Linear systems of equations

Michael Quinn

Parallel Programming with MPI and OpenMP

material do autor

Outline

- Terminology
- Back substitution
- Gaussian elimination

Problem

- System of linear equations
 - Solve Ax = b for x

- Used to solve upper triangular system
 Tx = *b* for *x*
- Methodology: one element of x can be immediately computed
- Use this value to simplify system, revealing another element that can be immediately computed
- Repeat

 $1x_0 + 1x_1 - 1x_2 + 4x_3 = 8$

$$-2x_1 - 3x_2 + 1x_3 = 5$$

$$2x_2 - 3x_3 = 0$$

$$2x_3 =$$

4

 $1x_0$ $+1x_1 -1x_2 +4x_3$ 8 = $-2x_1$ $-3x_2$ $+1x_3$ 5 = $2x_2 - 3x_3$ 0 = $x_3 = 2$ $2x_3$ 4 =

 $1x_0 \qquad +1x_1 \qquad -1x_2 \qquad \qquad = \qquad 0$

$$-2x_1 \qquad -3x_2 \qquad \qquad = \qquad 3$$

$$2x_2 =$$

=

 $2x_3$

6

4

 $1x_0 \qquad +1x_1 \qquad -1x_2 \qquad \qquad = \qquad 0$

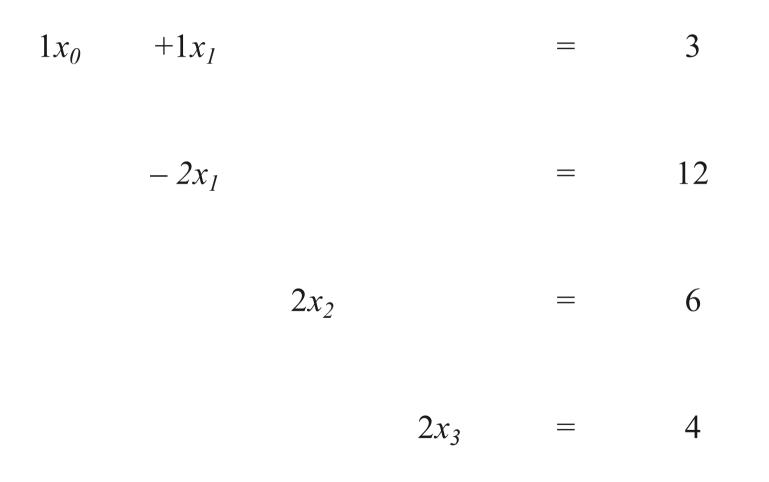
$$-2x_1 \qquad -3x_2 \qquad \qquad = \qquad 3$$

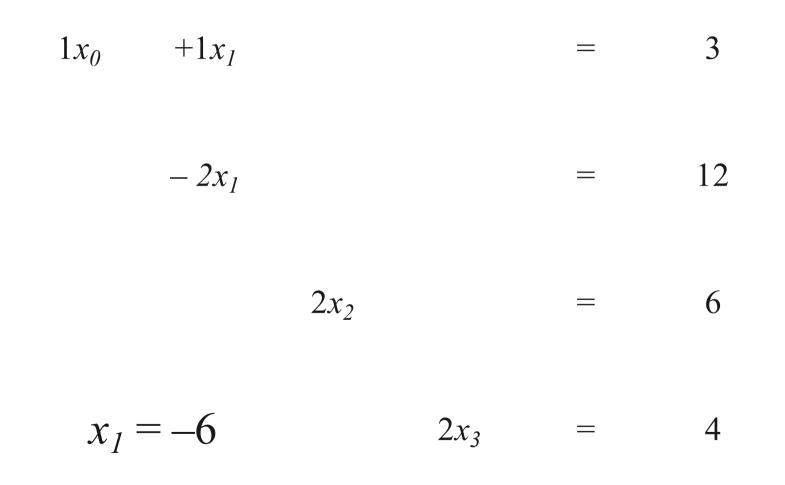
6

=

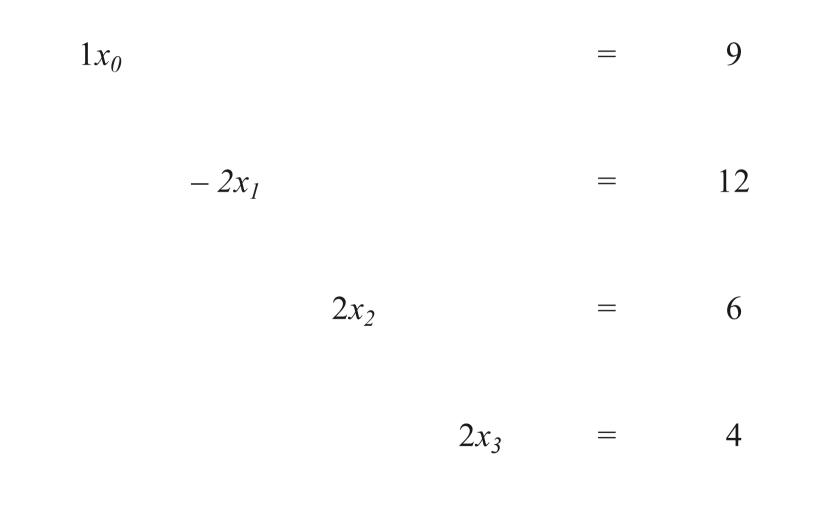
 $x_2 = 3$ $2x_3 = 4$

 $2x_2$

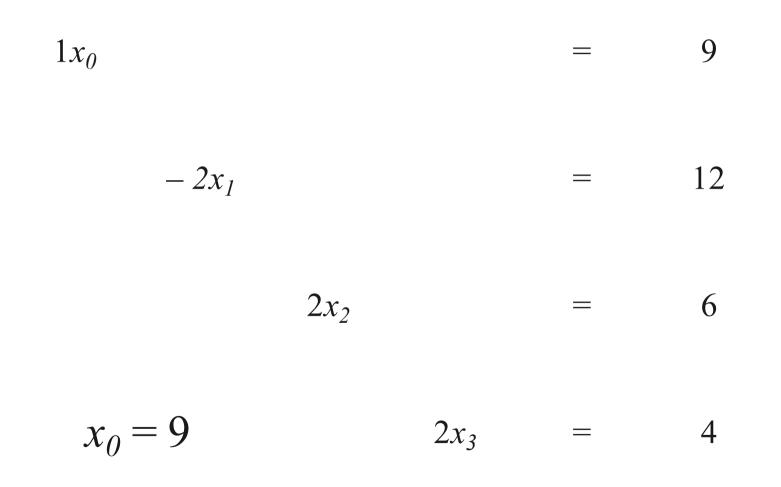




Back Substitution



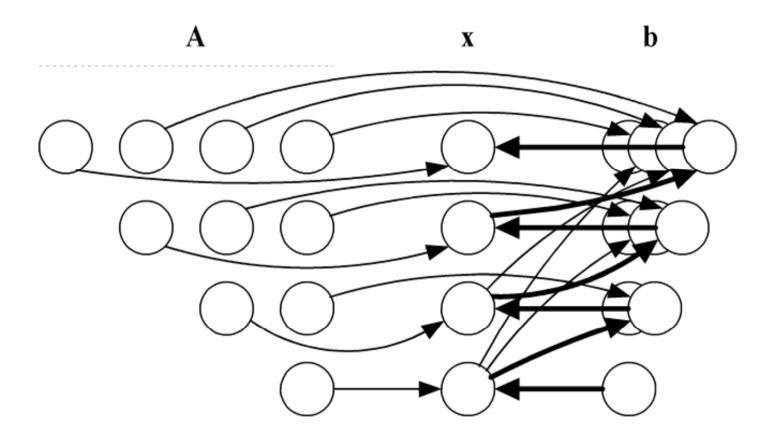
Back Substitution



Pseudocode

for
$$i \leftarrow n - 1$$
 down to 1 do
 $x[i] \leftarrow b[i] / a[i, i]$
for $j \leftarrow 0$ to $i - 1$ do
 $b[j] \leftarrow b[j] - x[i] \times a[j, i]$
endfor
endfor
Time complexity: $\Theta(n^2)$

Data Dependence Diagram

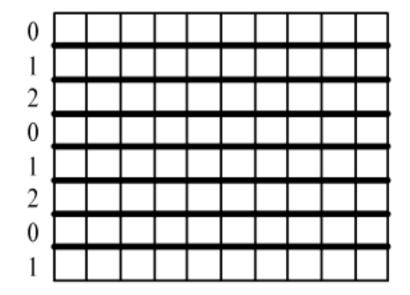


We cannot execute the outer loop in parallel. We can execute the inner loop in parallel.

Row-oriented Algorithm

- Associate primitive task with each row of A and corresponding elements of x and b
- During iteration *i* task associated with row *j* computes new value of b_j
- Task *i* must compute *x_i* and broadcast its value
- Agglomerate using rowwise interleaved striped decomposition

Interleaved Decomposition



Rowwise interleaved striped decomposition

Complexity Analysis

- Each process performs about n / (2p) iterations of loop j in all
- A total of *n* -1 iterations in all
- Computational complexity: $\Theta(n^2/p)$
- One broadcast per iteration
- Communication complexity: $\Theta(n \log p)$

- Used to solve Ax = b when A is dense
- Reduces Ax = b to upper triangular system Tx = c
- Back substitution can then solve Tx = c for x

$$4x_0 +6x_1 +2x_2 -2x_3 = 8$$

$$2x_0 +5x_2 -2x_3 = 4$$

$$-4x_0 -3x_1 -5x_2 +4x_3 = 1$$

$$8x_0 +18x_1 -2x_2 +3x_3 = 40$$

$$4x_0 +6x_1 +2x_2 -2x_3 = 8$$

$$-3x_1 +4x_2 -1x_3 = 0$$

$$+3x_1 -3x_2 +2x_3 = 9$$

$$+6x_1 -6x_2 +7x_3 = 24$$

$$4x_0 +6x_1 +2x_2 -2x_3 = 8$$

$$-3x_1 +4x_2 -1x_3 = 0$$

$$1x_2 +1x_3 = 9$$

$$2x_2 +5x_3 = 24$$

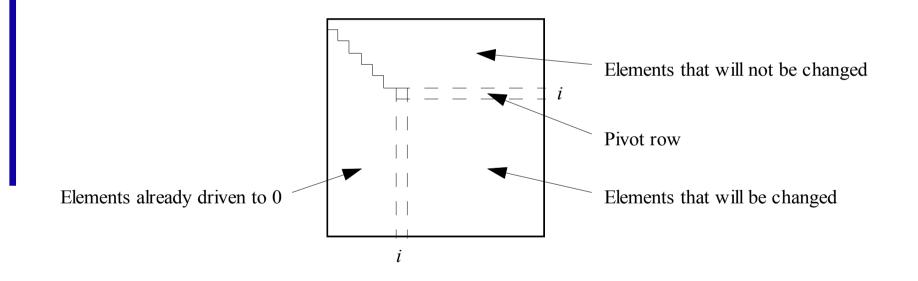
$$4x_0 +6x_1 +2x_2 -2x_3 = 8$$

$$-3x_1 +4x_2 -1x_3 = 0$$

$$1x_2 +1x_3 = 9$$

$$3x_3 = 6$$

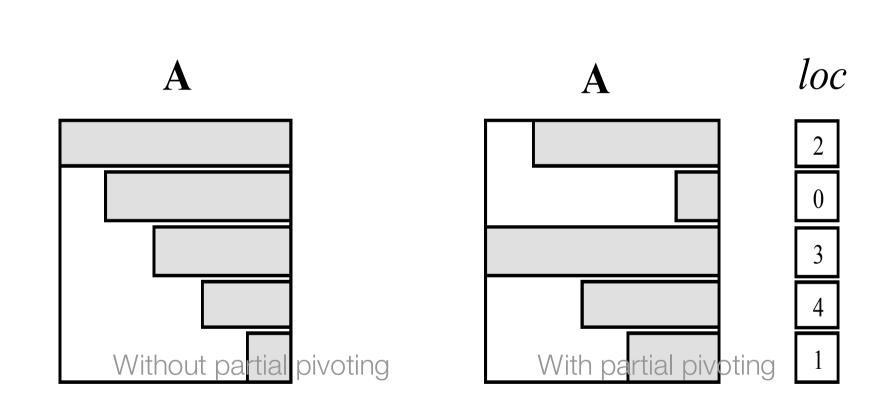
Iteration of Gaussian Elimination



Numerical Stability Issues

- If pivot element close to zero, significant roundoff errors can result
- Gaussian elimination with partial pivoting eliminates this problem
- In step *i* we search rows *i* through *n*-1 for the row whose column *i* element has the largest absolute value
- Swap (pivot) this row with row *i*

Implementing Partial Pivoting



 loc[i] indica onde encontrar a linha i da matriz triangular

Row-oriented Parallel Algorithm

- Associate primitive task with each row of *A* and corresponding elements of *x* and *b*
- A kind of reduction needed to find the identity of the pivot row
- Tournament: want to determine identity of row with largest value, rather than largest value itself
- Could be done with two all-reductions
- MPI provides a simpler, faster mechanism

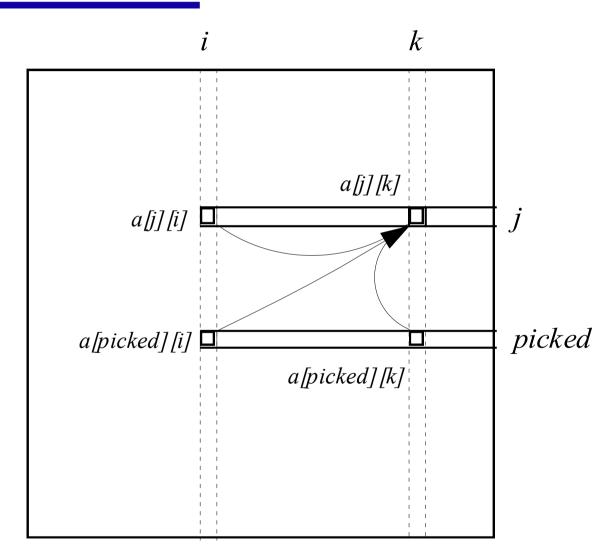
MPI_MAXLOC, MPI_MINLOC

- MPI provides reduction operators MPI_MAXLOC, MPI_MINLOC
- Provide datatype representing a (value, index) pair

Example Use of MPI_MAXLOC

```
struct {
   double value;
   int index;
} local, global;
local.value = fabs(a[j][i]);
local.index = j;
MPI Allreduce (&local, &global, 1,
   MPI DOUBLE INT, MPI MAXLOC,
   MPI COMM WORLD);
```

Second Communication per Iteration



Communication Complexity

- Complexity of tournament: $\Theta(\log p)$
- Complexity of broadcasting pivot row:
 Θ(n log p)
- A total of *n* 1 iterations
- Overall communication complexity:
 Θ(n² log p)

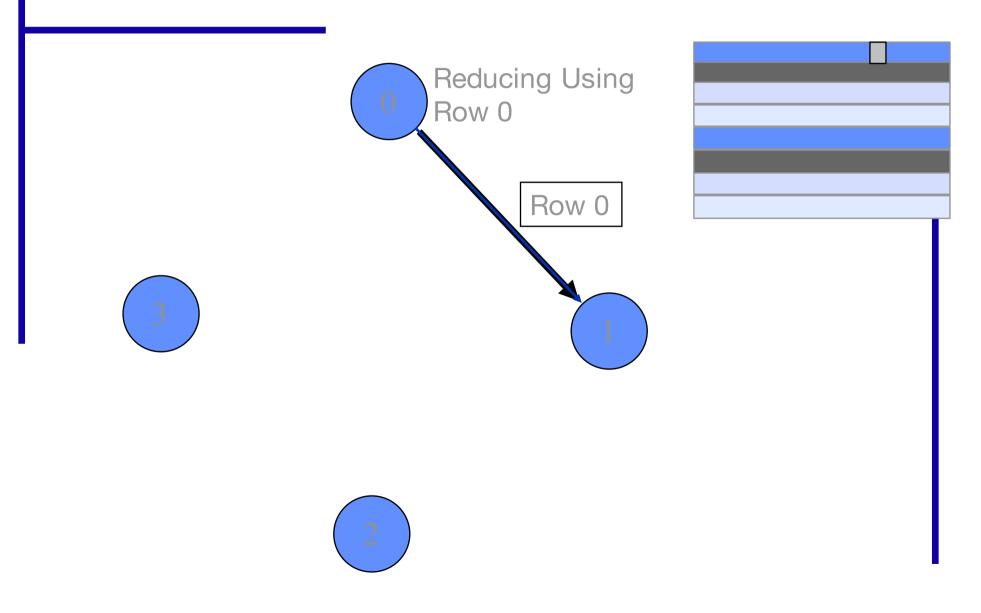
Problems

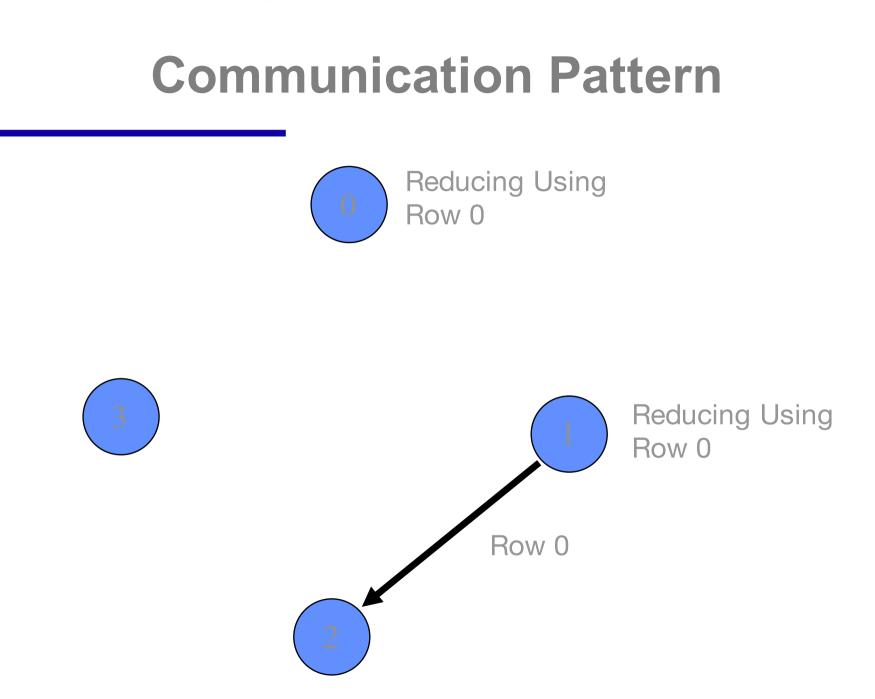
- Algorithm breaks parallel execution into computation and communication phases
- Processes not performing computations during the broadcast steps
- Time spent doing broadcasts is large enough to ensure poor scalability

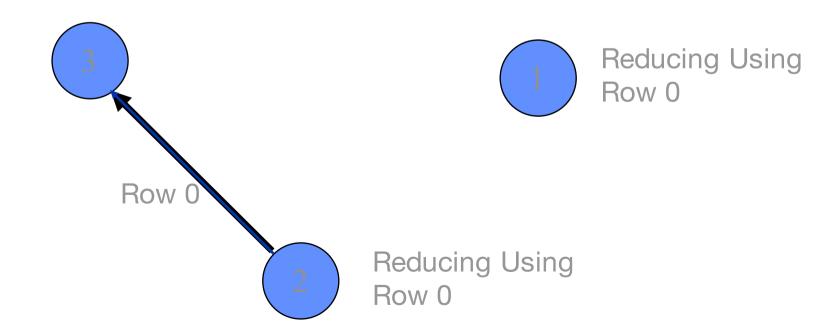
Pipelined, Row-Oriented Algorithm

- Want to overlap communication time with computation time
- We could do this if we knew in advance the row used to reduce all the other rows.
- Let's pivot columns instead of rows!
- In iteration *i* we can use row *i* to reduce the other rows.

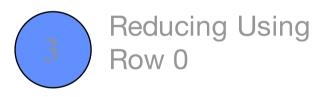
Communication Pattern



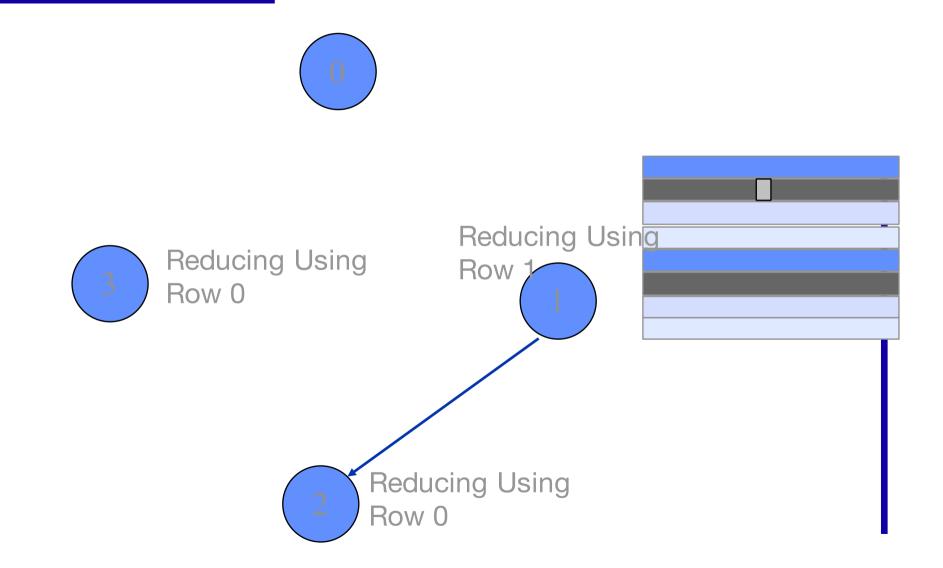


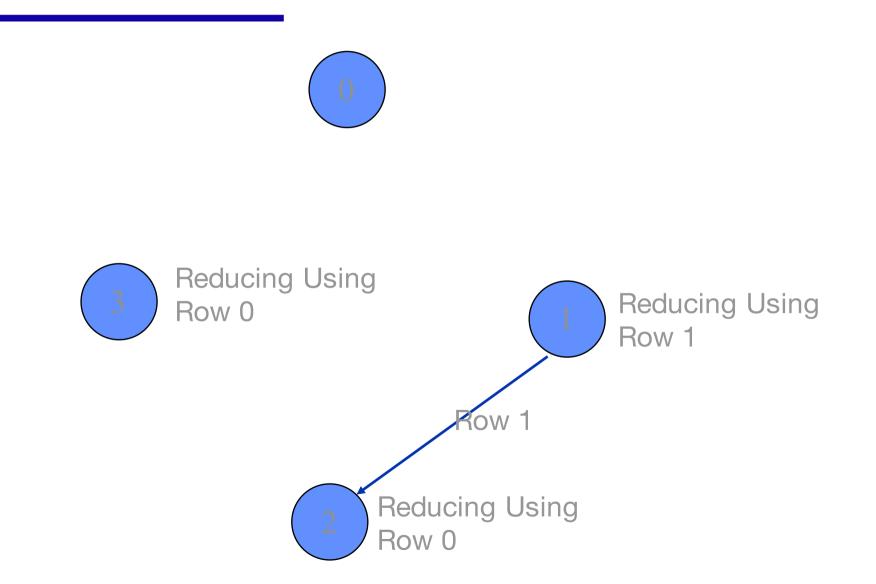


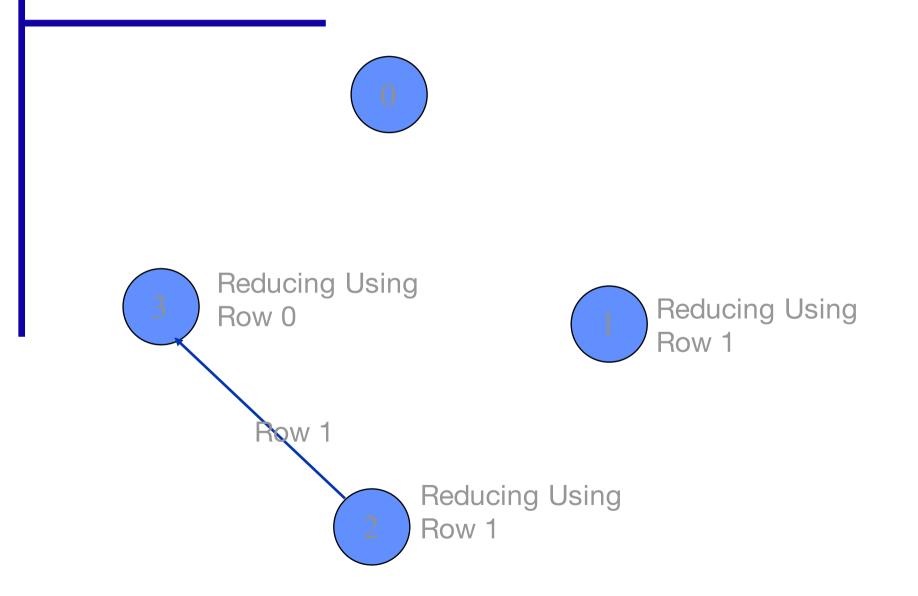
Communication Pattern



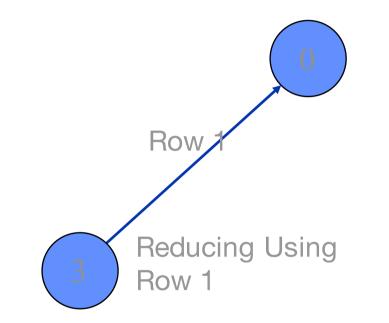
Communication Pattern

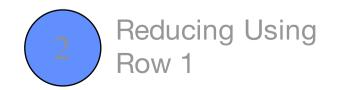






Communication Pattern





Analysis (1/2)

- Total computation time: $\Theta(n^3/p)$
- Total message transmission time: $\Theta(n^2)$
- When *n* large enough, message transmission time completely overlapped by computation time
- Message start-up not overlapped: $\Theta(n)$
- Parallel overhead: $\Theta(np)$

Sparse Systems

- Gaussian elimination not well-suited for sparse systems
- Coefficient matrix gradually fills with nonzero elements
- Result
 - Increases storage requirements
 - Increases total operation count

Iterative Methods

- Iterative method: algorithm that generates a series of approximations to solution's value
- Require less storage than direct methods
- Since they avoid computations on zero elements, they can save a lot of computations

Summary (1/2)

- Solving systems of linear equations
 - Direct methods
 - Iterative methods
- Parallel designs for
 - Back substitution
 - Gaussian elimination
 - Conjugate gradient method

Summary (2/2)

- Superiority of one algorithm over another depends on size of problem, number of processors, characteristics of parallel computer
- Overlapping communications with computations can be key to scalability