state.set(false);
 }}

Keep trying until lock acquired

Art of Multiprocessor Programming 26

Test-and-set Lock
class TASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (state.getAndSet(true)) {}
 }

 void unlock() {
 state.set(false);
 }}

Release lock by resetting
state to false

Art of Multiprocessor Programming 27

Space Complexity

•  TAS spin-lock has small “footprint”
•  N thread spin-lock uses O(1) space
•  As opposed to O(n) Peterson/Bakery
•  How did we overcome the Ω(n) lower

bound?
•  We used a RMW operation…

Art of Multiprocessor Programming 28

Performance

•  Experiment
–  n threads
–  Increment shared counter 1 million times

•  How long should it take?
•  How long does it take?

Art of Multiprocessor Programming 29

Graph

ideal ti
m

e

threads

no speedup
because of
sequential
bottleneck

Art of Multiprocessor Programming 30

Mystery #1

ti
m

e

threads

TAS lock

Ideal

(1)

What is
going
on?

Art of Multiprocessor Programming 31

Test-and-Test-and-Set Locks

•  Lurking stage
– Wait until lock “looks” free
–  Spin while read returns true (lock taken)

•  Pouncing state
–  As soon as lock “looks” available
–  Read returns false (lock free)
–  Call TAS to acquire lock
–  If TAS loses, back to lurking

Art of Multiprocessor Programming 32

Test-and-test-and-set Lock
class TTASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true))
 return;
 }
}

Art of Multiprocessor Programming 33

Test-and-test-and-set Lock
class TTASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true))
 return;
 }
} Wait until lock looks free

Art of Multiprocessor Programming 34

Test-and-test-and-set Lock
class TTASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true))
 return;
 }
}

Then try to
acquire it

Art of Multiprocessor Programming 35

Mystery #2
TAS lock

TTAS lock

Ideal

ti
m

e

threads

Art of Multiprocessor Programming 36

Mystery

•  Both
–  TAS and TTAS
–  Do the same thing (in our model)

•  Except that
–  TTAS performs much better than TAS
– Neither approaches ideal

Art of Multiprocessor Programming 37

Opinion

•  Our memory abstraction is broken
•  TAS & TTAS methods

–  Are provably the same (in our model)

–  Except they aren’t (in field tests)

•  Need a more detailed model …

Art of Multiprocessor Programming 38

Bus-Based Architectures

Bus

cache

memory

cache cache

Art of Multiprocessor Programming 39

Bus-Based Architectures

Bus

cache

memory

cache cache

Random access memory
(10s of cycles)

Art of Multiprocessor Programming 40

Bus-Based Architectures

cache

memory

cache cache

Shared Bus
• Broadcast medium
• One broadcaster at a time
• Processors and memory all
“snoop”

Bus

Art of Multiprocessor Programming 41

Bus-Based Architectures

Bus

cache

memory

cache cache

Per-Processor Caches
• Small
• Fast: 1 or 2 cycles
• Address & state information

Art of Multiprocessor Programming 42

Jargon Watch

•  Cache hit
–  “I found what I wanted in my cache”
–  Good Thing™

Art of Multiprocessor Programming 43

Jargon Watch

•  Cache hit
–  “I found what I wanted in my cache”
–  Good Thing™

•  Cache miss
–  “I had to shlep all the way to memory

for that data”
–  Bad Thing™

Art of Multiprocessor Programming 44

Cave Canem

•  This model is still a simplification
–  But not in any essential way
–  Illustrates basic principles

•  Will discuss complexities later

Art of Multiprocessor Programming 45

Bus

Processor Issues Load Request

cache

memory

cache cache

data

Art of Multiprocessor Programming 46

Bus

Processor Issues Load Request

Bus

cache

memory

cache cache

data

Gimme
data

Art of Multiprocessor Programming 47

cache

Bus

Memory Responds

Bus

memory

cache cache

data

Got your
data right

here data

Art of Multiprocessor Programming 48

Bus

Processor Issues Load Request

memory

cache cache data

data

Gimme
data

Art of Multiprocessor Programming 49

Bus

Processor Issues Load Request

Bus

memory

cache cache data

data

Gimme
data

Art of Multiprocessor Programming 50

Bus

Processor Issues Load Request

Bus

memory

cache cache data

data

I got
data

Art of Multiprocessor Programming 51

Bus

Other Processor Responds

memory

cache cache

data

I got
data

data data
Bus

Art of Multiprocessor Programming 52

Bus

Other Processor Responds

memory

cache cache

data

data data
Bus

Art of Multiprocessor Programming 53

Modify Cached Data

Bus

data

memory

cache data

data

(1)

Art of Multiprocessor Programming 54

Modify Cached Data

Bus

data

memory

cache data

data

data

(1)

Art of Multiprocessor Programming 55

memory

Bus

data

Modify Cached Data

cache data

data

Art of Multiprocessor Programming 56

memory

Bus

data

Modify Cached Data

cache

What’s up with the
other copies?

data

data

Art of Multiprocessor Programming 57

Cache Coherence

•  We have lots of copies of data
– Original copy in memory
–  Cached copies at processors

•  Some processor modifies its own copy
– What do we do with the others?
– How to avoid confusion?

Art of Multiprocessor Programming 58

Write-Back Caches

•  Accumulate changes in cache
•  Write back when needed

– Need the cache for something else
–  Another processor wants it

•  On first modification
–  Invalidate other entries
–  Requires non-trivial protocol …

Art of Multiprocessor Programming 59

Write-Back Caches

•  Cache entry has three states
–  Invalid: contains raw seething bits
–  Valid: I can read but I can’t write
–  Dirty: Data has been modified

•  Intercept other load requests
• Write back to memory before using cache

Art of Multiprocessor Programming 60

Bus

Invalidate

memory

cache data data

data

Art of Multiprocessor Programming 61

Bus

Invalidate

Bus

memory

cache data data

data

Mine, all
mine!

Art of Multiprocessor Programming 62

Bus

Invalidate

Bus

memory

cache data data

data

cache

Uh,oh

Art of Multiprocessor Programming 63

cache
Bus

Invalidate

memory

cache data

data

Other caches lose read permission

Art of Multiprocessor Programming 64

cache
Bus

Invalidate

memory

cache data

data

Other caches lose read permission

This cache acquires write permission

Art of Multiprocessor Programming 65

cache
Bus

Invalidate

memory

cache data

data

Memory provides data only if not
present in any cache, so no need to

change it now (expensive)

(2)

Art of Multiprocessor Programming 66

cache
Bus

Another Processor Asks for
Data

memory

cache data

data

(2)

Bus

Art of Multiprocessor Programming 67

cache data
Bus

Owner Responds

memory

cache data

data

(2)

Bus

Here it is!

Art of Multiprocessor Programming 68

Bus

End of the Day …

memory

cache data

data

(1)

Reading OK, no writing

data data

Art of Multiprocessor Programming 69

Mutual Exclusion

•  What do we want to optimize?
–  Bus bandwidth used by spinning threads
–  Release/Acquire latency
–  Acquire latency for idle lock

Art of Multiprocessor Programming 70

Simple TASLock

•  TAS invalidates cache lines
•  Spinners

– Miss in cache
–  Go to bus

•  Thread wants to release lock
–  delayed behind spinners

Art of Multiprocessor Programming 71

Test-and-test-and-set

•  Wait until lock “looks” free
–  Spin on local cache
– No bus use while lock busy

•  Problem: when lock is released
–  Invalidation storm …

Art of Multiprocessor Programming 72

Local Spinning while Lock is
Busy

Bus

memory

busy busy busy

busy

Art of Multiprocessor Programming 73

Bus

On Release

memory

free invalid invalid

free

Art of Multiprocessor Programming 74

On Release

Bus

memory

free invalid invalid

free

miss miss

Everyone misses,
rereads

(1)

Art of Multiprocessor Programming 75

On Release

Bus

memory

free invalid invalid

free

TAS(…) TAS(…)

Everyone tries TAS

(1)

Art of Multiprocessor Programming 76

Problems

•  Everyone misses
–  Reads satisfied sequentially

•  Everyone does TAS
–  Invalidates others’ caches

•  Eventually quiesces after lock
acquired
– How long does this take?

Art of Multiprocessor Programming 77

Mystery Explained
TAS lock

TTAS lock

Ideal

ti
m

e

threads
Better than
TAS but still
not as good as

ideal

Art of Multiprocessor Programming 78

Solution: Introduce Delay

spin lock time
d r1d r2d

•  If the lock looks free
•  But I fail to get it

•  There must be lots of contention
•  Better to back off than to collide again

Art of Multiprocessor Programming 79

Dynamic Example:
Exponential Backoff

time
d 2d 4d spin lock

 If I fail to get lock
–  wait random duration before retry
–  Each subsequent failure doubles
expected wait

Art of Multiprocessor Programming 80

Exponential Backoff Lock
public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!lock.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}}

Art of Multiprocessor Programming 81

Exponential Backoff Lock
public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!lock.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}} Fix minimum delay

Art of Multiprocessor Programming 82

Exponential Backoff Lock
public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!lock.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}} Wait until lock looks free

Art of Multiprocessor Programming 83

Exponential Backoff Lock
public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!lock.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}} If we win, return

Art of Multiprocessor Programming 84

Exponential Backoff Lock
public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!lock.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}}

Back off for random duration

Art of Multiprocessor Programming 85

Exponential Backoff Lock
public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!lock.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}}

Double max delay, within reason

Art of Multiprocessor Programming 86

Spin-Waiting Overhead

TTAS Lock

Backoff lock ti
m

e

threads

Art of Multiprocessor Programming 87

Backoff: Other Issues

•  Good
–  Easy to implement
–  Beats TTAS lock

•  Bad
– Must choose parameters carefully
– Not portable across platforms

