INTEGRATING REMOTE INVOCATIONS WITH
ASYNCHRONISM AND COOPERATIVE MULTITASKING

NOEMI RODRIGUEZ SILVANA ROSSETTO

Departamento de Informatica, PUC-Rio, Rua Marques de Sao Vicente, 225, Gavea
Rio de Janeiro, RJ, 22/53-900, Brazil
noemi, silvana@inf.puc-rio.br

ABSTRACT

In this paper we argue that it is possible to couple the advantages of programming
with the well-known abstraction of RPC with asynchronous programming models ad-
equate for wide-area programming environments such as grids. We discuss how some
programming language features can help create different programming abstractions over
a basic asynchronous invocation primitive. The paper also discusses how coroutines (co-
operative multitasking) can be used to allow computation to proceed while a client is
waiting for the result of a remote invocation, avoiding the pitfalls of programming with
threads.

1. Introduction

The direct use of low-level send-receive operations usually available at operating
system and library level is complicated and often results in programs that are hard
to understand and to debug. Thus, when distributed computing became a prac-
tical reality, in the early eighties, researchers and developers started searching for
appropriate programming abstractions. The Remote Procedure Call (RPC) mech-
anism [1], which extended to distributed programming what is probably the most
basic abstraction for sequential programming, received a lot of attention, and was
later promoted to an ad-hoc standard by Sun’s RPC tools [2] In the early nineties,
remote procedure invocations were replaced by remote object invocations [3,4], but
the main ideas remained much the same.

As the focus of distributed programming shifted to wide-area networks, in the
late nineties, limitations of the classical, synchronous, RPC mechanisms for this new
environment triggered research and development of new communication models.
Many developers turned their attention to message-oriented communication, which
had been regarded as too low level for application programming in the previous
decade.



Third Worskhop on High-Level Parallel Programming and Applications

In this paper we argue that, with appropriate language support, it is possible
to couple the benefits of programming with a well-known abstraction such as RPC
with the asynchronous execution model that is needed for wide-area platforms such
as grids. We propose asynchronous function calls as the basis for all communication.
The programmer can associate a callback to an asynchronous invocation, allowing
results to be handled in an asynchronous way. But, because this is not a natural
model for programmers, we also provide synchronous invocations, which are built
over the asynchronous basic primitive. We discuss how the concepts of functions as
first-class values, coroutines, and closures can help the construction of programming
abstractions. To allow the computation to proceed at a process that has issued
a remote invocation, we use cooperative multitasking, implemented through Lua
coroutines [5]. This eliminates many of the problems associated to multithreading,
which is the concurrency mechanism traditionally used in this setting. We use the
Lua programming language because it offers the necessary support and because of
our involvement with Lua for distributed programming [6,7], but the approach we
propose could be perfectly applied in other languages.

The paper is organized as follows. Section 2 discusses requirements for pro-
gramming models in wide-area distributed platforms. In Section 3 we describe
LuaRPC, an event-driven library providing asynchronous invocations as a basic
inter-process communication primitive. This section also describes the synchronous
invocation and future mechanisms built over this basic communication mechanism.
Section 4 contains a discussion about cooperative multitasking as an alternative
to multithreading. In Section 5 we discuss how we implemented LuaRPC. Sec-
tion 6 compares this work to related works. Finally, Section 7 contains some closing
remarks.

2. Wide-area parallel and distributed computing and asynchronism

Parallel and distributed programming communities have traditionally stayed
apart, even though they share many common problems. This separation has been
specially true in what regards the study of programming paradigms. Research
in distributed programming has usually explored alternative models more freely,
while parallel programmers, maybe due to their tight focus on performance, have
mostly stuck to variants of message passing libraries coupled with C or FORTRAN.
(Exceptions to this general trend exist: notably the tuple-space proposal, which was
born in the parallel programming community [8] and later adopted as a distributed
programming model [9,10].)

The popularity of grid computing is changing this picture. One reason for this is
that when using resources from different geographical and administrative domains
the programmer is forced to deal with issues that could be ignored in dedicated,
homogeneous clusters. Another aspect in grid computing is that the philosophy of
resource usage, in many cases, is to take advantage of idle resources in different
institutions. Because programs must adapt to dynamic execution conditions, the
focus on performance must be relaxed to take into account other sets of program-
ming constraints. Besides, when considering homogeneous settings such as a cluster,
programmers can deal with the complexity of message passing by writing strongly-
coupled SPMD programs. In an heterogeneous and dynamic environment, pro-



Integrating Remote Invocations with Asynchronism and Cooperative Multitasking

gramming abstractions become more important. These issues have brought many
groups who historically worked with distributed computing to develop projects and
proposals for grid, bridging the gap between the two communities.

In distributed programming history, the remote procedure call paradigm can
be classified as a successful programming model. Besides the classical Sun RPC
implementation, many other mainstream systems, such as CORBA [3] and Jini [4],
have been implemented using its basic ideas. The RPC paradigm was probably the
most popular one for client-server applications running in local-area networks. From
the beginning, however, critiques to the RPC paradigm were made [11,12], mostly
discussing the imposition of a synchronous structure on the client application and
the difficulty of matching RPC with fault tolerance, partly due to its one-to-one
architecture.

As the scope of distributed systems grew, from local-area to geographical net-
works, both of these aspects gained importance. On the one hand, communication
across geographical networks means more variation in response times. On the other
hand, the probability of failures in communication peers is larger when messages
are exchanged across administrative domains. New critiques to the one-to-one and
synchronous RPC model have also appeared from novel application areas, such as
ubiquitous computing [13]. All of these considerations led researchers and develop-
ers to consider alternative programming paradigms, and, more specifically, led to
emphasis on asynchronism.

Typical asynchronous programming systems provide support for event-based or
message-oriented programming. In this model, processes register interest in classes
of events, and are notified when these events occur, often through the use of callback
functions. Processes and operations are not coded as a sequence of steps but as
a passive state machine: the arrival of an event is handled by a function whose
execution leads the program to a new state.

Although this “inverted” structure can be quite convenient for many applica-
tions, it can be awkward to use in other cases, such as some parallel applications,
where there is an established set of programming patterns, or even applications
which exhibit an obvious client-server behaviour. This has led us to reconsider the
remote procedure call mechanism and to analyse the extent to which it is really
inappropriate for wide-area distribution. What is clear is that the classical RPC
mechanism imposes much more synchronism than is reasonable. We ponder that
maybe this has led many researchers to discard the whole RPC proposal, and that
maybe the invocation abstraction can still be useful in asynchronous environments.

In the next section, we propose an RPC mechanism for asynchronous environ-
ments. The basic idea is to implement asynchronous functions calls as the basis for
all communication, instead of synchronous calls as in the classical RPC abstraction.
In order to receive the result of an invocation and integrate it into the ongoing com-
putation, the caller can define a callback function that will be executed when the
result is available.

3. Asynchronous and Synchronous Remote Procedure Calls

In this section, we describe an asynchronous procedure call mechanism that we
implemented using the Lua programming language [5]. Using Lua, we are able to



Third Worskhop on High-Level Parallel Programming and Applications

take advantage of facilities such as closures and functions as first-class values to
implement high level communication abstractions, but, at the same time, because
Lua is primarily intended for use as an embedded language, we can keep the hard
processing in C or C++ [6].

Lua is an interpreted language with a Pascal-like syntax. One of the main
design aspects of Lua is its simplicity and flexibility. Two types in Lua deserve
special attention in our context: table and function. Tables can grow and shrink
dynamically and implement associative arrays, that is, their indices can be values
of arbitrary types. A table can thus be used as a general-purpose container. To
create a table, one must use a constructor expression, which can be a simple {},
creating an empty table:

mytable={} -- creates a table
mytable["x"]=3 -- new entry, with index "x" and value 3
if (mytable.x==3) then ... -- syntactic sugar for mytable["x"]

Functions, in turn, are first-order values, i.e. they can be passed as arguments
to or be used as return values from other functions, or be stored in a table.

We use these facilities for creating a LuaRPC module. This module imposes an
event-oriented structure on a program: The program, after initial actions, typically
issues a call to luarpc.loop, which will make it continuously wait for new communi-
cation events. The main primitive in this module is createAsyncCall, which creates
a function value which, when invoked, issues an asynchronous remote procedure
call:

f = luarpc.createAsyncCall(funcId, host, port, callback)
f(argl, ..., argn) -- remote invocation

Function luarpc.createAsyncCall is relatively low-level, in that it takes as pa-
rameters a host (IP number) and port of the remote process. Its first argument,
funcId, is a string identifying the function as exported by the remote process (we
will return to this point later). Finally, the last argument is a callback function, to
be executed when the remote call is completed.

The function returned by luarpc.createAsyncCall is a regular Lua function, and,
as such, can be assigned to variables or fields, passed as an argument, and so on. In
Lua, functions can take variable number of arguments, and so the programmer can
use the function returned by luarpc.createAsyncCall as a local function, passing
the necessary arguments in the invocation. (The role of the luarpc.createAsyncCall
is similar to that of a stub generator in a traditional RPC system.)

When the remote call is completed, the callback function is invoked in the calling
process. This callback function will receive as its argument a table with possible
fields error and results. If the error field exists, its value will be a string indicating
the kind of error that has occurred.

Figure 1 shows the outline of a program that distributes tasks, in a round-robin
fashion, to be executed by a set of worker processes. Table workers stores the ip and
port numbers of each available worker. After sending all tasks to remote workers,
the program enters the event loop. Function luarpc.loop takes as an argument a



Integrating Remote Invocations with Asynchronism and Cooperative Multitasking

-- initial settings
publicFunctions = {}
function publicFunctions.handleresults (ret)
if ret.error then
-- handle error
else
total = total + ret.results.value
workleft = workleft - 1
if (workleft==0) then
-- show results and exit
end
end
end
-- create remote function values
remotework = {}
for k in pairs(workers) do -- iterates over table workers
-- to create table remotework
table.insert(remotework, luarpc.createAsyncCall("processtask",
workers [k] .host, workers[k].port, "handleresults")
end
-- distribute tasks, table tasks contains a bag of tasks
-- in this simple example each task is described by a single number

host = next(remotework, nil) -- iterates over table remotework

workleft = 0

for i,task in pairs(tasks) do -- iterates over table tasks
remotework [host] (task) -- sends a task to a remote worker

workleft = workleft + 1

host = next(remotework, host) or next(remotework, nil)
end
luarpc.loop(publicFunctions)

Fig. 1. Code outline for round-robin task distribution

table containing the functions “exported” by this process, i.e., the functions that
can be called remotely. The callback function collects results that are sent back.
(An on-demand task distribution strategy could be implemented by sending only
one task to each worker and, in function handleresults, sending a new task.)

In this example, because the remote invocations are asynchronous, we rely com-
pletely on the passive, machine-state style of programming which we mentioned in
Section 2. Programs written with LuaRPC have an event-driven structure, in which
incoming communication events trigger the execution of functions. These may be
either functions that are being invoked remotely or callbacks associated to some
completed remote invocation. Each process is single-threaded, that is, all incoming
events must wait for this single thread to finish handling previous events.

This is a convenient structure for programs executing in wide-area environments,
but may not be a convenient way for the programmer to design her code. In the
next section, we propose a synchronous view of the remote function call that does
not interfere with the asynchronous nature of the program as a whole.



Third Worskhop on High-Level Parallel Programming and Applications

publicFunctions = {}
function publicFunctions.availableWorker (mst)
getWork = luarpc.createSyncCall(mst.newTask, mst.host, mst.port)
putResult = luarpc.createSyncCall(mst.taskCompleted, mst.host, mst.port)
whenFree = publicFunctions.availableWorker
publicFunctions.availableWorker = nil
work (getWork, putResult)
end
function work(get, put)
local w = get()
while w do
put (localwork(w))
w = get(
end
publicFunctions.availableWorker = whenFree
end
luarpc.loop(publicFunctions)

Fig. 2. Worker process in pool-of-workers application

3.1. Synchronous Invocations

With asynchronous invocations and event-driven programs, the programmer
must turn control flow upside down, using callback functions to code the contin-
uation of the computation after the results of the invocation are available. Us-
ing coroutines, we encapsulate this common behavior in a new function, called
luarpc.createSyncCall. When a programmer writes something like:

f = luarpc.createSyncCall(funcId, host, port)
r=1()

the assignment to variable r only takes place after the remote invocation has
been completed.

This behavior must be coupled with the basic event-driven and single-threaded
structure of the process. So the process cannot effectively remain blocked while
the remote function is being executed. To deal with this, the main event loop is
coded in a main coroutine, and all other processing occurs in secondary coroutines.
A synchronous call encapsulates a yield from a secondary coroutine to the main
one, allowing other events to be processed while the remote invocation proceeds.
The implementation will be discussed in further detail in Section 5. This coupling
of synchronous communication abstractions, with which programmers are more fa-
miliar, with an asynchronous program structure, more appropriate for wide-area
applications, tries to extract the advantages of each model.

As an example, consider again the problem of distributing tasks. Figures 2
and 3 sketch worker and master processes in a new program structure. We now
imagine worker processes that continuously offer their processing services. For this,
they offer a remote function called availableWorker, that triggers the execution



Integrating Remote Invocations with Asynchronism and Cooperative Multitasking

publicFunctions = {}
function publicFunctions.workUnit ()
-- if there are work units left then return unit
-- else return nil
-- end
end
function publicFunctions.result(newresult)
-- store newresult
end
master = {taskCompleted="result", newTask="workUnit",
host=myHost, port=myPort}
luarpc.createBcastAsyncCall("availableWorker", nil) (master)
luarpc.loop(publicFunctions)

Fig. 3. Master process in pool-of-workers application

of a loop in which the worker repeatedly asks the master for a task description,
executes the task, and returns results. Workers now request tasks and return results
in synchronous calls to the master, inverting the direction of the invocations in
Figure 1.

The invocation of availableWorker triggers calls to newTask and taskCompleted,
assigning values to getWork and putResult, using the argument it received, and sets
the value of availableWorker to nil. This is equivalent to exiting the pool of available
workers. Finally, availableWorker invokes work, which simply contains a loop for
retrieving tasks from the master and sending results. When the master has no more
work to be done, the worker sets the value of availableWorker back to its original
one, thus returning to the processing pool.

On its side, a master process (Figure 3) begins execution by broadcasting a call
to availableWorker. LuaRPC offers the createBcastAsyncCall primitive for sending
an invocation to a set of hosts (this set is initialised in the configuration file). This
is just an example, the list of possible workers could have been obtained in a more
application-specific way. When a new master process issues this invocation, some
of the workers will be available while some of them will possibly hold no value for
function availableWorker at the moment (because they are working for some other
master). The available workers will begin processing the new application.

Other issues could be explored such as what would happen if no workers are
available. We could insert in availableWorker a call to a function in the master
process indicating whether this worker will join the work pool. Thus, the master
would be able to react to situations in which the size of the work pool is too small.

3.2. Futures

In some cases, the programmer may know, at a certain point of execution, that
he needs to schedule a computation whose result will be needed only later. Another
interesting abstraction for synchronizing actions of clients and servers in a looser
relationship than with synchronous invocations is that of futures [14,15]. Futures
represent a promise of a value that will be eventually available. Suppose that a



Third Worskhop on High-Level Parallel Programming and Applications

futureQuery = luarpc.createFutureCall("newQuery", host, port)

getResult = futureQuery(arguments) -- invocation returns "future"
. do other activities

res = getResult() -- now wait for the result

Fig. 4. Use of the future transformation

program knows it will need a result from function £, but only at some later point in
execution. If the program invokes f synchronously, computation will not proceed
(in that line of execution) while f is executed. Support for futures allows a special
call to £ to proceed asynchronously but return a future object, that is, a function
that, when called, synchronizes the remaining computation with the termination of
f, and returns its results.

Figure 4 shows a simple example of the use of futures. Note that the “other
activities” could include other (asynchronous or synchronous) remote procedure
calls. Only when the program invokes the returned getResult function will execution
be suspended, if the result is not already available.

4. Concurrency, Threads and Coroutines

The traditional way of dealing with the excessive synchronism of remote pro-
cedure call is to introduce multithreading in the client. However, as discussed
in [13,12], this adds a burden of thread management: because thread implemen-
tations are mostly preemptive, control switches among different threads can occur
not only when one of them blocks on an operation (such as a remote invocation),
but at any point in execution. This results in race conditions and in the need for
synchronizing primitives such as monitors and semaphores, which can make the
program hard to understand and to debug.

Coroutines introduce multitasking in a cooperative fashion: each coroutine has
its own execution stack, as a thread does, but control is transferred only through the
use of explicit control transfer primitives. Using coroutines, a process can maintain
several execution lines but only one at each time can run and the switch between
two of them is explicit in the program. This allows applications to improve their
availability without the weight that may come together with the multithreading
solution. On the other hand, managing the transfer of control between coroutines
is a burden for the programmer. But if we are able to build libraries in which
possibly blocking calls encapsulate the transfer of control between coroutines, we
obtain systems in which the potential points of context switching are explicit in the
code, but in which the control of coroutines is hidden from the programmer. This
is what we propose to do in the LuaRPC library.

Many parallel applications need multitasking only to make sure that each pro-
cessor is used as much as it can be; they often do not have scheduling constraints
that must be met by timesharing. Because context switches are time consuming,
the timesharing nature of multithreading may impose a performance overhead on
systems which do not need it. As one initial attempt at performance analysis, we
conducted an experiment comparing a classical producer-consumer example, written
in C, using coroutines and using threads. We used the pthread library for threads



Integrating Remote Invocations with Asynchronism and Cooperative Multitasking

and a library developed specifically for providing coroutines in C [16]. The program
consisted of a simple producer-consumer loop with 500,000 iterations, with no pro-
cessing other than assigning an integer to a buffer (at the producer) and adding this
value to an accumulator (at the consumer). In out tests, the version with coroutines
always executed in less than 7% of the time taken by the version with threads.

Coroutines were first introduced in programming languages in the seventies,
with Simula [17], but have not been included in many programming languages. As
discussed in [18], this may be due to a lack of a uniform view of the concept and also
to the complexity of the first implementations. Recently, however, interest in this
concept has reappeared, both in the area of multitasking applications [19] and in
the area of scripting languages. Both Python and Perl currently provide restricted
forms of coroutines [20,21].

It is important to note that there are several classes of applications for which
response time must be limited for each line of execution. In this case multithreading
may be an excellent solution. However, there are many other situations in which
cooperative multitasking constitutes a lightweight alternative.

5. Implementation

The LuaRPC module was implemented in Lua and uses LuaSocket [22], a library
offering a simplified view of Berkeley sockets. One advantage of the LuaSocket im-
plementation is its flexible timeout control mechanism. As in C, all I/O operations
are blocking by default. LuaSocket provides a settimeout method through which
an application can specify upper limits on the time it can be blocked. It facilitates
the use of sockets to implement asynchronous communication.

The key idea in LuaRPC'is that the main behavior of all processes is the typical
“server” behavior in socket language: a typical application starts by executing some
initial code and then falls into a main loop where it waits for connections. When
a connection is completed, the received message is completely handled and, after
that, control goes back to the main loop to wait for new connections. When an
application needs to send the results of an invocation to its caller or call a remote
method offered by other processes, it starts a connection request to a specific (or to
a set of ) process.

The set of operations provided by LuaRPC includes:

® createAsyncCall(funcId, host, port, <callback>): This operation returns a
function that calls a remote method asynchronously. When the returned func-
tion is invoked, control returns immediately to the caller. Required parameters
are the method identification and the host and port where the remote process
is running. To receive and handle the results of this invocation, a callback
function must be defined which will receive as arguments the requested results.

e createSyncCall(funcId, host, port): This is a variant of createAsyncCall
that also returns a function to invoke a remote method. The main difference
is that, when this function is invoked, the effect is that of a synchronous call:
execution flow will proceed only when the call is completed.

® createBcastAsyncCall(funcId, <callback>): This is a variant of operation



Third Worskhop on High-Level Parallel Programming and Applications

function luarpc.createAsyncCall(funcId, host, port, callback)
local callbackId = getcbId(callback)
-- return a function
return function(...)

local msg = net.createMessage(funcId, callbackId, ...)
return net.sendMessage(msg, host, port)
end

end

Fig. 5. Skeleton implementation of createAsyncCall

luarpc.createAsyncCall that sends a request to a set of pre-defined processes.

e createFutureCall(funcId, host, port): This is yet another variant of opera-
tion createAsyncCall. However, in this case, when the new function is invoked,
it returns a function that, when called, synchronizes the remaining computa-
tion with the termination of the remote invocation, and returns its results.

As discussed (and explored in our examples) in Section 3, createAsyncCall,
createSyncCall and createBcastAsyncCall do not directly make the remote invoca-
tions, but instead return a function that can be called a number of times after its
creation, and that can be manipulated as any other value. This is possible because
Lua supports functions as first-class values and lexical scoping. In Lua, a function
can be enclosed in another function, and, in this situation, it has full access to vari-
ables from the enclosing function. This allows createAsyncCall (and its variants) to
return a function, defined inside it, which depends on values passed as arguments
on each specific invocation of createAsyncCall. To illustrate this, Figure 5 shows
a sketch of our implementation of createAsyncCall. This implementation creates
and returns an anonymous function which uses the values of variables funcId, host,
port, and callbackId, which are local to the enclosing context. By the time the
programmer uses the anonymous function returned by createAsyncCall, these vari-
ables will be out of scope. Nevertheless, they will be encapsulated in the definition
of the new function. This feature of Lua implements the notion of closures, common
in functional languages.

LuaRPC applications have a single line of control. A typical application starts
by executing some initial code and then falls into a main loop, where it waits
for public or callback functions activations. In this way, the application logic is
normally put into functions, which are executed asynchronously. Considering only
asynchronous operations, this model is sufficient to support the operations described
above. However, when a synchronous operation is invoked, the next command must
be executed only after the response to that request is available. Thus, the current
execution line must be suspended and resumed later by the callback related to this
request.

In order to support this architecture we use coroutines to model each function
activation as a new coroutine. In the case of public method invocation, LuaRPC
checks the public function table. If the current application offers the requested
method, a new coroutine is created to execute it. On the other hand, in the case
of callback invocation, the local function table is checked and the specified callback



Integrating Remote Invocations with Asynchronism and Cooperative Multitasking

is executed as a new coroutine. Each coroutine will execute to completion unless it
contains a synchronous invocation. If the coroutine ends, control returns to the main
loop. If it invokes a synchronous operation, a callback function is implicitly created
(again using lexical scoping facilities) which is implemented as a function that will
restore and resume the current coroutine when the result of the synchronous oper-
ation is available. Next, the control line is transferred back (yielded) to the main
event loop. Hence, it is possible to suspend an execution line in order to wait for a
remote invocation and yet allow the application to receive and handle other events.
Figure 6 illustrates the process of control transfer between coroutines and the
main loop. The application starts by executing its initial code as a coroutine. After
that, the loop waits for functions activations. When this occurs, one coroutine — A —
is created (and immediately resumed) in order to execute the invoked method code.
Control is transferred to this coroutine, which executes to completion. When the
next message arrives, the main loop creates coroutine B. This coroutine transfers
the control back to the main loop before it reaches its end (invokes a synchronous
function). This case is again illustrated by coroutine C. When the result to the
synchronous operation is available, the appropriate coroutine is resumed.

main control

coroutine A
B resume
et
end
coroutine B
resume
S coroutine C
yield »
resume g
coroutine B |
resume yleld
- p
end
coroutine C
7 resume
<
end

Fig. 6. Transferring control among coroutines.

In another simple performance experiment, we compared our implementation
with coroutines with a variant using multithreading. For this, we implemented a
threaded variant of the LuaRPC library: in this implementation, the arrival of a
new function activation implies in the creation of a new thread. If a thread exe-
cutes a synchronous call, it is suspended (on a condition variable) until the reply
is available. In this version, we obviously loose the non-preemptive advantages



Third Worskhop on High-Level Parallel Programming and Applications

of the coroutine version. However, we were interested in the performance differ-
ence. We ran a test in which processes A, B, and C, each of them on a different
machine, executed the following actions. Process A invoked (asynchronously) two
times function f, on process B. Execution of f involved one synchronous call to
g, on C, and a heavy processing loop (involving operations with floats). Execution
of g involved only a processing loop. We ran this test on Pentium II machines
executing Linux. The coroutine version took an average of 67,46 seconds while the
multithreaded version took an average of 87,83 seconds (both on five runs). This
is again a preliminary performance study, and we inserted the heavy processing
loops in f and g exactly to extract the advantages of the non-preemptive version.
However, we believe these results are promising and show that coroutines can help
both in simplifying programming and in diminishing context-switching penalties.

6. Related work

A number of works propose alternatives to the multithreading model [23,24,25].
Specific approaches have been investigated in order to to combine concurrent pro-
gramming with synchronisation and cooperative multitasking.

Fair Threads [26] is a framework that combines cooperative and preemptive
scheduling of tasks in order to exploit some advantages of these two strategies
(ease of programming and able to exploit hardware parallelism). The framework
combines user threads and services threads which can execute concurrently and in
parallel when the hardware supports it. Although our model is completely based
on cooperative multitasking, it is possible to explore the hardware parallelism since
distinct processes can be started at different pairs ip/ports in the same machine.

Future-based RMI [27] is a recent implementation of futures in procedural lan-
guages, with the purpose of optimizing the remote method invocation mechanism
(RMI). The central idea is to support the composition of remote methods where one
method uses the result of another method in order to reduce the data traffic on the
network. When a server receives a remote invocation it runs the invoked method
and returns an object reference that can be used as argument to other method in-
vocations. This object implements a special method, getdata, which can be called
by all clients interested in these results at the execution point that these values are
required.

Our invocation abstractions are similar to abstractions offered in the ProAc-
tive [28] system, a Java middleware for parallel, distributed and concurrent pro-
gramming. The central idea is that method calls are always asynchronous and
future objects are transparently provided to collect the results of the call. The re-
sulting programming model is reactive, as in our work. ProActive is 100% Java,
and does not modify the language’s basic multithreading model. In LuaRPC, syn-
chronous calls (and futures) are coupled to a cooperative multitasking concurrency
model.

7. Final Remarks

In this paper, we tried to show that it is possible to couple the simplicity of pro-
gramming with RPC with the asynchronous requirements of wide-area distributed



Integrating Remote Invocations with Asynchronism and Cooperative Multitasking

computing. We used the LuaRPC module as a tool to experiment with these ideas.
Although we are interested in exploring the possibilities of LuaRPC, our objective
here was not to promote it specifically, but to create a small environment with
adequate abstractions for distributed computing.

The basic asynchronous RPC primitive with a callback function allows program-
ming in the direct event-driven style with the syntax of function calls for communi-
cation. Asynchronous calls can also be extended for one-to-many communication,
as was shown with the broadcasting primitive. The judicious use of callbacks in
this case allows the programmer to either explicitly acknowledge results returned
by different hosts or to use the broadcast invocation in an event-publishing style.
The use of synchronous calls and futures allied to cooperative multitasking allows
the programmer to insert synchronization points in her code without having to deal
with the classic shared memory issues posed by multithreading.

Languages with the features we emphasize, such as support for first-class func-
tions and closures, are often interpreted. In the parallel programming community,
this automatically leads to performance worries. However, as we discussed in [6],
if we use a dual programming model, in which the interpreted language coordi-
nates the application and a traditional compiled language handles the computing-
intensive parts, results can be very good, specially considering the flexibility that
can be achieved.

The programming examples we discussed were very simple. We intend to extend
them, investigating other common frameworks for distributed applications, and
exploring issues such as node failures and disconnections in the cases we have begun
to discuss.

Acknowledgements

We would like to thank Ana Lucia de Moura for her support with performance exper-
iments and CNPq (the Brazilian government research agency) for financial support.

References

[1] A. Birrell and B. Nelson. Implementing remote procedure calls. ACM Trans. on
Computer Systems, 2(1):39-59, February 1984.

[2] Sun Microsystems. RPC: Remote procedure call protocol specification, 1988.

[3] The common object request broker: Architecture and specification, 1999. OMG
document/99-10-07, v2.3.1.

[4] W. Edwards. Core JINI. Prentice-Hall, 1999.

[5] R. Ierusalimschy. Programming in Lua. lua.org, second edition, 2006.

[6] C. Ururahy, N. Rodriguez, and R. Ierusalimschy. ALua: Flexibility for parallel pro-
gramming. Computer Languages, 28(2):155-180, December 2002.

[7] M.A. Leal, N. Rodriguez, and R. Ierusalimschy. LuaTS - A Reactive Event-Driven
Tuple Space. Journal of Universal Computer Science, 9(8):730-744, August 2003.

[8] N. Carriero and D. Gelernter. How to write parallel programs: a guide to the perplexed.
ACM Computing Surveys, 21(3):323-357, September 1989.

[9] G. P. Picco, A. Murphy, and G. Roman. LIME: Linda meets mobility. In 21st Intl
Conf. on Software Engineering (ICSE’99), pages 368-377, Los Angeles, CA, 1999.

[10] C. Fok, G. Roman, and G. Hackmann. A lightweight coordination middleware for



Third Worskhop on High-Level Parallel Programming and Applications

[11]

[12]

[13]

[14]

[15]

[16]
[17]
18]

[19]

[20]
[21]
22]

[23]

[24]

[25]

[26]

[27]

[28]

mobile computing. In 6th Intl Conf. on Coordination Models and Languages (CO-
ORD’0/), Pisa, Italy, 2004.

A. Tanenbaum and R. van Renesse. A critique of the remote procedure call paradigm.
In EUTECO’88 Conf., pages T75-783, Vienna, 1988. Participants Edition.

K. Birman and R. van Renessee, editors. Reliable Distributed Computing with the
Isis Toolkit, chapter RPC considered inadequate, pages 68-78. IEEE Computer Society
Press, 1994.

U. Saif and D. Greaves. Communication primitives for ubiquitous systems or RPC
considered harmful. In Workshop on Smart Appliances and Wearable Computing
(in conj. with ICDCS’01), Mesa, AZ, 2001.

H. Lieberman. Object-Oriented Concurrent Programming, chapter Concurrent
Object-Oriented Programming in Act 1, pages 9-36. The MIT Press, 1987.

A. Yonezawa, J. P. Briot, and E. Shibayama. Object-oriented concurrent program-
ming in ABCL/1. SIGPLAN Notices (OOPSLA’86 Proceedings), 21(11):258-268,
November 1986.

E. Toernig. C Coroutines(coro library), 2000. www.goron.de/ " froese/coro/coro.
html.

G. Birtwistle, O. Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin. Petrocelli
Charter, 1975.

A.L. de Moura, N. Rodriguez, and R. Ierusalimschy. Coroutines in Lua. Journal of
Universal Computer Science, 10(7):910-925, July 2004.

R. von Behren, J. Condit, and E. Brewer. Why events are a bad idea (for high-
concurrency servers). In 9th Workshop on Hot Topics in Operating Systems (Ho-
tOS IX), Lihue, Hawaii, 2003. Usenix.

N. Schemenauer, T. Peters, and M. Hetland. PEP 255 Simple Generators, 2001. www.
python.org/peps/pep-0255.html.

D. Conway. RFC 31: Subroutines: Co-routines, 2000. dev.perl.org/perlé/rfc/
31.html.

D. Nehab. Luasocket: Networking support for lua, 2004. luaforge.net/projects/
luasocket/.

A. Adya, J. Howell, M. Theimer, W. Bolosky, and J. Douceur. Cooperative task man-
agement without manual stack management. In USENIX Annual Technical Confer-
ence, pages 289-302, Berkeley, 2002.

S. E. Ganz, D. P. Friedman, and M. Wand. Trampolined style. In Intl Conf. on
Functional Programming, pages 18-27, Paris, 1999.

M. Welsh, D. Culler, and E. Brewer. Seda: an architecture for well-conditioned, scalable
internet services. In 18th Symp. on Operating Systems Princ. (SOSP-18), pages
230-243, Banff, Canada, 2001. ACM.

M. Serrano, F. Boussinot, and B. Serpette. Scheme fair threads. In 6th ACM-
SIGPLAN Intl Conf. on Princ. and Practice of Declarative Programming, pages
203-214, Verona, 2004. ACM.

Martin Alt and Sergei Gorlatch. Future-based rmi: optimizing compositions of re-
mote method calls on the grid. In Furo-Par 2003, volume 2790 of Lecture Notes in
Computer Science, pages 682-693, Klagenfurt, Austria, 2003.

D. Caromel. Toward a method of object-oriented concurrent programming. Comm.
of the ACM, 36(9):90-102, September 1993.



