Linear systems of equations

Michael Quinn

Parallel Programming with MPI and OpenMP

Outline

- Terminology
- Back substitution
- Gaussian elimination

Problem

- System of linear equations
- Solve $A x=b$ for x

Back Substitution

- Used to solve upper triangular system $T x=b$ for x
- Methodology: one element of x can be immediately computed
- Use this value to simplify system, revealing another element that can be immediately computed
- Repeat

Back Substitution

$$
\begin{aligned}
& 1 x_{0}+1 x_{1}-1 x_{2}+4 x_{3} \quad=\quad 8 \\
& -2 x_{1}-3 x_{2} \quad+1 x_{3} \quad= \\
& 2 x_{2}-3 x_{3} \quad=\quad 0 \\
& 2 x_{3} \quad=\quad 4
\end{aligned}
$$

Back Substitution

$$
\begin{array}{rcccc}
1 x_{0}+1 x_{1} & -1 x_{2} & +4 x_{3} & = & 8 \\
-2 x_{1} & -3 x_{2} & +1 x_{3} & = & 5 \\
& 2 x_{2} & -3 x_{3} & = & 0 \\
x_{3}=2 & & 2 x_{3} & = & 4
\end{array}
$$

Back Substitution

$$
\begin{array}{llll}
1 x_{0}+1 x_{1} & -1 x_{2} & & 0 \\
-2 x_{1} & -3 x_{2} & & 0 \\
2 x_{2} & & 3 \\
& & = & 6 \\
& 2 x_{3} & = & 4
\end{array}
$$

Back Substitution

$$
\begin{array}{cccc}
1 x_{0}+1 x_{1} & -1 x_{2} & & = \\
& & = & 0 \\
-2 x_{1} & -3 x_{2} & & 3 \\
& 2 x_{2} & & 6 \\
& & 2 x_{3} & =
\end{array}
$$

Back Substitution

$$
\begin{array}{rlrl}
1 x_{0}+1 x_{1} & & = & 3 \\
-2 x_{1} & & & \\
& & & \\
2 x_{2} & & 6 \\
& & & \\
& 2 x_{3} & = & 4
\end{array}
$$

Back Substitution

$$
\begin{array}{llll}
1 x_{0}+1 x_{1} & & = & 3 \\
-2 x_{1} & & = & 12 \\
& 2 x_{2} & & 6 \\
& & & \\
& & & \\
& & & \\
x_{1}=-6 & & & \\
& & & \\
& & &
\end{array}
$$

Back Substitution

$$
\begin{array}{lll}
1 x_{0} & = & 9 \\
-2 x_{1} & & \\
& & \\
2 x_{2} & & 12 \\
& & \\
& & \\
& 2 x_{3} & =
\end{array}
$$

Back Substitution

$$
\begin{array}{llll}
1 x_{0} & & = & 9 \\
& & & \\
& & & \\
& 2 x_{1} & & \\
& & & 6 \\
x_{0}=9 & 2 x_{3} & = & 4
\end{array}
$$

Pseudocode

for $i \leftarrow n-1$ down to 1 do

 $x[i] \leftarrow b[i] / a[i, i]$ for $j \leftarrow 0$ to $i-1$ do$$
b[j] \leftarrow b[j]-x[i] \times a[j, i]
$$ endfor

endfor

$$
\text { Time complexity: } \Theta\left(n^{2}\right)
$$

Data Dependence Diagram

We cannot execute the outer loop in parallel. We can execute the inner loop in parallel.

Row-oriented Algorithm

- Associate primitive task with each row of A and corresponding elements of x and b
- During iteration i task associated with row j computes new value of b_{j}
- Task i must compute x_{i} and broadcast its value
- Agglomerate using rowwise interleaved striped decomposition

Interleaved Decomposition

Complexity Analysis

- Each process performs about $n /(2 p)$ iterations of loop j in all
- A total of $n-1$ iterations in all
- Computational complexity: $\Theta\left(n^{2} / p\right)$
- One broadcast per iteration
- Communication complexity: $\Theta(n \log p)$

Gaussian Elimination

- Used to solve $A x=b$ when A is dense
- Reduces $A x=b$ to upper triangular system $T x=c$
- Back substitution can then solve $T x=c$ for x

Gaussian Elimination

$$
\begin{array}{rllll}
4 x_{0}+6 x_{1}+2 x_{2} & -2 x_{3} & = & 8 \\
2 x_{0} & +5 x_{2}-2 x_{3} & = & 4 \\
-4 x_{0}-3 x_{1}-5 x_{2}+4 x_{3} & = & 1 \\
8 x_{0}+18 x_{1}-2 x_{2}+3 x_{3} & = & 40
\end{array}
$$

Gaussian Elimination

$$
\begin{array}{rllll}
4 x_{0}+6 x_{1} & +2 x_{2}-2 x_{3} & = & 8 \\
-3 x_{1}+4 x_{2}-1 x_{3} & = & 0 \\
+3 x_{1}-3 x_{2}+2 x_{3} & = & 9 \\
+6 x_{1} & -6 x_{2}+7 x_{3} & = & 24
\end{array}
$$

Gaussian Elimination

$$
\begin{array}{rllll}
4 x_{0}+6 x_{1}+2 x_{2}-2 x_{3} & = & 8 \\
-3 x_{1}+4 x_{2}-1 x_{3} & = & 0 \\
1 x_{2}+1 x_{3} & = & 9 \\
2 x_{2}+5 x_{3} & = & 24
\end{array}
$$

Gaussian Elimination

$$
\begin{array}{rllll}
4 x_{0}+6 x_{1}+2 x_{2}-2 x_{3} & = & 8 \\
-3 x_{1}+4 x_{2}-1 x_{3} & = & 0 \\
1 x_{2}+1 x_{3} & = & 9 \\
3 x_{3} & = & 6
\end{array}
$$

Iteration of Gaussian Elimination

Elements already driven to 0

Elements that will not be changed

Pivot row

Elements that will be changed

Numerical Stability Issues

- If pivot element close to zero, significant roundoff errors can result
- Gaussian elimination with partial pivoting eliminates this problem
- In step i we search rows i through $n-1$ for the row whose column i element has the largest absolute value
- Swap (pivot) this row with row i

Implementing Partial Pivoting

- loc[i] indica onde encontrar a linha i da matriz triangular

Row-oriented Parallel Algorithm

- Associate primitive task with each row of A and corresponding elements of x and b
- A kind of reduction needed to find the identity of the pivot row
- Tournament: want to determine identity of row with largest value, rather than largest value itself
- Could be done with two all-reductions
- MPI provides a simpler, faster mechanism

MPI_MAXLOC, MPI_MINLOC

- MPI provides reduction operators MPI_MAXLOC, MPI_MINLOC
- Provide datatype representing a (value, index) pair

Example Use of MPI_MAXLOC

```
struct {
        double value;
        int index;
} local, global;
•••
local.value = fabs(a[j][i]);
local.index = j;
```

MPI_Allreduce (\&local, \&global, 1, MPI_DOUBLE_INT, MPI_MAXLOC, MPI_COMM_WORLD);

Second Communication per Iteration

Communication Complexity

- Complexity of tournament: Θ ($\log p)$
- Complexity of broadcasting pivot row: $\Theta(n \log p)$
- A total of $n-1$ iterations
- Overall communication complexity: $\Theta\left(n^{2} \log p\right)$

Problems

- Algorithm breaks parallel execution into computation and communication phases
- Processes not performing computations during the broadcast steps
- Time spent doing broadcasts is large enough to ensure poor scalability

Pipelined, Row-Oriented Algorithm

- Want to overlap communication time with computation time
- We could do this if we knew in advance the row used to reduce all the other rows.
- Let's pivot columns instead of rows!
- In iteration i we can use row i to reduce the other rows.

Communication Pattern

Communication Pattern

Reducing Using
Row 0

Reducing Using
Row 0

Communication Pattern

Reducing Using
Row 0

Reducing Using
Row 0
Reducing Using
Row 0

Communication Pattern

Reducing Using

Row 0

Reducing Using
Row 0

Communication Pattern

Reducing Using

Row 0

Row 0

Reducing Using
Row 0

Communication Pattern

Reducing Using
Row 0

Communication Pattern

Reducing Using

Row 0

Row 0

Communication Pattern

Reducing Using

Communication Pattern

Reducing Using
Row 1

Analysis (1/2)

- Total computation time: $\Theta\left(n^{3} / p\right)$
- Total message transmission time: $\Theta\left(n^{2}\right)$
- When n large enough, message transmission time completely overlapped by computation time
- Message start-up not overlapped: $\Theta(n)$
- Parallel overhead: $\Theta(n p)$

Sparse Systems

- Gaussian elimination not well-suited for sparse systems
- Coefficient matrix gradually fills with nonzero elements
- Result
- Increases storage requirements
- Increases total operation count

Iterative Methods

- Iterative method: algorithm that generates a series of approximations to solution's value
- Require less storage than direct methods
- Since they avoid computations on zero elements, they can save a lot of computations

Summary (1/2)

- Solving systems of linear equations
- Direct methods
- Iterative methods
- Parallel designs for
- Back substitution
- Gaussian elimination
- Conjugate gradient method

Summary (2/2)

- Superiority of one algorithm over another depends on size of problem, number of processors, characteristics of parallel computer
- Overlapping communications with computations can be key to scalability

