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In this paper we present ALua, an event-driven communication mechanism for develop-
ing distributed parallel applications, based on the interpreted language Lua. We propose
a dual programming model for parallel applications, where ALua acts as a gluing element,
allowing precompiled program parts to run on different machines. We show, through ex-
amples, how three types of applications can benefit from the flexibility that derives from
this model. We then present a study of ALua’s performance, by comparing execution
times of two parallel applications written in ALua with their counterparts written in
PVM. keywords: interpreted languages, parallel programming, rapid prototyping.

1. Introduction

The use of prototyping as a technique for program development is becoming more
and more widespread. Interpreted languages are considered highly adequate for this
type of programming, due to the degree of flexibility and interactivity they offer [1,2].
Interpreted languages have also been gaining popularity as glue languages; in this context,
applications are split in two parts, a kernel and a configuration, usually written in two
different languages. The kernel implements the basic components of the system, and
is usually written in a compiled, statically typed language, such as C or C++. The
configuration part, usually written in an interpreted language, connects these components
to give the final shape to the application [3,2]. With this design, we can build flexible
applications, without compromising their performance.

The design of a programming language always involves a trade-off between performance
and flexibility. Interpreted languages, such as Lua, Perl, or Tcl, are usually highly flexible;
for instance, it is quite easy to modify an application without stopping it. Languages such
as C or Fortran, on the other hand, stick to performance. They have more strict type
systems, they need detailed information about memory use, and they are slower to compile
and link; on the other hand, they can be more than an order of magnitude faster than an
interpreted language. Using both kinds of languages in an application allows us to have
the best of both worlds, as we can choose what must be fast and what must be flexible.
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In parallel programming, the need to deal with issues such as heterogeneity and fault
tolerance, specially when dealing with distributed memory environments, has also led to
the development of multi-lingual programming models [4]. Many researchers have also
identified the need to separate concerns and requirements of the computation itself and
of cooperation and communication between computational components. Coordination
models [4,5] support this separation of concerns, often proposing distinct languages for
programming these two types of activities. However, because of the emphasis that is con-
ventionally placed on performance of parallel programs, interpreted languages have not
received much attention as potential candidates for coordinating languages. Moreover,
compiled languages can also provide static type checking on the bindings between com-
ponents [6]. This is adequate for the context of distributed-memory parallel machines, in
which information about the executing environment is generally available before program
execution.

However, parallel programmers are currently facing new issues related to harnessing the
computing power available through large-area networks. For instance, grid initiatives and
projects [7,8] seek to create a distributed computing infrastructure for highly demanding
scientific and engineering applications. Grids present a highly heterogeneous and dynamic
configuration, in contrast to conventional parallel machines. Resource availability on a
grid can suffer great variation over time and space. As discussed in [9], one important
technique for dealing with those variations is to use adaptive strategies, allowing the pro-
gram to react dynamically to changes in the environment. Besides, in general, programs
that can benefit from running on a computational grid are long-running applications. Of-
ten, it does not make sense to have to stop the application and begin processing all over
again just because the programmer launched the application with inadequate parameters
or inadequate monitoring procedures. It should be possible to gather data about the
execution and act upon the program while it is running [9].

In light of these requirements, the use of an interpreted language for coordinating
a parallel application gains new importance. One of the important characteristics of
an interpreted language is allowing for interactivity: With an interpreted coordination
language, the programmer may use a “coordination console” to monitor and control the
application. On the other hand, given the unstable and dynamic configuration of grid
environments, the performance of the coordination language, although important, is not
so critical as in conventional machines.

In this work, we present ALua, a system for programming parallel applications in
distributed-memory environments based on a dual programming-language model. ALua
uses the extension language Lua [10] to coordinate the interaction between components
written in C. Like other distributed environments, an application in ALua is composed by
a group of processes running in multiple hosts and communicating through a network. Lua
code handles all communication among processes (and therefore defines the architecture
of the application), while C functions handle the CPU-intensive tasks in each process.

Another important characteristic of an interpreted language is the provision of a mech-
anism for execution of chunks of code created dynamically. In ALua, messages are chunks
of code to be executed by the receiver. This provides a very simple, and yet very pow-
erful, communication mechanism. There is only one communication primitive, send, that
sends a chunk of code to another process. There is no equivalent to a receive primitive.



Instead, ALua uses an event-driven programming model, where the arrival of a message
is handled as an event. This communication mechanism is quite flexible: A programmer
can trivially use it for simple tasks, like invoking a remote function, but he can also use
it for much more complex tasks, like remotely changing the algorithm that a process is
running. In the context of long-running parallel applications, and with the availability
of an interactive console, this is a powerful possibility, and allows the programmer to
redefine dynamically the behavior of the application.

We first described ALua, in a simplified version, in [11], which presented implemen-
tations for several classical distributed algorithms (such as probe-echo, heart beat and
filtering) in order to evaluate the event-driven communication paradigm. In [12] we con-
centrated on a specific class of distributed algorithms, for termination detection. The
next step was to evaluate the performance and ease use of ALua in more real-sized appli-
cations [13].

In this paper, we discuss the use of ALua in distributed parallel applications. We show
the flexibility that can be gained with ALua by dynamically injecting new code into an
application. The examples show how this mechanism can be useful both for changing parts
of the application, for prototyping purposes, and for introducing monitoring facilities in
long-running applications. We also perform some experiments to evaluate the performance
penalty we incur by using an interpreted language. Since we are using an interpreted
language, a significant loss of performance was foreseen. However, by keeping the main
processing kernel in a compiled language, we obtained unexpectedly good results.

In the next section we describe the current implementation of ALua. Section 3 shows
some small example programs, and how to implement simple communication patterns
with ALua. Section 4 discusses more complex examples, and shows the flexibility achieved
with ALua. Then, in Section 5, we present two applications previously written in C and
PVM and compare execution times of the ALua versions and their compiled counterparts.
Finally, in the last two sections we discuss related work and draw some conclusions.

2. The ALua System

In ALua, a program is composed of processes called agents, running on one or more
physical machines. These processes communicate using an asynchronous send operation.
Each agent contains a Lua interpreter and an event loop, which manages network and
user-interface events. Figure 1 shows the structure of an agent. Each event contains a
piece of Lua code. The event loop continually receives events, and sends its contents (the
Lua code) to the Lua interpreter for immediate execution.

The user interface is a console, where the user can enter arbitrary Lua commands.
Each line the user types generates an event. Through simple commands the user can
inspect variables (print(var)), change variable values (var = exp), send messages to
other agents (send(receiver, msg)), or run a program (dofile("progname")).

Network events correspond to messages received from other processes. The send oper-
ation sends a piece of Lua code to be executed in another process. ALua has no explicit
operation for receiving a message. The receiver’s event loop will automatically execute
the received code. The result is an event-driven programming model, compatible with the
character of interpreted languages: not very secure, but highly flexible. As we will see, it
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Figure 1. The Structure of an Agent.

is very easy to implement several typical distributed tasks with this mechanism, such as
to call remote procedures or to inspect and modify remote variables.

An important characteristic of ALua is that it treats each message as an atomic chunk
of code. Because it adopts the event-driven paradigm, it handles each event to comple-
tion before starting the next one. This means that there is no internal concurrency in
an ALua agent. The resulting programming model is similar to the asynchronous model
described in [14], with events triggering atomic actions. In our experience this is not a
hindrance. As we discuss in the next section, the use of the event-driven paradigm, as of
any other programming paradigm, leads programmers to create specific program struc-
tures. Messages must typically be small, non-blocking chunks of code. If an application
requires larger actions, an agent can always resort to sending a message to itself, as a
means of breaking up its code in non-atomic parts, therefore allowing other messages to
be received in between. On the other hand, as pointed out in [15], the lack of concurrency
greatly simplifies many aspects of distributed programming, since there is no need for
synchronization inside one agent.

When the ALua program creates an agent on a new machine, the system spawns an
ALua daemon on that machine. Although conceptually ALua agents exchange messages
directly between them, the ALua daemons in fact act as intermediates in this exchange
(Figure 2), as in PVM [16]. When agent A, in host X, sends a message to agent B, in host
Y, this message goes first to the ALua daemon running in X, then to the ALua daemon in
host Y, and finally to agent B. Daemons communicate through a positive acknowledgment
protocol implemented over UDP. Agents and daemons exchange messages using the Unix-
Domain protocol.

Although ALua provides only one primitive communication function (send), the system
provides other functions, both to support the creation and termination of processes, and
to facilitate communication. Following is a list of the main functions used in this paper:

alua.spawn Spawns multiple agents. When all spawned agents are ready to receive
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Figure 2. ALua Communication Model.

messages, ALLua signals the callee by calling its alua.spawn_completed function.
alua.send Sends Lua code to an agent.
alua.mcast Sends Lua code to multiple agents.

alua.tostring Converts a Lua value into a string that represents this value in Lua, so
that the value can be inserted in a message to another process.

alua.exit Terminates an agent’s execution.

alua.exit_all Terminates execution of all spawned agents.

3. Programming Examples

In this section we present a set of examples to illustrate the basic functionality of ALua.
Our first example shows how to set the value of a variable in another agent:

n = 50
-- send variable ‘n’ to agent B
msg = format("n=Yd", n)



alua.send("B", msg)

The format function is similar to sprintf in C, but instead of using a given buffer
it creates and returns a new string (Lua has dynamic memory allocation and garbage
collection). The result of this call to format is the string "n=50"; the last line of our
example sends this string to agent B, that will eventually run this piece of code, setting
its own variable n to 50.

It is not difficult to send more complex data with our mechanism. All we need is a way
to serialize the data. ALua offers the tostring function to do that.

x = {1, 4, 9, 16} -- table

-- set the value of ‘x’ in variable ‘y’ of agent B
msg = format("y=ls", alua.tostring(x))
alua.send("B", msg)

In this example, first we create a table® with elements 1, 4, 9, and 16. The final value
of msg in this example is "y={1, 4, 9, 16}"; when B runs this code chunk, it creates a
table with the given elements and assigns it to y.

In the next example, an agent sends the definition of a function addtb to agent B; this
function returns the sum of the elements of a table.

-- "[[" and "]]" are string delimiters
msg = [[ function addtb(t)

local tot=0

for i=1, getn(t) do

tot = tot + tl[il]
end
return tot
end

1]

-- Sends the definition of function f to agent B.
alua.send("B", msg)

For the local agent, the whole function text is only a string. (Although we can also use
"..." and ’...’ for denoting literal strings in Lua, the format [[...]] allows strings
that span several lines.)

In Lua, functions are first-class values, and function names are regular global variables
that happen to contain a function. Actually, we could write the previous message as

msg = [[ addtb = function (t)

end

1]

6Tables in Lua are dynamic associative arrays; they are the basic data-structuring mechanism of the
language. In this example, the table acts as a regular array with numeric indices.




Therefore, in our example, B may or may not have a previously defined function addtb in
its environment. If the variable addtb is already defined in B when the message arrives,
the message will redefine it.

A very common programming technique in ALua is to include, in the message sent to
an agent, code that makes the agent send back a result. This creates the possibility of
RPC-like calls, except that the caller is not blocked while the answer is pending. In the
next example, we use this technique to determine the sum of the elements of a table y in
agent B. First, agent A runs the next chunk:

msg = [[ alua.send("A", "print(" .. addtb(y) .. ")") 1]

alua.send("B", msg)
Agent B then receives the message
alua.send("A", "print(" .. addtb(y) .. ")")

(The .. is the string concatenation operator in Lua.) Then, it evaluates the arguments
to the send function. Assuming that table y in agent B is {10, 20, 40}, the result of

"print(" .. addtb(y) .. ")"

will be the string "print(70)". This string is the message sent back to agent A, which
will then run it and print the number 70.

The next example illustrates another useful programming technique in ALua, borrowed
from other event-oriented architectures, which consists of structuring an agent as a state
machine. Let us suppose we want agent A to send a message to agents B and C, and to
terminate its own execution when it is sure that both B and C have received the message.
In a conventional message-passing system, we could do roughly this:

-— Agent A

msg_received = 0

msg=[[ alua.send("A", "msg_received=msg_received + 1") ]]
alua.mcast({"B", "C"}, msg)

-- empty loop to wait replies
while msg_received "= 2 do end

print("The End.")
alua.exit ()

However, in ALua this code would halt the application. Because ALua has no internal
concurrency, the code would block in the loop, and the agent would never handle the
incoming events. In an event-driven paradigm, such as in ALua, we could recast this
example as below:

-- Agent A
function First_Answer ()



Answer = Second_Answer
end

function Second_Answer ()
print("The End.")
alua.exit ()

end

Answer = First_Answer
msg=[[ alua.send("A","Answer()") 1]

alua.mcast({"B", "C"}, msg)

In this example, the variable Answer represents the state of agent A; it starts waiting for
the first answer. After agent A sends the message to agents B and C, it waits until an
event arrives. Agents B and C will both receive the message

alua.send("A","Answer ()")

When the first message arrives at A, from either B or C, it triggers function First_Answer,
so that A goes to a new state, waiting for the second answer. When the second message
arrives, it triggers Second_Answer, which terminates A.

4. Flexibility

This section discusses the flexibility that we can gain from using an interpreted and
event-driven communication model. In contrast with the previous examples, which in-
tended to illustrate how to program common communication tasks in ALua, the designs
described in this section are typically hard to replicate in conventional programming sys-
tems.

4.1. Self Replicating Message

The first example deals with broadcasting an action in a logical pipeline configuration,
in which each node does not have knowledge about the entire configuration.

We assume that a variable nexthost, at each agent, contains the name of the next
agent in the pipeline. The action we want to broadcast is

alua.send("A", "print("..n..")")

which will cause each agent to send the value of its own variable n back to A asking
A to print it. When the system starts, each agent knows nothing about the need for
transmitting a message to the next agent, so the message itself must be responsible for
its retransmission.

Figure 3 shows a partial solution, where the message is retransmitted only once (from
B to C). Note that this message will never reach agent D.

Extending this same solution to deal with a larger number of retransmissions would
require an arbitrarily large chunk of code to be transmitted, and would only work if



msg = [[alua.send('A’, 'print(" .. n .. )" )]]
dostring( msg)
alua.send( nexthost, msg)
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Figure 3. Semi-self-replicating Message

the original sender knew the exact number of agents in the pipeline. Instead, we use a
self-replicating message, as shown in Figure 4.7

4.2. Tuple Multiplication

[18] discusses five parallel programming paradigms, each of them applicable to a set
of algorithms with some common structure. As an experiment with ALua, we imple-
mented a sequential and a parallel version for some of these paradigms. Each of these
implementations consists of two parts: an application-independent skeleton, and some
application-dependent functions. For each paradigm, we have two skeletons, one for a
sequential implementation and other for a parallel implementation.

This programming example illustrates how ALua can be useful for testing and proto-
typing. For each application, the same application-dependent functions are used both in
the sequential and in the parallel version of the algorithm. Therefore, the programmer
can match different skeletons to different applications dynamically: She can, for instance,
load the sequential version to test and debug the application specific code, and then load
the parallel skeleton and execute it on the same application. Here we will discuss one of
these paradigms, called Tuple Multiplication in [18], and show how to use it to implement
two algorithms: matrix multiplication and all-pairs shortest path.

Tuple multiplication computes an n X n matrix ¢ as the “product” of two matrices a
and b. The matrix elements are obtained by applying a function f to every ordered pair
consisting of an n-tuple of a (a row) and an n-tuple of b (a column), that is ¢;; = f(a;,,b. ;)

This structure captures well the commonality between matrix multiplication and a
matrix-based algorithm for computing shortest paths between all pairs of nodes in a
directed graph [19]. In the case of matrix multiplication, the tuple elements are rows and
columns, respectively, and function f is the dot product. The case of all-pairs shortest

"We leave the understanding of this example as an exercise to the reader. The reference [17] has an
interesting discussion about self-replicating programs.
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msg = [[ alua.send('A", 'print(' .. n .. ")")
if nexthost ~= nil then
alua.send( nexthost, "msg=[["..msg.."]] dostring(msg)")
end
1
dostring( msg)

same received message same received message

nexthost

nexthost

nexthost

nexthost|

Figure 4. Self-replicating Message

path requires that we first review the algorithm.

As described in [19], the following matrix-based algorithm may be used to determine
shortest paths. The algorithm constructs a sequence of distance matrices D", where
each entry df ; represents the minimum path weight from ¢ to j that passes in at most r
1ntermed1ate nodes. The initial matrix D° (containing paths with no intermediate nodes)
is constructed directly from the adjacency matrix:

0 if i =
dy; = { weight of edge (i,j) if it exists
00 otherwise

Thus, at each step r + 1, we substitute the current path weight between ¢ and j, which
passes through at most r nodes, for the shortest weight of a path between 7 and 7 which
traverses at most r + 1 nodes:
a5t = min (7, + d},)

This algorithm takes n — 1 iterations to construct the all-pairs shortest path matrix,
containing the minimum weights of paths traversing at most n — 1 nodes. Since the
computation of each d;; in iteration r requires n comparisons, this algorithm computes
shortest paths in O(n?) time.

However, as our goal is to compute only the final D" !, we do not need to compute all
intermediate D" for 1 < r < n — 1. Instead, we can compute D" ! with log(n — 1) steps
by combining D" with itself at each iteration:

d’ = min (d, + d5, .
©,] 1§k§n( i,k k,j)
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function multiply(a, b, n)
local ¢ = {}
for i = 1, n do
clil = {} -- create an array
for j =1, n do
clil[j]1 = £(alil, b[jD
end
end
return ¢
end

Figure 5. Tuple Multiplication paradigm: Sequential skeleton.

With this improvement, the running time for the algorithm is O(n3logn).

We now return to the tuple-multiplication paradigm. The paradigm describes the
computation of a matrix as a product of two other matrices through the application of a
function f on pairs of n-tuples.

Figure 5 presents the sequential skeleton for tuple multiplication. Function multiply
receives two matrices and their dimensions, computes the resulting matrix and displays
the result. For simplicity, we assume that both matrices are square.

Figure 6 shows the specific code for the matrix multiplication problem. It defines a
single function, f, which is invoked by multiply. This function receives one row from
the first matrix and one column from the second one, and returns one resulting matrix
element.

Figure 7 shows the specific code for the all-pairs shortest paths problem. Function
allpaths creates the initial distance matrix n x n of a graph with n nodes and calls
function multiply logn times to compute the resulting matrix. Again, function f is
invoked by multiply.

Figure 8 shows a skeleton for a parallel paradigm. The master agent executes the
parallel version of the multiply function, distributing the computation of rows among all
available agents. Each agent computes at least qmin rows and at most gmax rows of the
resulting matrix. Each agent receives only the necessary rows of the first matrix, but all
of them receive the complete second matrix.

Each of the agents repeatedly executes function node (which they got from the master)
to compute rows of the final matrix. The agent sends each row to the master as soon as it
finishes the computation. Because communication in ALua is asynchronous, the master
uses the callback function finish to signal to the application that it has obtained a final
result.

In matrix multiplication, function finish simply exhibits the resulting matrix. How-
ever, when computing all-pairs shortest paths, it is necessary to make successive multi-
plications before the final result is obtained. Therefore, function finish calls function
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function matrix(a, b, n) function f(ai, bj)
¢ = multiply(a, local n = getn(ai) -- get size
transpose(b), local cij = 0
n) for k =1, n do
end cij = cij + ailk]#*Dbj[k]
end
return cij
end

function finish (a)
show(a)
end

Figure 6. Matrix multiplication - application specific code.

function allpaths(a, n) function f(ai, bj)
d=a local n = getn(ai)
m=1 local cij = infinity
while (m < n) do for k=1,n do
d = multiply(d, cij = min(cij,
transpose(d), sum(ail[k], bjlkl))
n) end
m=2*m return cij
end end
end

function finish (a)
if m < n then -- only for the parallel version
d = multiply(a, transpose(a), n)
m=2*m
else
show_graph(a)
end
end

Figure 7. All-pairs shortest paths - application specific code.
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function multiply(a, b, dim)

local bstr = alua.tostring(b)

n = dim

for k=1,nmax do -- nmax is the number of nodes
-- frow is the first row to be calculated in node k
-- lrow is the last row to be calculated in node k
-- Both depend on gmin and gmax (see the text)
msg = format([[column=Ys row={}]], bstr)
for i=frow,lrow do

msg = msg .. format(" row[}d]=¥%s",i, alua.tostring(al[i]))

end
msg = msg .. format(" n=Yd node(%d, %d)", n, frow, lrow)
alua.send(Procs[k], msg)

end

master_i = 0

master_c = {}
end

function master_receive(row, i)
master_c[i] = row
master_i = master_i + 1

if master_i == n then -- result is ready
finish(master_c)
end
end

—-- This string is sent to slave agents when they are started.
node_code=[[
function node(r, s) ——1<=r<=sg<=n
for i=r,s do
c = {}
for j=1,n do
c[jl = £f(rowl[i], column[j])
end
msg = format("master_receive(¥%s,%d)", alua.tostring(c), i)
alua.send("master", msg)
end
end

1]

Figure 8. Tuple Multiplication paradigm: Parallel skeleton.
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multiply again after each non-final iteration, and calls function show_graph to exhibit
the shortest paths matrix when the final result is obtained.

As we said before, the beauty of this approach is that you only have to change the
skeleton to change the paradigm.

4.3. An Asynchronous Agents Team
Another interesting example of ALua’s flexibility is the implementation of an asyn-
chronous agents team (A-Team) [20] for the Set Covering Problem [21]. The complete
program is rather complex, so in this section we will present only a rough sketch of it.
An A-Team is composed by agents (autonomous entities working in a cooperative way)
and shared memories, creating super-agents with a cyclic data flow and no control flow.
The main features of the A-Team architecture are:

e autonomous agents
An autonomous agent makes its own choice when selecting its input data and re-
source allocation policy. Because autonomous agents are completely independent
of each other, new agents can be added to or removed from the system without
notifying other agents or a manager.

e asynchronous communication
Agents can read and write data to shared memories without any kind of synchro-
nization among them. There are no logical constraints on shared memory accesses,
except for data integrity. Allied to their autonomy, this feature allows agents to
work full-time in parallel.

e cyclic data flow
Agents can retrieve, modify and store data in shared memories continuously. Such
cyclic data flow allows continuous iteration and feedback among the agents.

Experience with this paradigm indicates that the cooperation among agents tends to
generate synergy, i.e., the result produced by them, when seen together, can be better
than the sum of the results obtained independently (there is a greater chance of finding
a solution close to optimal) [20,21]. These experiences also suggest that an A-Team is a
scale-efficient organization, i.e., its performance gets better when new components (such
as agents or memories) are introduced in the system.

We started from a previous implementation of A-Teams written in C, which uses the
communication package DPSK+P [22], based on a shared objects architecture. The sys-
tem (described in [21]) is composed by two servers that act as solution repositories,
representing the shared memory of the A-Team; two wnitialization agents that initialize
the repositories; and nine worker agents that implement different refining algorithms for
the solutions stored in the repositories.

Given a specific instance of the set-covering problem, the typical pattern of behavior
of an A-Team agent is to request a solution from the solutions repository, refine this
solution, send the new solution back to the repository, and start over. One repository
stores dual solutions, the other stores primal solutions. Both repositories simply answer
agents’ requests. Depending on the input data, this application can keep running for some
days before reaching an interesting result.
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Over this implementation, we replaced the communication package DPSK+P by ALua.
The original system was composed by 15 programs, with 34 modules, where only 18 were
directly related to communication activities. We rewrote these 18 modules to use ALua,
and kept unchanged the other modules. Our new implementation keeps a Lua console
available, so we can enter new commands to the system at any time.

The use of ALua allows us to dynamically reconfigure the system, consult the repository,
or even redefine functions. For instance, the following code shows how we can redefine
the behavior of function alua.send on the fly to instrument the application, creating a
log file of the communication messages.

old_send = alua.send

function new_send(to, msg)
-- write log file

write(alua.mytid .. " sending mesg to " .. to)
msg = format("write(alua.mytid..’ received mesg from %s’);",
alua.mytid) .. msg
0ld_send(to, msg)
end

alua.send = new_send

After this redefinition, function alua.send will execute the code
write(alua.mytid .. " sending mesg to " .. to)

every time it sends something, and it will instruct the receiver to execute
write(alua.mytid .. ’ received mesg from <SENDER’S TID>’)

upon receiving the message.

If we run the above code in only one agent, only its messages will be logged. To keep
track of all messages in the system, we can broadcast the above code to all agents. To
restore the original function, we simply send the message alua.send = 0ld_send to each
agent.

This example illustrates how the interpreted nature of ALua can be useful for interac-
tively controlling applications with large execution times. The A-team application can
take hours to complete: it is extremely interesting for the programmer to be able to
change its behavior without having to wait for a new execution. The ALua programmer
can use an interactive console to inject monitoring code, as discussed above, or to redefine
the behavior of one or more of the agents, allowing parts of the program to be redefined
according to partial, observed results.

5. Performance Study

This section describes experiments we conducted to find out the cost we pay for using
an interpreted language. We re-implemented in ALua two parallel applications previously
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written in C and PVM: an N-body simulator and a tool for distributed volumetric vi-
sualization. Keeping in line with the idea of Lua as an extension language, we split the
applications in two parts. We wrote the communication functions in ALua, and kept the
processing kernel in C.

The original applications were based on a conventional send/receive model. To imple-
ment them in Lua, we had to modify them so as to use ALua’s event-driven model. Most
of the modifications were very simple, limited to changing iterative control to the state
machine model discussed in Section 3.

These two applications were chosen because they implemented quite different com-
munication patterns, thus allowing us to compare ALua’s performance under different
conditions. The N-Body simulator uses a peer to peer structure, while the volumetric
visualization is closer to a master-workers application.

5.1. The N-Body Simulation Problem

The N-Body simulation problem studies the evolution of an N-body system under the
influence of Newtonian gravitational attraction. The bodies consist of a mass, position
and initial speed, and are distributed over a finite physical domain.

Our implementation of the N-Body Simulation Problem was based on an existing im-
plementation of the Barnes-Hut algorithm [23] written in C and PVM [24].

In the parallel implementation, the physical domain is divided into N regions, and each
processor is responsible for the particles in one of the regions. The simulation goes on
for a number of iterations; in each iteration each agent computes the forces among its
particles, collects information about all particles in the system and redistributes them (as
a result of the gravitational forces, particles may migrate from one region to another).

At the end of each iteration each agent collects information about all others, so as
to determine particle redistribution. This results in a large amount of communication
between agents. The N-Body Simulation Problem also deals with a large data structure,
which is exchanged among all agents many times during its execution.

The application is composed of a master agent that starts the worker agents, reads
the initial particle distribution, sends it to the first worker and starts its execution. In
order to improve performance, some functions, such as the ones that exchange particles
information and perform particles redistribution, are written in C, although the main
skeleton is written in Lua.

Lua functions add flexibility to the application because they can be redefined at runtime.
For instance, we can change function begin_worker to display a message for each iteration,
by using the master’s console to send to each worker a new begin worker definition:

> msg = [[ old = begin_worker
function begin_worker()
print(iteration)
01d()
end
1]

> alua.mcast (worker_tids, msg)
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5.2. Distributed Volumetric Visualization

The other application we studied in this experiment was the so called Distributed
Volumetric Visualization, based on [25]. The problem consists of visualizing a set of
tri-dimensional data, using the ray casting optimization technique [26,27].

Figure 9 shows the structure of the application. A master agent divides the image to be
computed into a number of regions, or sub-images, each region corresponding to a task.
These tasks are distributed (dynamically or statically) among N worker agents. After
all tasks have completed, a wvisualizer agent exhibits the complete image, placing each
sub-image in the correct position.

Master
Agent

Worker

Al
Agents

3 A4

\/

Visualizer

Agent

Figure 9. Distributed Volumetric Visualization - structure.

In this application the communication among the agents is restricted to exchanges be-
tween the master and each worker, and between each worker and the visualizer. On the
other hand, if workers finish computation at approximately the same time, a communi-
cation bottleneck may occur.

5.3. Experimental Results

To evaluate the efficiency of these applications, we compared the execution times of
both implementations (PVM and ALua) under the same execution conditions. We tested
both applications on a cluster of 32 Linux workstations connected by an isolated ethernet
network.

For the N-Body Simulation Problem, we carried out 48 experiments, each of them with
5 replications. We took three factors into consideration in the design of the experiments:
the number of particles (512, 1024, 2048 and 4096), the number of processors (2, 4, 8 and
16), and the number of iterations (1, 10 and 20).
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Table 1 shows the execution times for each experiment. We divided the execution
times for experiments with 10 and 20 iterations by 10 and 20 respectively, to keep them
comparable to the experiments with 1 iteration. The table also shows the standard
deviation between replications of each experiment and the ratio between execution times
with ALua and PVM.

In the worst case (1024 particles, 16 processors and 20 iterations) ALua was 4 times
slower than PVM while in the best case (2048 particles, 2 processors and 20 iterations)
ALua was 2 times faster then PVM. An interesting point in table 1 is the difference in
the deviations observed for ALUA and PVM.

For the Distributed Volumetric Visualization application, we conducted 18 experiments,
each of them replicated 5 times. In this case, the factors we took into consideration were
the partition method (blocks, pixels and scanlines), the number of processors (4, 8 and 16)
and the distribution of tasks, which can be either static or dynamic. In the static case, the
total number of sub-images is divided by the number of workers and each worker receives
its complete workload in the beginning of the algorithm. In the dynamic case, distribution
is demand-driven, i.e., each worker initially receives one sub-image and requests a new
task each time it completes the previous one.

Table 2 presents the execution times for the pixel and scanline partition methods, with
dynamic and static distribution, using 4, 8 and 16 agents. Standard deviation and ratios
are again shown. In the worst case (dynamic pixel with 8 processors) ALua was 11 times
slower than PVM while in the best case (static scanline with 4 processors) ALua was 1.2
times faster than PVM.

We can observe that the parallelism in both applications did not result in any speedup
either in PVM or in ALua. The poor results for parallelism have no impact on our
evaluation of ALua as a communication package. They probably indicate an inadequate
granularity (computation/communication ratio) for these applications in the specific ex-
ecution platform, which means we are comparing ALua and PVM under relatively heavy
communication requirements; this makes the evaluation only the more interesting.

Figure 10 presents graphs with the ALua/PVM execution time ratios. In the N-Body
simulation, ALua is in average around two times slower than PVM. As the number of
processors grow, behavior of ALua seems to get worse. In the 16-processor cases, each
processor is receiving information from 15 other processors at the end of each iteration,
possibly leading to delays in acknowledgments and unnecessary retransmissions. Also, the
relative weight of the communication mechanism increases as granularity of computation
decreases.

ALua results for the visualization application were worse, specially for the pixel-based
partition method: in this case, ALua was in average 9 times slower than PVM. This ap-
plication does not seem, in fact, to have the characteristics that would recommend ALua’s
use. A large number of small messages is sent to a single process, as workers complete
their allotted tasks and send results to the visualizer agent. In the scanline partition
method, ALua did much better: it was in average less than 3 times slower than PVM.
The scanline partition seems to reflect a more adequate communication/computation ra-
tio: a comparison of execution times for the PVM application using both methods shows
us the weight of communication in the pixel-based partition method.



# part ALua PVM ALua/PVM
time (s) deviation time (s) deviation
512 2 1 0.44 0.00 0.42 0.07 1.05
10 0.13 0.00 0.14 0.02 0.97
20 0.12 0.00 0.15 0.03 0.80
4 1 0.79 0.00 0.50 0.09 1.58
10 0.24 0.01 0.17 0.03 1.42
20 0.21 0.00 0.19 0.02 1.11
8 1 1.45 0.01 0.57 0.13 2.54
10 0.45 0.00 0.28 0.04 1.62
20 0.40 0.00 0.25 0.03 1.60
16 1 3.26 0.07 0.79 0.07 4.13
10 1.54 0.05 0.40 0.03 3.89
20 1.40 0.05 0.37 0.02 3.83
1024 2 1 0.61 0.00 0.56 0.08 1.09
10 0.28 0.01 0.33 0.03 0.86
20 0.28 0.01 0.27 0.03 1.04
4 1 0.97 0.01 0.81 0.06 1.20
10 0.45 0.01 0.38 0.06 1.18
20 0.44 0.01 0.36 0.04 1.24
8 1 1.60 0.01 0.97 0.18 1.65
10 0.71 0.01 0.49 0.05 1.45
20 0.67 0.01 0.50 0.05 1.35
16 1 3.38 0.02 1.28 0.14 2.64
10 1.84 0.03 0.65 0.04 2.82
20 3.97 0.03 0.93 0.06 4.28
2048 2 1 0.96 0.02 0.78 0.13 1.23
10 0.39 0.00 0.56 0.10 0.69
20 0.36 0.00 0.72 0.09 0.51
4 1 1.41 0.02 1.11 0.14 1.27
10 0.54 0.01 0.65 0.21 0.83
20 0.51 0.01 0.64 0.06 0.81
8 1 2.10 0.03 1.60 0.17 1.31
10 0.82 0.03 0.68 0.03 1.22
20 0.79 0.02 0.65 0.05 1.20
16 1 3.55 0.10 2.14 0.17 1.66
10 2.22 0.22 0.79 0.03 2.80
20 1.97 0.08 0.85 0.14 2.32
4096 2 1 1.98 0.01 1.44 0.07 1.38
10 1.31 0.01 1.29 0.02 1.02
20 1.31 0.01 1.12 0.04 1.18
4 1 2.57 0.02 1.83 0.11 1.40
10 1.66 0.01 1.57 0.22 1.06
20 1.73 0.02 1.56 0.28 1.11
8 1 3.23 0.06 2.60 0.30 1.24
10 2.00 0.02 1.58 0.14 1.26
20 1.98 0.02 1.68 0.18 1.17
16 1 4.82 0.07 3.49 0.33 1.38
10 3.46 0.04 1.89 0.07 1.84
20 5.03 0.07 2.15 0.08 2.34
Table 1

The N-Body problem: execution time in s.
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ALua PVM ALua/PVM
time (s) deviation time (s) deviation

Pixel ~Dynamic 4 143.76 0.45 13.27 0.55 10.83
8 150.39 0.50 13.31 0.18 11.30 *

16 148.27 0.31 13.88 0.19 10.68

Static 4 81.95 0.00 9.94 1.77 8.24

8 41.08 0.02 4.34 0.03 9.47

16 20.75 0.03 4.69 0.05 4.42

Scanline  Dynamic 4 1.08 0.05 0.19 0.00 5.68

8 1.17 0.04 0.26 0.03 4.50

16 1.23 0.04 0.44 0.04 2.80
Static 4 0.15 0.02 0.18 0.02 0.83 *

8 0.17 0.03 0.20 0.03 0.85

16 0.39 0.05 0.29 0.02 1.34

Table 2
The Distributed Volumetric Visualization problem: execution time in s.

As a whole, the experimental results lead us to believe that ALua is a viable tool for
development and prototyping. The use of rapid prototyping as a technique for program
development is becoming more and more widespread [28], and can be expected to extend
parallel programming as well. Also, the gain in flexibility achieved with ALua can in
some cases compensate the performance losses. It is worth noting that just turning off
the optimization option in a C compiler can result in a slowdown of four or five times in the
execution of the resulting program. Nevertheless, people frequently turn off optimizations
to speed up compile time. With ALua, compile time is zero.

We believe we can also make some adjustments to get better performance from ALua.
We have conducted some preliminary experiments in keeping parts of the communication
in C, in situations in which large quantities of data have to be transferred and there is
no need for the code exchange facility. Besides, our current implementation of reliable
communication between daemons is rather straightforward (for instance, the protocol
uses a sliding window of size 1). Refinements of this daemon-to daemon communication
protocol will probably lead to an improvement in performance.

6. Related Work

Osterhout, in his seminal paper [29], was one of the first authors to advocate the use of
a “hard” language integrated with a scripting language (which he named an embeddable
language). In that paper, he also introduced the idea of using plain code as a message
format for communication among processes. However, as far as we know, he did not apply
this idea to distributed or parallel algorithms (although he used it for communication
among widgets in the Tk GUI toolkit).

Several groups have used Tecl for distributed programming. Tcl-DP is a Tcl extension
for distributed programming [30]. However, its goal is to make it easy to program socket-
based client-server applications, and not to support higher-level communication models.
In another direction, the Agent Tcl project [31] at Dartmouth College uses Tcl as a basis
for an agent system. An agent migrating from one machine to another could in some ways
be compared to ALua’s capability of sending code in messages; however, agents arriving at
a new machine execute in a new environment, whereas in ALua, when a process receives a
message it executes this message in its own environment, with access to existing variables
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Figure 10. ALua/PVM ratio for the N-Body simulation

and functions. Again, since agents can exchange messages, ALua’s communication model
could be emulated; however, that is not the goal of the work. The TACOMA project
[32] focuses on operating system support for agents written in a variety of programming
languages, including Tcl.

Another drawback of systems using Tcl is performance. “The Great Computer Lan-
guage Shootout” [33], a comprehensive benchmark among dozens of languages, reports
Lua performance being typically two to five times faster than the corresponding Tcl pro-
grams.

In as much as we propose the use of ALua to create a flexible communication infrastruc-
ture to be combined with compiled program parts for greater efficiency, we can view ALua
as a coordination language. Papadopoulos and Arbab’s survey [4] classifies coordination
models into two broad categories: data-driven and control-driven. The main idea in this
classification is that in data-driven coordination, the state of the computation at any time
is defined both by the values of the data being exchanged and by the actual configuration
of the coordinated components, while in control-driven coordination the actual values of
the data being manipulated are not involved in defining the state of the computation.
Supposedly, control-driven models would allow the separation between programming and
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configuration concerns to be clearer.

According to the above definition, ALua would be classified as a data-driven coordina-
tion language, since the information received in messages can contain code and therefore
may redefine component parts and interaction patterns. However, in contrast to typical
examples of the data-driven paradigm, such as Linda [5], the ALua model is not based
on adding coordination primitives to an existing language: it proposes the use of a full-
fledged programming language as a glue between distributed, compiled components. This
allows the programmer to completely separate basic component programming from config-
uration, if he so desires. However, because Lua is a complete programming language and
because it has a very flexible interface with C, different levels of integration between the
gluing code and the “hard computation” can be chosen by the programmer. We believe
this choice is an important facility for the programmer. As discussed in [34], separation
of coordination and computation code can be very difficult to maintain when dynamic
coordination facilities are required. The same issue is illustrated by the mechanisms for
dynamic instantiation in Darwin [6]. Although Darwin’s configuration language, Regis,
includes an elegant dynamic instantiation mechanism for recursive structures, the dynamic
instantiation of arbitrary modules must be programmed directly in the computation code.

Maybe the ALua model can best be compared to the MESSENGERS paradigm intro-
duced by Bic [35]. This paradigm is based on Messenger objects, which can navigate
among network nodes, performing navigation and computation actions expressed using
C. Messengers are compiled to intermediate code that can be dynamically moved across
machines. The messenger library includes functions for invoking separately, precompiled
C functions, allowing it to integrate independently developed code.

The MESSENGERS paradigm is described in the framework of a discussion about
message passing algorithms. [35] uses the expression ‘autonomous objects’ to denote
paradigms where messages have been elevated from being simple carriers of data to a
higher form, such that some behavioral information can be carried by each message and
interpreted by the receiver. The paper further classifies such models along two axes:
navigational autonomy and dynamic composition. Navigational autonomy refers to the
degree to which a message can include decisions about its own destiny (other than its
immediate recipients). ALua allows the programmer to build systems where messages
contain the whole behavior of a system, and the nodes are mere message interpreters.
(The self-replicating code in section 4.1 follows this approach.) Dynamic composition
represents the extent to which autonomous objects can activate independent programs
and carry new functional behavior to different nodes. ALua (or, more exactly, Lua) can
invoke other processes, can load and call functions written in Lua, and can call functions
written in C previously linked to the interpreter. Moreover, Lua also has a non-standard
library that allows it to load pre-compiled C libraries dynamically [36].

Another language for connecting distributed applications is Glish [37]. Although not
typically cited in this context, Glish can easily be viewed as a coordination language.
Like ALua, Glish adopts an event-oriented approach, and it is bilingual. However, unlike
ALua, where each agent can be bilingual (with a core written in C and a communication
layer written in Lua), in Glish there is one single master agent written in Glish, that
coordinates the work of slaves written entirely in C. As the slaves are coded in a compiled
language, they can handle only a fixed set of messages, with pre-defined content types.
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7. Final Remarks

Interpreted languages have been gaining importance over the last years, as program-
mers realize the virtues of these languages, such as flexibility and support for rapid pro-
totyping. However, such languages are seldom used in parallel applications. As parallel
applications increasingly use heterogeneous large-area networks, they also need more flex-
ibility and adaptability. In this paper, we argued that interpreted languages can provide
such flexibility to parallel applications, with an acceptable performance penalty.

In section 4 we evaluated the flexibility that ALua can bring to parallel programming.
Besides the ease with which different proposed algorithms could be implemented, one
important result of that section was to show the support that ALua provides for test-
ing and prototyping. In the implementation of the Tuple Multiplication programming
paradigm, we were able to build one single framework based on a chosen communication
model, allowing for experimenting different implementations, with no need for testing
and debugging the basic communication pattern (parallel and sequential) for each appli-
cation. In discussing the A-Team application, we showed how ALua can be useful for
long-running applications. The facility of an interactive console that the programmer
can use to monitor and control an application dynamically is an important tool for this
scenario. Because of its dynamic features, ALua also fits well in the context of distributed
multimedia applications [38].

ALua’s dual programming model, which allows the communication (and coordination)
code to be written in ALua and the computation code to be written in a compiled lan-
guage, allows us to have this gain in flexibility without paying too high a performance
price. The results we described in section 5, although preliminary, are stimulating, as they
indicate that the costs of using ALua for parallel applications can be relatively low. These
costs are quite consistent with the costs of using an interpreted language in sequential
applications [33]. It is important to remember that, as pointed out in [39], when measur-
ing the performance of a parallel application or programming tool, we need to consider
different metrics. The ease of construction of an application and the time a programmer
spends to implement it are frequently more important than the final execution time.

Some areas of distributed programming, such as WWW services, are already trading
efficiency for flexibility through the use of languages such as Perl and Java. We believe
that the facilities for testing and prototyping in ALua make it an interesting development
environment, even if in final versions the program is translated to a compiled language.

One issue that readily comes to mind when discussing a system that allows code to be
sent across the network and executed upon receipt is that of security. Here, as often is
the case, flexibility is at odds with safety. The ALua system can be customized to be
more secure using facilities native to Lua. Functions considered potentially harmful (for
instance, all output -generating functions) can be redefined and replaced for dummies in
an initialization script as part of ALua’s configuration.

Many distributed programming environments are tailored for a specific interaction
paradigm, such as client-server or peer-to-peer. ALua does not impose a specific pro-
gramming pattern. This is one of the sources of its flexibility, but on the other hand
may be considered a source of programmer confusion. However, an ALua program will
be hard to follow only in cases when the needs of the program are complex; moreover,
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common interaction patterns, such as RPC for client-server interactions, can easily be
encapsulated and provided in library functions.

Event-driven systems have been gaining importance over the last years. It is now
common for applications to be written in an interface-driven style, where the control flow
is directed by user interactions. On the other hand, the use of distribution is another
important trend in application development. Systems such as ALua bring these two
trends together, allowing control flow to be directed not only by user interactions but also
by network events.

Versions of ALua for SunOS and for Linux can be downloaded from

http://www.tecgraf.puc-rio.br/ ururahy/alua/
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