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ABSTRACT

In this paper we explore the advantages of using interpreted
languages for building submitting engines for the grid. In
particular, we discuss an example engine, developed using
ALua, for submitting jobs in a cluster, which can be ex-
tended to a grid environment. We claim that the flexibility
offered by interpreted languages justifies the problems re-
lated to the intrinsic loss of efficiency associated with this
kind of languages. The focus of this work is on adaptation
and ease of use.

Categories and Subject Descriptors

C.2.4 [Computer Communication Networks]: Distributed

Systems; D.3.2 [Programming Languages]: Language
Classifications

General Terms

Languages, Management

Keywords

grid computing, job management, adaptation, interpreted
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1. INTRODUCTION

Despite the fact that grid computing potential has been
generally accepted, and the emergence of some standards
(most of them de facto standards as is the case of the ma-
jor grid initiative, the Globus Toolkit), working on grids is
not an easy chore [3]. Computer grids involve, besides the
well-known and studied distributed paradigm, a perception
of unity in environments that can be quite heterogeneous as
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to platforms, software, and user skills. Besides, they intro-
duce new problems of security and issues related to virtual
organizations (permissions and effective collaboration, for
instance). This has generated a quest for new infrastruc-
tures, middleware and applications.

We propose a lightweight tool for scheduling and manag-
ing jobs submitted through the grid. It is based on ALua,
an extension of the Lua interpreted language for the exe-
cution of parallel and distributed applications. ALua is a
lightweight and very portable system with a dual program-
ming language model that allows building flexible applica-
tion without compromising performance.

The rest of this paper is organized as follows: Section 2
provides the context of this work. Section 3 explains the
motivations for the use of interpreted languages in the grid,
and Section 4 reviews the ALua system. Section 5 de-
scribes the implementation and discusses some security is-
sues. Section 6 presents some preliminary experiments. Fi-
nally, Section 7 summarizes the paper and discusses future
work.

2. BACKGROUND

The Globus Toolkit [6] is a widely accepted de-facto stan-
dard middleware for Grid Computing. It provides basic
components to implement resource management, data man-
agement, and information services. The resource manage-
ment pillar includes the GRAM (Grid Resource Allocation
Manager) Component [4], which provides support for job ex-
ecution and management. GRAM includes the gatekeeper,
that receives the job execution request, authenticates the
client, maps him to a local account, and then instantiates
a Job Manager to take care of the job and of the commu-
nications with the client. A general overview of GRAM is
depicted in Figure 1, taken from [4].

GRAM parses job descriptions written by the user in Re-
source Specification Language (RSL) [17]. Globus does not
provide a local scheduler (it uses fork by default to exe-
cute processes in the local host), but it offers interfaces and
the gram-reporter packages for a group of local schedulers
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To avoid misunderstandings due to the frequent reuse of
terms in grid computing, we will at this point define some
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Figure 1: GRAM Overview

expressions that will be used in this paper. We will call Job
Scheduler a program that searches for the resources nec-
essary to execute the tasks composing a job. A Resource
Manager is in charge of the ordering, submitting, monitor-
ing and controlling the jobs. A job is a unit of submission.
Every job is composed of one or more tasks, and may de-
fine communication or precedence relationships among these
tasks.

Local job schedulers such as LSF (Load Sharing Facil-
ity), Sun Grid Engine (SGE), OpenPBS (Portable Batch
System) and Condor allocate resources from a networked
pool of computers to jobs submitted. They provide differ-
ent sets of features, which include checkpointing and process
migration, authentication and authorization, daemon fault
recovery, staging, and dynamic load balancing. As the grid
environment is usually characterized by changing conditions,
there is a need of some kind of adaptation. Adaptability in
those systems is mainly based on job migration. They set
the QoS parameters on submitting, and look for optimal
ways to redistribute the tasks upon environmental changes.
Condor, for instance, was developed for scavenging idle com-
puter cycles. It can be configured to kill a guest job when a
computer stops being idle, reinitiating in another host.

3. SCRIPTING IN THE GRID

The benefits of using an interpreted language for coordi-
nating applications while maintaining their core in a com-
piled language have long been discussed in distributed pro-
gramming [18] . However, in high performance computing,
probably due to the focus on efficiency, emphasis has been
on ignoring multilingual programming. In our view, this will
change with the growth of Computer Grids.

Parallel programmers have traditionally placed very strong
emphasis on the performance of the tools they use. This has
caused most of them to choose simple programming envi-
ronments based on a single conventional programming lan-
guage, such as C and FORTRAN, and a communication
library, such as MPI. In environments such as a computer
cluster — maybe the most popular parallel system in the
nineties — this choice works well. Clusters are typically
highly homogeneous environments. Issues like load balance
and fault tolerance do not play a significant role in cluster
programming, because the programmer often has complete
control over the system while his application is running.

However, the scenario is quite different with computer
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grids. Grids provide an economically convenient alterna-
tive for processor-hungry applications: different institutions
can place parts of their computing resources in a pool from
which many may benefit. This pool of resources becomes
a virtual machine spanning different administrative and ge-
ographical domains. In this scenario, the programmer has
no control over the global availability of resources, which
tends to suffer great variability. Under such circumstances,
coordinating the use of resources becomes much more com-
plex than in a local, homogeneous environment. Besides, in
general, programs that can benefit from running on a com-
putational grid are long-running applications. It often does
not make sense to stop the application and launch it again
in order to improve resource usage. It becomes important
to be able to act upon the application while it is running [1].
The use of an interpreted scripting language as a coordi-
nation tool can bring several advantages in this setting. One
of the important characteristics of an interpreted language
is interactivity: with an interpreted coordination language,
the programmer may use a console to control the applica-
tion. New chunks of code can be added dynamically, and
existing functions can be redefined, thus allowing the pro-
grammer to tune the application without having to restart
it. This provides a new dimension of adaptation, in which
not only tasks can be redistributed according to execution
conditions, but the code they are running can also be mod-
ified, either because of execution conditions or as a conse-
quence of partial application results. In [21] we discuss an
example of such facilities over the implementation of an A-
Team (asynchronous agent team) application. In that case,
the program itself was based on the dual Lua/C model, keep-
ing the processing core in C and communication in Lua. We
show how ALua allows us to monitor the application and to
redefine some of its parts on the fly, for instance adding a
log file, with information about transmitted messages.
Scripting languages typically allows the programmer to
code complex tasks with small effort: the programmer can,
with a few lines of code, insert new monitoring and logging
facilities in a running application. Programs implemented
using interpreted languages are also highly portable. In en-
vironments like the Grid, where the destination of the exe-
cution is usually unknown, portability is an important issue.
Another facility associated with interpreted languages is
a more flexible type system, with features such as dynamic
typing, functions as first-order values, and support for clo-
sures. These features are important in building abstractions
that help the programmer deal with low-level mechanisms at
the level of detail that he needs [16]. The cognitive weight
of learning to use libraries and services needed to control
Grid environments, such as the ones offered by Globus, may
be well above what some application programmers can take;
however, these libraries and services will probably be much
easier to learn if seen at a higher level of abstraction.
On the other hand, all this flexibility calls for a self-
disciplined programming style to allow for the base code
to be easily maintainable.

4. ALUA

ALua [21] is an event-oriented extension of the interpreted
language Lua [9] for the development of distributed appli-
cations. ALua inheritates from Lua the ease of integration
with C code, thus supporting the use of a dual programming
mode that takes advantages of both worlds: computation-



ally hard tasks are typically executed in C, and Lua is used
as the programming language for communication, collabo-
ration, and dynamic adaptation.

ALua processes communicate by exchanging asynchronous
messages, consisting of chunks of Lua code. There is a single
communication primitive, alua.send. The arrival of a mes-
sage is handled as an event, and the handler for this event
executes the received chunk of code. All the messages are
executed atomically: every event is handled to completion,
eliminating the need for concurrency management. ALua
applications are environments within which processes can
exchange messages(a little like communicators in MPI).

ALua’s implementation is based on daemons that run on
every machine, mediating the communication among pro-
cesses. In version 4, ALua has been improved by migrating
all the code to Lua, modifying the API and adding the possi-
bility of different applications to coexist in a set of daemons.
As a consequence, new processes can join an existing appli-
cation and exchange messages with running processes, and
a process may belong to various applications. The instal-
lation depends only on the luasocket and luaposix libraries
(both extremely portable, although not yet supported by
Windows).

ALua’s application in grid environments has been explored
before. [20] reports an experience integrating ALua with
Globus for the monitoring of grid resources and the dynamic
adaptation of the application.

5. IMPLEMENTATION

The motivation of our implementation was the need of
submitting applications through the grid to clusters and ma-
chines where the Globus Toolkit for some reason is not in-
stalled. For instance, in clusters with virtual addressing we
would not be allowed to use Globus. Alternative solutions
as Condor can be too heavy and/or difficult to install and
configure for the job we need them to do. Besides, instabil-
ity in the load and frequent exclusive access requests made
adaptability a requirement.

Our goal was to develop a mechanism for the allocation
of resources for computational jobs submitted through the
grid. The requisites for our system would be the portabil-
ity and simplicity of the installation and configuration, that
it be lightweight and highly flexible without compromising
efficiency, and high availability (no need to stop the system
for reconfiguration). For the moment, no support will be
provided for interactive jobs.

Although the current version (Globus Toolkit 4) has an
attractive group of features, most of them related to web
services, we chose the distribution 2.4 (Pre-WS), thinking
in efficiency. To interface between our local scheduler with
the Globus GRAM job manager we wrote a Perl module as
suggested in [7]. It allows submitting and managing jobs
through the grid using the Globus commands. Figure 2
shows the system architecture.

Users who want their job to be managed by the ALua
Job Manager just need to submit a regular Globus RSL de-
scriptor and specify ALua as the job manager. The ALua
Resource Manager, upon receiving a request, will enqueue it
until it is time for execution, and will return to the user an
ID that can be used to control the job, that is, to investigate
the state of the job or cancel it. Using ALua allows new pro-
cesses to join an enqueued or already executing application.
This means that the running processes and the new process
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Figure 2: Architecture

can freely communicate with each other.

When it is the turn of our job to be executed, the Re-
source Manager will create a process (that will be called
a Task Manager) to take care of this particular job. This
Task Manager process spawns the number of processes spec-
ified in the RSL descriptor on the hosts chosen by the Job
Scheduler, which selects the best available resources based
on monitoring information and pre-defined policies. The
Task Manager also controls the state of the created pro-
cesses and the load in the nodes where they are running, so
it is possible to specify Service Level Parameters that should
be respected during execution. In this way, the behavior of
the system can range from scavenging to a guarantee of the
quality of service for the user. When a node’s load increases
and it does not satisfy requirements anymore, all the job
managers controlling processes in that node whose expecta-
tions would be violated are notified so they can cancel their
respective processes and ask to the scheduler for a new host
to re-initiate them. In conclusion, we have a job manager
hierarchy where a job dispatcher takes the jobs from the
queue and creates a new job manager to watch the job until
its end. In case of a request for the creation of a new pro-
cess (or processes), the corresponding job manager asks the
Job Scheduler for an available host in which to create the
process.

The control of the job and of the load parameters is based
on the information gathered by the monitoring system. It
is implemented by the collection agents and the notification
engine. The collection agents are ALua programs running in
every execution host. They collect information about CPU
load (and can be easily extended to any other collectable
parameter) at programmable intervals. The information is
sent (using a push model) to the scheduler who analyzes the
data during the resources selection process, and to the job
managers, so they can be aware of the state of the execution



environment where their respective processes are running.
The interested consumers (e.g., the scheduler and the job
managers) subscribe to the collection agents of their interest.
In order to avoid unnecessary communication, the engine has
been designed so that new information will be sent only in
case of state changes. The granularity of those changes can
also be specified, and can be altered at run time.

For the notification engine we used LuaMonitor, an im-
plementation whose original version, developed for CORBA,
is described in [5]. Lua Monitor is an extensible monitor-
ing mechanism written in Lua. It is based on the concept
of properties, aspects and observers. Properties are the pa-
rameters to be observed: for instance, in our case we defined
the CPU load as a property. An aspect of a property allows
observers to watch not only the value, but also its behav-
ior, for instance along time (increase, dramatic change, etc).
The function that evaluates an aspect can be changed at
run-time, and new aspects can be created, so the require-
ments can be dynamically adapted. The observer specifies
the property/aspect of interest and a callback so that it can
be notified when a certain aspect (or aspects) of a property
becomes true.

It is very easy to subscribe to a monitor using this frame-
work, as shown in this line of code:

LuaMonitor:attachEventObserver ({
notifyEvent=function(self, event)

alua.send("taskmanager", "monitor_alarm()");
end}, "CPUIncrease","$CPU: Increasing")

This code registers a function as callback for an event,
which in this case is the increase of CPU load. In the exam-
ple shown, if the event occurs, a message will be sent to the
taskmanager process to execute function monitor_alarm().
It allows for a customizable response to events taking place
in processes that the observer process (the Task Manager
in this case) is controlling. The notification function could
be changed at any time, and so could the parameters that
generate this event, allowing for adaptation in reaction to
changes in the environment without the need of reinitiating
the system.

5.1 Security issues

A major reason against the use of interpreted languages
for infrastructure tools are some security issues intrinsic to
the flexibility that they offer.

The ALua system currently does not offer support for au-
thentication. The idea here is to exploit the security frame-
work offered by the Globus Toolkit for sign-on. However,
the problem of authenticating messages still remains. With
no authentication for the messages received and executed
by the daemons, it is possible for a user inside the cluster
to execute (unknowingly) a script on behalf of another user.
We will address this matter in future work.

On the other hand, currently, jobs are executed with the
same rights as those of the Resource Manager process. This
does not allow for distinguishing among different users sub-
mitting their jobs to the same Manager and for enforcing
their individual resource limitations. One solution would
be to create a different daemon per user on each executing
node, but this does not scale well and is not compatible with
centralized scheduling. A better solution would be to have
a single daemon per node, executing as a special user, cre-
ating user environments [11] with the correct rights for each
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submitted job.

5.2 Scheduling on the Grid

The tool we developed allows for the execution of jobs
submitted through the grid and the publication of the data
in the MDS, but there is still a lot of work to do for achiev-
ing a real integration with the Grid environment. In this
initial stage we are, there is neither meta-scheduling nor
communication with processes outside the ALua site. ALua
processes should to be able to communicate transparently
with the other processes executing tasks belonging to the
same job, with independence of the locality and local re-
source manager of the remote site. This will lead to the
inclusion of global addressing and of mechanisms to allow
for site-to-site effective and secure communications (proba-
bly using the Globus XIO API).

We also intend to add some facilities for dynamic interac-
tion with the application itself. Using Lua support tools, we
can use information from .h application header files to make
some global variables automatically available in a surround-
ing ALua environment. This would allow programmers to,
through a console, monitor the state of running applications,
and eventually interact with them, by changing parameters
or resource allocation decisions.

6. EXPERIMENTAL RESULTS

We have performed a set of experiments to analyze the
overhead generated by our tool compared to the execution
using remote command execution (rsh). We also measured
the overhead caused by the monitoring system. For the ex-
periments we used the heuristic proposed in [15] for the trav-
eling tournament problem. The tasks are independent; there
is no communication among them. Only one process was al-
located per processor. The experiments were performed on
a set of Intel Pentium II CPUs with 398 Mhz and 280 MB
of RAM.

Table 1: Performance results

Instance Remote ALua ALua with

execution monitors
nll4 295.34 295.56 295.72
nll6 2291.54 2293.668 2295.352

Table 1 shows timing in seconds for the execution of the
algorithm with two instances. The results of the table show
that the execution using remote command execution was
only slightly faster than with ALua.

We can also observe that the expected increase on the
computational time when the monitoring system is operat-
ing is negligible (about 0.05 percent of the computational
time). We concluded that our tool satisfy our requirements
of low computational overhead.

7. FINAL REMARKS

Interpreted languages are often applied in the grid to
simplify operations like process automation, error check-
ing, sophisticated analysis and display applications, as in
GrADS [8], which offers a proprietary script language, and
Chimera Grid Tools [2], which contains a library of Tcl lan-
guage. Another application of interpreted languages in com-
puter grids are the Commodity grid Kits (CoG Kits) [22].



They aim to provide wrappers between Globus and partic-
ular commodity frameworks. Examples are the Perl Cog
Kit [13] (for Perl) and pyGlobus [10] (for Python).

We have no knowledge of a scheduler implemented using
interpreted languages. Our tool allows for deploying paral-
lel and distributed applications in grid clusters (even with
virtual IPs) without much overhead. Computationally ex-
pensive procedures could be compiled and accessed directly
from ALua, allowing for efficiency and flexibility. Other ad-
vantages of this approach include the rapid development in-
trinsic to the Lua language and the simplicity of installation
and configuration of ALua. These factors allow us to easily
experiment with different policies and configurations.

The system allows for opportunistic computing and also
for dedicated clusters. Adaptation is achieved by modify-
ing the number of processes composing an application or by
job migration. The job migration is initiated after detect-
ing a performance degradation surpassing the pre-defined
expectations. However, another level of adaptation can be
carried out by modifying the running application itself, dy-
namically inserting new code in running processes or even
new processes.

The flexibility offered by our approach allows, for instance,
including at run time a new metric in the scheduler’s view
of the system state. This may imply adding a new prop-
erty to the monitor to extract the parameter, subscribing to
be notified when the parameter changes and changing the
scheduler function to take in account that new information.
It can be simply done by:

1. creating a new process and joining it to the Job Man-
ager application;

2. sending a message to every monitor with the new sen-
sor function, the property registration request and the
notification request;

3. sending a message to the scheduler containing the func-
tion that implements the new algorithm that takes into
account the included parameter. This could be written
in Lua or encapsulated in a dynamic library.

Provisions must be taken to guarantee that only users with
administrator privileges would be able to perform such sim-
ples but powerful operations.

The major disadvantage of our proposal is the compromise
between flexibility and security. We plan on modifying ALua
to include messaging authentication.

As mentioned before, the presented work is still in progress,
and is part of a larger project that investigates what may be
gained from the flexibility an interpreted language offers in
grid environments. We intend to complete the integration of
the scheduling tool with the grid, as discussed in Section 5.2.
We are also creating an API to allow for the execution of
MPI programs inside ALua clusters, and developing bet-
ter monitoring facilities and fine-grain management. On a
longer perspective, we are looking for ways to link our work
with application scheduling, for building application-aware
resource managers able to optimize the resources allocation.
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