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Abstract

This paper proposes a concurrency model which inte-
grates the asynchronous and event-driven nature of net-
worked sensors with a more familiar programming style
for the developer. We argue that coroutines can provide
a basis for this integration and describe some details of
its implementation, which was developed as an exten-
sion to the TinyOS operating system.
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1. Introduction

Recent advances in low-power microcontrollers
and wireless communication have enabled multifunc-
tional tiny devices which can be densely deployed
throughout a physical space to sense, process and com-
municate required data. Similarly to other embedded
systems, networked sensors must respond to different
stimuli, including physical events and messages from
other devices. Besides, networked sensors are highly
unstructured and dynamic environments, in which there
are no well-behaved communication patterns. As a con-
sequence, computing models for such systems are typi-
cally event-driven and asynchronous [4, 6].

In their simplest form, event-driven models encom-
pass a set of independent activities or services, each of
them with a single execution line that handles each in-
coming event at a time. This leads to a state-machine
programming model, in which the arrival of a new event
can trigger a transition that depends on the current state.
Although conceptually simple, this is not the classical
way in which programmers are used to thinking. When
an operation cannot complete immediately, it must be
split across one or more invocations of the event han-
dler, forcing the programmer to code “continuations”

within his handlers. Between event handler invocations,
new events may occur, triggering new logical execution
lines. The developer must, thus, construct his program
as a state machine and face issues such as maintaining
consistent state across multiple logical tasks. This can
impose high programming costs.

In this paper, we propose a programming model
which combines the asynchronous basis of event-driven
systems with a more classical programming interface
for the developer. The central idea is to investigate a
computing model that takes into account the limited
resources of sensor devices while supporting higher-
level programming paradigms able to reduce the cost
of developing sensing applications. We use cooperative
multitasking to support lightweight concurrency with-
out forcing the programmer to manually build continu-
ations within an application.

The traditional approach to dealing with concur-
rent execution lines is to use multithreading. However,
multithreading is typically preemptive, that is, the pro-
grammer has no control over the moment at which con-
trol switches occur. This imposes context switching
overhead and the need to deal with race conditions and
deadlocks. One alternative is to use coroutines [13, 7],
a programming language construct that enables a pro-
cess to maintain distinct execution lines and explic-
itly alternate the control among them. Thus, distinct
parts of an application can suspend only it is impos-
sible for them to continue immediately and be resumed
later, when their processing requirements become avail-
able. That is, coroutines are a collaborative and non-
preemptive type of multitasking. This aspect is fun-
damental in making coroutines suitable for networked
sensors: context switching occurs only it is necessary
(reducing the computing cost associated to it) and most
concurrency issues (such as race conditions) can be im-
plicitly avoided.

To experiment with the coroutine abstraction for
networked sensors, we have integrated a coroutine-
based concurrency model into TinyOS [11], a well-
known operating system for networked sensors. Basi-



cally, we have implemented a simple API and a corou-
tine scheduler that allow us to transform two-phase op-
erations (typically specified by means of the pair com-
mand/event in a TinyOS interface), into one operation
that is appropriately suspended and resumed, allowing
the programmer to maintain a sequential view of his ap-
plication. In this paper, we discuss the implementation
of this model and the gain of using it in developing a
sensing application, and evaluate the associated com-
puting cost.

The rest of this paper is organized as follows. Sec-
tion 2 describes TinyOS. Section 3 presents the pro-
posed concurrency model and discusses how we have
integrated this model into TinyOS. Section 4 evaluates
the cost of using coroutines in a sensing application. Fi-
nally, in Section 5, we include some final remarks.

2. Systems for networked sensors

Networked sensors consist of potentially thousands
of tiny, low-power nodes, each of which execute con-
current, reactive programs that must operate with severe
memory and power constraints. Information must be si-
multaneously captured from sensors, manipulated, and
streamed onto a network. Moreover, nodes must deal
with events that require real-time responses. An ex-
ample is message arrival. Typically communication is
radio-based. The radio is an asynchronous input/output
device that contains no buffer, so each bit must be ser-
viced by the node as soon as it becomes available. Sys-
tems for networked sensors thus present some special
requirements. First, software solutions must make effi-
cient use of processor and memory while enabling low
power consumption. Second, it is necessary to main-
tain a number of concurrent flows and juggle numerous
outstanding events.

TinyOS [11] is the current state of the art in operat-
ing systems for sensor network research. It implements
a component-based model based on split-phase inter-
faces, asynchronous events and deferred computation.
Hardware interruptions trigger immediate execution of
event handlers. Tasks are the main unit of execution,
and each task executes to completion, except that it may
be interrupted by a hardware event (there is no concur-
rency among tasks). In the next section we describe
some important design aspects of TinyOS.

2.1. The TinyOS design

TinyOS design is based on three programming con-
structs: commands, events, and tasks. Both commands
and events are intended to perform small amounts of
work. Commands are used to request services and com-

plete immediately. Typically, a command handler de-
posits request parameters and conditionally posts a task
for later execution. Events are signaled to indicate ser-
vice (command) completion or hardware events. The
lowest-level components have handlers connected di-
rectly to hardware interrupts, which can be external in-
terrupts, timer events or counter events. An event han-
dler can deposit information in the component’s en-
vironment, post tasks, signal higher level events or
call commands. Tasks are a form of deferred proce-
dure call that allows postponing processing. They are
atomic with respect to each other and run to completion,
but can be preempted by interrupts (hardware events).
Tasks allow concurrency within each component since
they execute asynchronously with respect to events. To
ensure low task execution latency, individual tasks are
expected to be short, i.e, lengthy operations should be
spread across multiple tasks. Posted tasks are executed
by the TinyOS scheduler when the processor is idle.

TinyOS highlights separation of construction and
composition. There are two different programming con-
structors: module, that is used to provide code; and con-
figuration that is used to wire components together. The
TinyOS component behavior is specified in terms of in-
terfaces that can be provided or used by the component.
Interfaces specify a multi-function interaction channel
between two components, the provider and the user.
The interface provider must implement a set of named
functions called commands, and the interface user must
implement the set of named functions, called events,
that can be signaled upon completion of the commands
it uses.

A C-like language called nesC [10] was spe-
cially designed to provide the event-driven concurrency
model used by TinyOS. In order to avoid data races –
which can occur due to concurrent updates to shared
state – nesC offers two options: either to implement all
of the critical code inside tasks or to use atomic sections
to update the shared state. Atomic sections are small
code sequences that nesC ensures will run atomically
by disabling and enabling interrupts.

3. A new concurrency model for networked
sensors

Although it deals well with the main constraints of
networked sensors, the programming model designed
by TinyOS is not easy to use. Its multitasking engine
maintains a two-level scheduling structure that is sim-
ilar to a finite state machine model, which can be dif-
ficult to program. To develop a simple sensing appli-
cation in nesC, the programmer must typically control
shared memory access and partition basic requests into



module SurgeM {
uses {
interface ADC;
interface SendMsg;
interface Timer;
... }}

implementation {
TOS_Msg gMsgBuffer;
norace uint16_t gSensorData;
bool gSendBusy;

task void SendData() {
SurgeMsg *pReading;
pReading = (SurgeMsg *)((&gMsgBuffer)->data);
pReading->reading = gSensorData;
if ((call SendMsg.send(..., &gMsgBuffer)) != SUCCESS)
atomic gfSendBusy = FALSE;

}

event result_t Timer.fired() {
call ADC.getData();

}

async event result_t ADC.dataReady(uint16_t data) {
atomic if (!gSendBusy) {
gSendBusy = TRUE;
gSensorData = data;
post SendData();

}
}

event result_t SendMsg.sendDone(...) {
atomic gSendBusy = FALSE;

}
}

Figure 1. Core logic of the Surge application.

two-phase operations.
As an example, Figure 1 shows the main code of

Surge, a nesC application in which nodes in the net-
work take light readings and forward them to a base sta-
tion. Each time the Timer.fired event is signaled, the
ADC.getData command is called to get a new sensor
value. When the sensor value is available, the hardware
signals the ADC.dataReady event. As gSendBusy is
accessed in a hardware event handler, its use must be
protected by one atomic statement. The handler for
this event finishes by posting the SendData task, which
sends the value to the base station.

In this code, the main task (to take data readings
and forward them) was broken into four distinct pieces
of code, since sensor value reading is a typical split-
phase operation. The ADC interface defines the com-
mand getData to request a reading; and the event
dataReady to signal the sensor value is available.

Our goal is to provide a more intuitive program-
ming abstraction to the developer. A classical and more
convenient way to get data readings would be to call
just one simple command and get the sensor value as
the return value to this request. In our proposal, we
encapsulate the two phases of a typical request/answer
in a single request, enabling the programmer to struc-

ture his application as sequential code instead of as
a state machine. Figure 2 illustrates how the Surge
code is simplified with this approach. In the original
version, Timer.fired issues the ADC.getData com-
mand, and ADC.dataReady handles the event signaled
by this command. In the new code, in Figure 2, op-
eration newSendData contains both the invocation of
ADC.getData and the handling of its result, eliminat-
ing the split-phase behavior.

We achieve this goal by employing coroutines. The
possibilities brought by coroutines are in many ways
similar to those offered by multithreading, but there are
important differences. Multithreading [5] is a notion
widely explored in order to enable processes to have
distinct execution lines called threads. The developer
defines the distinct threads of execution and the operat-
ing system, or an appropriate library, is responsible for
relocating the processor control among threads. Corou-
tines allow the programmer to suspend an execution line
to wait for some system event and restore this execu-
tion later, but context changes are explicit, avoiding race
conditions. On the other hand, the programmer is re-
sponsible for control transfers.

In this work, we use coroutines to allow a net-
worked sensor application to respond to system events
continuously, modeling each split-phase operation as a
new coroutine, and transferring control back to the main
loop when it needs to wait for hardware events to con-
tinue. Control transference is encapsulated in blocking
operations, so they will only occurs when it is neces-
sary and the programmer need not explicitly deal with
transfers.

We propose changing interfaces like ADC into new
interfaces in which only commands are offered: block-
ing operations are transformed into split-phase calls; the
context of execution is preserved; and yet the applica-
tion is able to respond to other system events or deferred
tasks while the operation is not able to continue. In or-
der to support this scenario, the following three steps
were necessary: (1) building a basic API with corou-
tine operations for sensors; (2) implementing a corou-
tine scheduler to resume coroutines automatically; (3)
defining a step-by-step procedure to construct proxy
interfaces, redefining TinyOS two-phase operations as
one-phase operations.

3.1. Coroutine operations for sensors

Our first step was to implement support for the
coroutine construct in TinyOS. A coroutine is repre-
sented by a code address and has its own stack. There
are different syntactic and semantic ways to support
coroutines [7]. We support asymmetrical coroutines, al-



module newSurgeM {
uses {
interface newADC;
interface newSendMsg;
interface Timer;
... }}

implementation {
TOS_Msg gMsgBuffer;

void newSendData() {
SurgeMsg *pReading;
result_t result;

pReading = (SurgeMsg *)((&gMsgBuffer)->data);
call newADC.getData((&pReading)->reading);
call newSendMsg.send(..., &gMsgBuffer, &result);

}

event result_t Timer.fired() {
POST(newSendData);

}
}

Figure 2. New core logic of the Surge applica-
tion.

lowing arbitrary functions, independently written, to be
invoked as coroutines. For this, we implemented a set
of operations that allocate storage for a coroutine stack,
associate a function to a coroutine storage area, transfer
control to a coroutine, and yield control from a corou-
tine.

A key issue related to coroutine implementation
is how to pass parameters between two coroutines. It
is difficult because we typically use the stack to pass
parameters and each coroutine uses a different stack.
Moreover, a typical coroutine can have several entry
points (immediately after each transfer operation). To
maintain our implementation simple, we use (scope re-
stricted) global variables to transfer data.

Implementation We implemented coroutines for the
microcontroller ATmega128L [1] (from Atmel-AVR
family [2]). It has 128 KB of flash for program memory
and 4 KB of SRAM for data memory. The coroutines
stacks are allocated on the heap.

One simple way to implement coroutines is by
using the setjmp and longjmp functions [9]. The
setjmp function saves the current execution context
(including the stack pointer) into a pre-defined data
structure to be passed later as argument to the longjmp
function. The longjmp function, in its turn, resumes
the execution context previously saved by setjmp.

The AVR Libc [3] library (a subset of ANSI-C li-
brary for AVR microcontrollers) implements setjmp

and longjmp functions and defines a specific data
structure, called jmp buf, to be used by these func-
tions. To implement the coroutine construct, we do a
setjmp to save the initial state in the jmp buf struc-

ture and then manually adjust the program counter and
the stack pointer fields.

3.2. Coroutine scheduler

TinyOS provides a queue for all tasks and a sched-
uler to execute these tasks using a FIFO policy. We have
extended the TinyOS task scheduler to include a corou-
tine queue (with pre-allocated space) and a coroutine
scheduler that resumes coroutines that are ready. The
TinyOS scheduler is implemented as a set of C func-
tions in the file “sched.c”. Since we are using TinyOS
1.x, we have changed this file directly (a future step is to
update this implementation to TinyOS 2.0 by designing
an appropriate scheduler component).

A TOS post coro function (similar to TOS post)
was implemented. Basically, this function receives a
function as argument and associates it to an available
coroutine. The coroutine is then marked as “ready” and
can be resumed by the scheduler. We have changed
the TinyOS main loop to call a function (similar to
TOSH run next task) that checks and resumes all
ready coroutines.

In order to offer access to coroutine services from
the component level, a set of functions are exported by
file “sched.c”, which includes:

• bool POST(procedure t proc): schedules a
procedure to be executed as a coroutine;

• uint8 t GETID(): returns the current coroutine;

• void SUSPEND(): transfers control execution
back to the main coroutine;

• void RESTORE(uint8 t id): informs the
scheduler that the given coroutine is ready to be
resumed.

3.3. Proxy for current TinyOS interfaces

Using the new TinyOS scheduler and the set of
functions exported by it, we can rewrite typical TinyOS
interfaces, encapsulating in their implementation the
transfer of control between coroutines. As a result,
the programmer that uses such an interface in his ap-
plication will be provided with the sequential view we
wanted. Figure 3 presents, as an example of this, the in-
terface proxy we have implemented to replace the ADC
interface.

In the new version of the ADC interface, the
newADC.getData command calls the original com-
mand ADC.getData and suspends the current execu-
tion line by calling SUSPEND. At this point the execution
control goes back to the main loop, so the application is



interface newADC {
async command result_t getData(uint16_t *data);

}

module newADCM {
provides { interface newADC; }
uses { interface ADC; }

}
implementation {
uint8_t gBusy, gCoroID;
uint16_t gData;

async event result_t ADC.dataReady(uint16_t data) {
atomic gData = data;
atomic RESTORE(gCoroID);
return success;

}

async command result_t newADC.getData(uint16_t *data){
atomic{
if (gBusy) return fail;
gBusy = 1;
gCoroID = GETID();

}
call ADC.getData();
SUSPEND();
atomic {
*data = gData;
gBusy = 0;

}
return success;

}
}

Figure 3. Proxy for ADC interface.

able to handle other events or tasks. The coroutine iden-
tifier is stored in the gCoroID variable to be used later,
when this coroutine becomes ready to continue.

When the requested value is available, the
ADC.dataReady event is signaled. This means the
previous suspended coroutine can continue its execu-
tion. The coroutine scheduler is notified by calling
the RESTORE function. The next time this corou-
tine is resumed, the execution will continue after the
SUSPEND() statement.

Besides appropriately suspending and resuming the
getData task, the proxy for the ADC interface encap-
sulates all shared memory access. So, the programmer
need not worry with atomic accesses to the sensed data.
We have used the same step-by-step procedure to con-
struct a proxy for the SendMsg interface. Using these
proxies the programmer can write the simplified version
of the Surge application, presented in Figure 2.

4. Evaluation

In order to evaluate the overhead added by corou-
tines, we compare the simulated behavior of the Surge
code presented in Figure 1 and Figure 2, at the machine
code level. Because we are using setjmp/longjmp

functions to implement coroutines, it is necessary to use

a program that allows for emulating, in an instruction
by instruction manner, the operation of individual sen-
sor nodes. For that, we adopted ATEMU [14], a fine
grained sensor network simulator. Like TOSSIM [12],
(a simulator specially designed for TinyOS programs),
ATEMU simulates sensor networks in which the nodes
are AVR microcontrollers [2] and runs the microcon-
troller program, rather than models of the software.
However, TOSSIM uses a few system libraries – instead
of AVR Libc library – when compiling nesC code into a
binary for the development workstation. Among these
libraries is the one that supports setjmp/longjmp

functions.
Figure 4 shows the results of simulations we have

conducted. We used the ATmega128L Emulator (ver-
sion 0.4) provided by ATEMU. In the first case, we
simulated the core Surge code (presented in Figure 1)
compiled with TinyOS 1.x. In the second case, we re-
placed the original “sched.c” file of TinyOS 1.x by our
new implementation, which adds an initialization step
to allocate memory space for coroutines and a coroutine
scheduler (our goal in this case was to measure the over-
head imposed by the new scheduler even if we don’t use
coroutines). Finally, in the third case, we simulated the
new version of the Surge code (presented in Figure 2).
We are interested in comparing the number of clock cy-
cles needed to start the application and to take the first
sensor reading in each case.
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Figure 4. Clock cycle overhead added by
coroutines.

The first results are encouraging. The overhead
added by the new scheduler is approximately 9.4% and
the further overhead added by using coroutines is about
3.6% (the total overhead in the third case is 13.4%).
With respect to code size, basically we have just in-
creased the size of the “sched.c” file (which contains
all coroutine operations and the coroutine scheduler) in
approximately 60%. These are the results we obtained



with our initial implementation, which we believe we
can still improve.

5. Final Remarks

Software architectures for networked sensors are
typically concurrent and event driven. However, event-
triggered programming models are not natural for pro-
grammers: applications have to be written as explicit
state machines, which are hard to understand and main-
tain. In this work, we proposed a coroutine-based con-
currency model for networked sensors. By using the
coroutine abstraction, we can build a sequential view
for the programmer, without losing the event-based and
asynchronous characteristics required by the networked
sensors. Coroutines are a lightweight construct and
seem to match well the constraints of sensor networks.

The work presented in [8] on Protothreads also
proposes a programming abstraction which intends to
reduce the complexity of high-level programs in event-
triggered sensor nodes systems. Unlike coroutines, pro-
tothreads implement a type of continuation (called lo-
cal continuation) that does not require its own stack: all
protothreads run on the same stack and context switch-
ing is done by stack rewinding. The main limitation of
protothreads is that variables with function-local scope
are not automatically saved across blocking operations
because the stack is rewound at every blocking state-
ment. In our system, each coroutine has its own stack,
and thus maintains its local variables across control
transfers. Besides, since protothreads are implemented
using the C switch statement, programs cannot utilize
switch statements together with protothreads.

Welsh and Mainland [16] propose abstract regions
to abstract interaction details between nodes in a sen-
sor network. To simplify the programming task us-
ing abstract regions, the authors implemented a syn-
chronous programming interface for TinyOS based on
“lightweight threads”. The system maintains two ex-
ecution flows: a main flow, which is event-driven and
cannot block; and an application flow, which can in-
voke blocked operations. The same stack is shared by
these two flows of execution. Using this structure, the
application can block while the system remains event-
driven. In our proposal, the main flow is event-driven
and the application can be divided into more than one
control flow, each one with its own stack of execution.

This work is part of a project in which we study
applications of cooperative multitasking. In a previous
paper [15], we discussed how coroutines can be used to
couple the advantages of asynchronous communication
with the use of the well-known remote procedure call
abstraction in geographically distributed systems.
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