CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat: Pract. Ezper. 2003; 00:1-7 Prepared using cpeauth.cls [Version: 2001/03/05 v2.01]

Programming and
coordinating grid
environments and
applications

C. Ururahy*' Noemi Rodriguez!

Computer Science Department — PUC-Rio,
Rua Marqués de Sio Vicente 225, 22453-900, Rio de Janeiro-RJ, Brazil

SUMMARY

The heterogeneous and dynamic nature of Grid environments place new demands on
models and paradigms for parallel programming. In this work we discuss how ALua,
a programming system based on a dual programming language model, can help the
programmer to develop applications for this environment, monitoring the state of
resources and controlling the application so that it adapts to changes in this state.

KEY WORDS: distributed systems; parallel applications; Grid computing; interpreted languages;
event-driven communication; middleware; coordination; dynamic adaptation.

1. INTRODUCTION

Parallel programmers are currently facing new issues related to harnessing the computing
power available through large-area networks. Grid initiatives and projects [1, 2] seek to
create a distributed computing infrastructure for highly demanding scientific and engineering
applications. Grids present a highly heterogeneous and dynamic configuration, in contrast
to conventional parallel machines. One important technique for dealing with these variations
is to use adaptive strategies, allowing the program to react dynamically to changes in the
environment [3]. Besides, it often does not make sense to have to stop an application and
begin processing all over again just because it was launched with an inadequate configuration.

*Correspondence to: Computer Science Department — PUC-Rio,

Rua Marqués de Sdo Vicente 225, 22453-900, Rio de Janeiro-RJ, Brazil
TE-mail: {ururahy, noemi}@inf.puc-rio.br

Contract/grant sponsor: CNPg-Brazil

Copyright (© 2003 John Wiley & Sons, Ltd.

2 C. URURAHY AND N. RODRIGUEZ @

These issues place new requirements on parallel programming, shifting its traditionally tight
focus on performance issues. The use of an adequate programming language for coordinating
a parallel application gains new importance. Coordination models [4] support the separation
of concerns of the computation itself from those of cooperation and communication between
computational components, often proposing distinct languages for programming these two
activities.

In this paper, we discuss ALua, a distributed programming system based on C and Lua, an
interpreted language, and the flexibility that this system can bring to Grid environments. One
of the important characteristics of an interpreted language is allowing for interactivity: With
an interpreted coordination language, the programmer may use a “coordination console” to
monitor and control the application. Besides, facilities such as dynamic typing and reflexivity
allow us to create high-level interfaces for libraries which are powerful but very complex to use
in traditional compiled languages.

In the next section we present the ALua model. Section 3 presents the work we have been
doing using ALua for Grid environments and applications and discusses how this approach
can simplify monitoring and adaptation. Finally, in Section 4 we draw our conclusions.

2. ALUA

The ALua proposal is to use a dual programming model for parallel applications, where ALua
acts as a linking element, allowing pre-compiled parts of the program to be executed in different
computers. In this context, applications are divided in two parts, kernel and configuration,
usually written in different languages. The kernel implements the basic components of the
system and is usually written in a compiled statically typed language, such as C or C++.
The configuration part, that is usually written in an interpreted language, connects these
components defining the final shape of the application [5]. Using this model, we can build
flexible applications without compromising their performance [6].

ALua [6] is an event-driven communication model for parallel distributed applications, based
on the interpreted language Lua [7]. An important feature of an interpreted language is the
support for executing dynamically created chunks of code. In ALua, messages are chunks of
code that will be executed by the recipient. This provides a very simple yet very powerful
communication mechanism [6]. There is only one asynchronous communication primitive in
ALua, send, that sends a chunk of code to another process. There is no equivalent to a
receive primitive. Each process has a Lua interpreter and an event loop, that manages
network and user-interface events. The arrival of a message is treated as a network event.
This communication model is very flexible: A programmer can use it to perform simple tasks,
such as calling a remote function, but she can also use it for much more complex tasks, such
as remotely changing the algorithm a process is executing. In the context of long-term parallel
applications, and using an interactive console, this is a powerful possibility that allows the
programmer to redefine the application behavior dynamically.

The user interface is a console, where the user can enter arbitrary Lua commands. Each
line the user types generates an event. Through simple commands the user can inspect

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

@ PROGRAMMING AND COORDINATING GRID ENVIRONMENTS 3

variables (print (var)), change variable values (var = exp), send messages to other processes
(send(receiver, msg)), or even run a program (dofile("progname")).

An important characteristic of ALua is that it treats each message as an atomic chunk of
code, handling each event to completion before dealing with the next one. This means that there
is no internal concurrency in an ALua process. In our experience this is not a hindrance. As we
discuss in [6], the use of the event-driven paradigm, as of any other programming paradigm,
leads programmers to create specific program structures. Messages must typically be small,
non-blocking chunks of code. If an application requires larger actions, a process can always
resort to sending a message to itself, as a means of breaking up its code in non-atomic parts,
therefore allowing other messages to be received in between. On the other hand, as pointed
out in [8], the lack of concurrency greatly simplifies many aspects of distributed programming,
since there is no need for synchronization inside one process.

In [6] we show a few examples that illustrate useful programming techniques in ALua,
borrowed from other event-oriented architectures.

3. THE ALUA MODEL: FLEXIBILITY FOR THE GRID

Among the main Grid technologies, the mechanisms that the Globus toolkit [2] offers stand
out not only for being used in several sites, but also for the independence of its services, what
allows us to select only the services that are relevant to the Grid we want to use. But, at the
same time that Globus is very popular for the amount and independence of the services it
offers, it becomes very complex to use so many different services and libraries all together.

In this work, we use ALua for monitoring and developing parallel applications for the Grid.
ALua is not only a distributed parallel programming model for the Grid, but also a tool for
developing, monitoring and adapting Grid applications and monitoring the Grid itself. In the
works we developed so far, the ALua model showed to be highly flexible, bringing advantages
not only to the final shape of the applications, but also to their development process. ALua
allows, for example, the rapid development of application prototypes, and many times there is
no need to replace this prototype, because we do not observe a considerable performance loss
in the application.

In the Grid computing context, a tool like ALua becomes very important, once the Grid
has a dynamic configuration in its definition. The ALua model can be used to perform a
bunch of different tasks. For example, the interpreted nature of ALua can be useful for
interactively controlling applications with large execution times. The following code shows
how the programmer can use the console to redefine the behavior of function alua.send on
the fly to instrument the application, creating a log file of the communication messages. In Lua,
functions are first-class values, and function names are regular global variables that happen to
contain a function.

old_send = alua.send

function new_send(to, msg)
write(alua.mytid .. " sending mesg to " .. to) -- write log file
msg = format("write(alua.mytid..’ received mesg from %s’);", alua.mytid) .. msg
old_send(to, msg)

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

4 C. URURAHY AND N. RODRIGUEZ @

end
alua.send = new_send

(The .. is the string concatenation operator in Lua.) After this redefinition, function
alua.send will execute the code

write(alua.mytid .. " sending mesg to " .. to)

every time it sends something, and it will instruct the receiver to execute

write(alua.mytid .. ’ received mesg from <SENDER’S TID>?)

upon receiving the message.

If we run the above code in only one process, only its messages will be logged. To keep track
of all messages in the system, we can broadcast the above code to all processes. To restore the
original function, we simply send the message alua.send = old_send to each process.

We have integrated ALua with existing Grid communication and resource management
mechanisms so that we can dynamically analyze the behavior of applications and the Grid.
Through an ALua console we can monitor the Grid nodes that are part of a specific
computation, as well as their resources. Also, we can send code that can change the behavior of
a node, adapting an application dynamically, without the need to define what this adaptation
will be in advance.

For the monitoring and adaptation infrastructure, we use Globus services for resource
allocation management, security infrastructure and directories. With the meta directories
service (MDS) [9], we can find out not only the nodes available for executing an application,
but also their characteristics and resources. The idea is to make these services available to
the ALua programmer, so that she can use the infrastructure that is already available in the
Grid platform in a much more flexible and dynamic way, in the applications as well as in a
management console. We believe that accessing these services through ALua, together with
the flexibility the ALua model provides, greatly simplifies a programmer’s life.

We made an experiment in which we linked the Lua library with a few libraries from Globus:
GRAM and DUROC (Globus Resource Allocation Management), and LDAP (used in the
Meta Directories Service). We then built the ALuaMonitor, a monitoring mechanism, based
on previous work [10]. A monitor is a program that has a timer and that from time to time
verifies the state of a list of properties of user defined resources. For each monitored property,
the user can register a callback, that is responsible for performing the adaptation itself. It can
be written in Lua or C and can use other libraries, such as MPL. We used the LDAP binding
to Lua to query the dynamic information that the MDS provides. This binding is more than
just a mapping of LDAP functions to Lua, but rather a flexible high-level interface to LDAP.
The following code shows how to define a property that indicates what percentage of CPU
is available in the last 1, 5 and 15 minutes. The ALuaMonitor obtains this information from
MDS.

1 ldap_obj = LDAP:new({server = "server.par.inf.puc-rio.br"})

2

3 lookupF = function(self) -- Calculates the value of the property.

4 -- In this case, it is a table containing

5 —- the three desired values.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Ezper. 2003; 00:1-7

Prepared using cpeauth.cls

@ PROGRAMMING AND COORDINATING GRID ENVIRONMENTS b)

6 ldap_obj.filter="Mds-Device-Group-name=processors"

7

8 entries = ldap_obj:search({"Mds-Cpu-Free-1minX100", "Mds-Cpu-Free-5minX100",
9 "Mds-Cpu-Free-15minX100"})
10

11 -— The attributes Mds-Cpu-Free-* on the first entry

12 -- will be the property’s value.

13 local currval = {entries[1]["Mds-Cpu-Free-1minX100"],
14 entries[1] ["Mds-Cpu-Free-5minX100"],
15 entries[1] ["Mds-Cpu-Free-156minX100"]1}
16 return currval

17 end

18 -- The value of this property will be updated every 30 seconds!
19 prop = ALuaMonitor:defineProperty("CPU", lookupF, 30)

The property value can be retrieved at any time through function prop:getValue().

For each property we can define different aspects. In the following code we show how to
define the Decreasing aspect of the CPU property we created previously. This aspect indicates
whether the amount of free CPU is getting smaller over time. In this example, we considered
that this happens if the amount of free CPU has decreased by more than 10% in the last 14
minutes.

aspectF = function(self, currval, monitor)
local cons = currval[3] - currval[i]l] -- (15 min - 1 min)
if cons > 10 then
return "yes"
else
return "no"
end
end
prop:defineAspect ("Decreasing", aspectF)

To obtain this aspect’s value we can use prop:getAspectValue("Decreasing").

Besides defining properties and aspects, we can also create observers for different properties
and their aspects. In the following code we create an observer based on the CPU property and
on its Decreasing aspect. The observer’s callback function (called notifyEvent) will be called
in case the amount of free CPU in the last minute is less than 75% and has decreased by more
than 10% in the last 14 minutes. The third parameter to function attachEventObserver
should be a string, that represents a boolean expression, defining a condition that will be
checked every time the property value is updated. In the boolean expression, property values
can be expressed as $<property name> and will be interpreted as <property>:getValue()
when the expression is evaluated. Similarly, the aspect values can be expressed as $<property

fTables in Lua, represented as {...}, are dynamic associative arrays; they are the basic data-structuring
mechanism of the language. In lines 8 and 13-15, the table acts as a regular array with numeric indices. In

Lua, functions are first-class values and can be assigned to table fields as in tb.f = function(...) ... end.
tb:f(...) is a syntax sugar for tb.f(tb, ...).
Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Ezper. 2003; 00:1-7

Prepared using cpeauth.cls

6 C. URURAHY AND N. RODRIGUEZ @

name>:<aspect name> and will be interpreted as <property>:getAspectValue(<aspect
name>).

observer = { notifyEvent = function(self, event)
<< code for adapting the application >>
alua.send(<<targetProcess>>, <<adaptingCode>>)
end}
ALuaMonitor:attachEventObserver (observer, "CPUDecrease",
"$CPU[1] < 75 and $CPU:Decreasing == ’yes’")

Using the LuaDUROC binding, that allows processes to be spawned in a Grid as part of an
application, together with the ALuaMonitor and ALua, we built a simple application that uses
this monitoring mechanism to adapt itself to changes in the execution environment. We used
a monitor as the one we presented earlier and simulated a CPU intensive usage that triggers
the application adaptation.

Using Lua, we were able to build concise interfaces that are very light for the programmers
who are using few resources, but still offer a lot of flexibility for the ones who need more
complex tasks.

We applied the experiment we just described to control and reconfigure applications that use
other communication libraries. Because of its popularity, we chose to use the mpich-g2 [11],an
MPI implementation for the Grid.

We changed the structure of an MPI application so that it has an event loop that can
receive any ALua or MPI message. An MPI message triggers the part of the original code
responsible for the application loop step, while an ALua message can perform instrumentation
and adaptation tasks. The monitor described earlier runs independently of the main application
and the observer’s notifyEvent function sends an ALua message to the master process. For
the simplest version of this experiment, we exported the relevant configuration parameters in
the C code to Lua so that the code sent in ALua messages could adjust them when needed.
The degree of integration between Lua and the application kernel will determine the flexibility
level and the adaptation possibilities that may be achieved.

4. FINAL REMARKS

We have discussed on-going work using ALua’s flexibility to allow the programmer to monitor
and control resource usage on the Grid. Although the tools available in the Globus toolkit
provide an extensive set of facilities, their integrated use demands a lot of effort.

The idea of our work is somewhat similar to that of the Java CoG Kit [12], in that both
propose mappings between Globus services and a specific programming model. As we said
before, the goal of this mapping is not just making these libraries available to Lua, but
rather to provide a flexible high-level interface to them. We can say we implemented a Lua
CoG Kit, that also offers support for rapid prototyping of grid applications. In this line, the
LuaOrb system [13] offers mappings between the Lua language and CORBA, COM and Java
components, providing interoperability among these components. We believe that integrating
both ALua with LuaOrb will allow the application developer to explore grid services (such as

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

PROGRAMMING AND COORDINATING GRID ENVIRONMENTS 7

resource management, security, and resource finding) while she develops high-level components
using the tools that she finds most appropriate.

The goal of our work is to provide flexible, interactive, and uniform programming interfaces
for dealing with different aspects of distributed computing. In the case of the Grid, the ALua
interface allows the programmer to deal with the dynamic and heterogeneous nature of the
environment and make effective use of the available resources.

REFERENCES

1

2

3.

10.

11.

12.

13.

. L. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable virtual organization.
The International Journal of High Performance Computing Applications, 15(3):200-222, Fall 2001.

. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. The International Journal

of Supercomputer Applications and High Performance Computing, 11(2):115-128, 1997.

G. Allen, T. Dramlitsch, I. Foster, T. Goodale, N. Karonis, M. Ripeanu, E. Seidel, and B. Toonen.

Cactus-G toolkit: Supporting efficient execution in heterogeneous distributed computing environments.

In Proceedings of 4th Globus Retreat, Pittsburgh, PA, 2000.

. G. Papadopoulos and F. Arbab. Coordination models and languages. In Marvin V. Zelkowitz, editor,
Advances in Computers, volume 46, pages 329-400. Academic Press, Aug. 1998.

. J. Ousterhout. Scripting: Higher level programming for the 21st century. IEEE Computer, 31(3):23-30,
March 1998.

. C. Ururahy, N. Rodriguez, and R. Ierusalimschy. ALua: flexibility for parallel programming. Computer
Languages, 28(2):155-180, Dec. 2002.

. R. Ierusalimschy, L. H. Figueiredo, and W. Celes. Lua—an extensible extension language. Software:
Practice and Ezperience, 26(6):635-652, 1996.

. L. Bic, M. Fukuda, and M. Dillencourt. Distributed computing using autonomous objects. IEEE
Computer, 29(8):55-61, Aug. 1996.

. Karl Czajkowski, Steven Fitzgerald, Ian Foster, and Carl Kesselman. Grid information services for

distributed resource sharing. In Proceedings of 10th IEEE International Symposium on High-Performance

Distributed Computing (HPDC-10). IEEE Press, 2001.

A. L. de Moura, C. Ururahy, R. Cerqueira, and N. Rodriguez. Dynamic support for distributed auto-

adaptive applications. In Proceedings of AOPDCS (held in conjunction with IEEE ICDCS 2002), pages

451-456, Vienna, Austria, July 2002.

I. Foster and N. Karonis. A grid-enabled MPI: Message passing in heterogeneous distributed computing

systems. In Proceedings of 1998 SC Conference, Nov. 1998.

Gregor von Laszewski, lan Foster, and Jarek Gawor. Cog kits: a bridge between commodity distributed

computing and high-performance grids. In Java Grande, pages 97-106, 2000.

R. Cerqueira, C. Cassino, and R. Ierusalimschy. Dynamic Component Gluing Across Different

Componentware Systems. In International Symposium on Distributed Objects (DOA’99), Edinburgh,

Scotland, 1999. IEEE Press.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

