Segurança Sistemas Distribuídos 2013

Segurança

- confidencialidade
- autenticidade
- integridade
- não repudiação

comunicação

Ameaças

- interceptação
- interrupção
- modificação
- fabricação

ataques a canais de comunicação

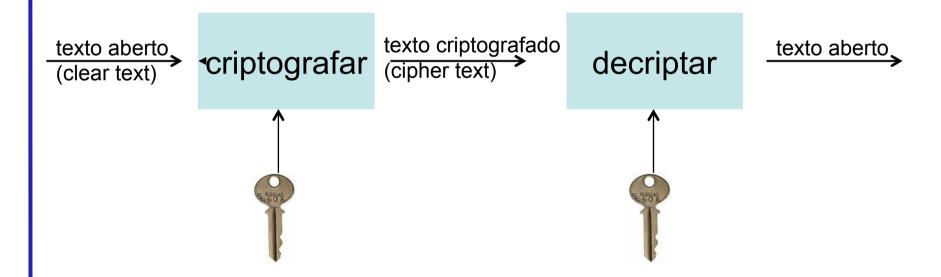
- escuta
 - obtenção de informação na rede
 - senhas, etc
- masquerading
 - uso de identidades incorretas
- message tampering
 - alteração de mensagens trocadas
- replay
 - reenvio de mensagens obtidas por escuta
- negação de serviço
 - inundação de rede ou servidor

garantias

- confidencialidade
- autenticação
- autorização
- auditoria

mecanismos

- protocolos
- criptografia


política de segurança

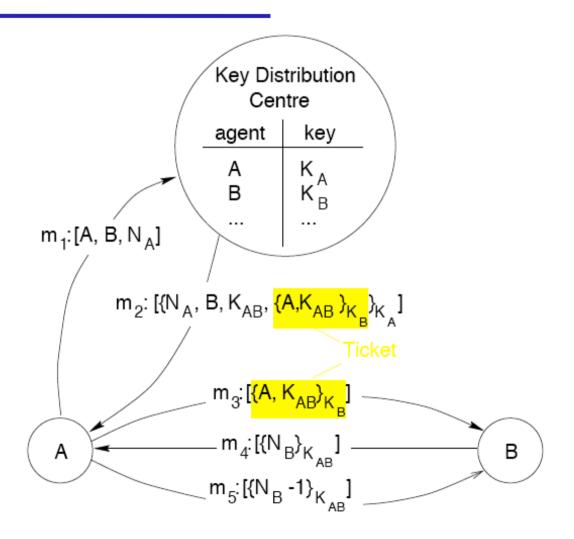
- equilíbrio entre custos
 - risco X sobrecarga

Criptografia de chave secreta

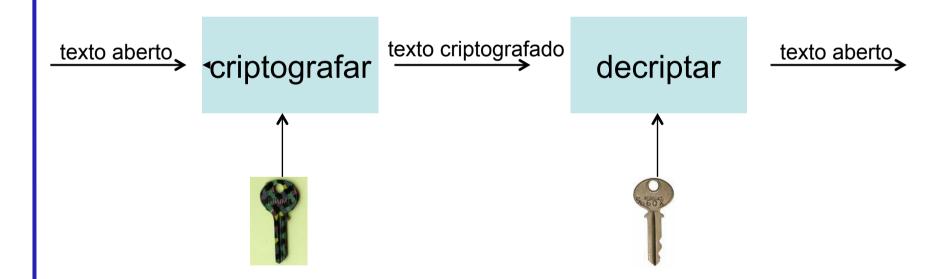
- muitas vezes chamada de segredo compartilhado
- também chamada de criptografia simétrica

algoritmos de chave secreta

- técnicas de embaralhamento
- muitas vezes pensados para implementação em hardware


Distribuição de chaves secretas

- como fazer para as duas partes compartilharem um segredo?
- uso de intermediários confiáveis ou Key Distribution Centers
 - ex Kerberos


protocolos de acesso a KDCs

Criptografia de chave pública e privada

- também chamada de criptografia assimétrica
- uma das chaves pode ser pública sem problemas

criptografia assimétrica

- confidencialidade:
 - A criptografa com chave pública de B
- autenticação e integridade:
 - A criptografa com chave privada de A
 - mas como B sabe que o que decriptou era de fato o que A queria enviar?
 - assinaturas digitais

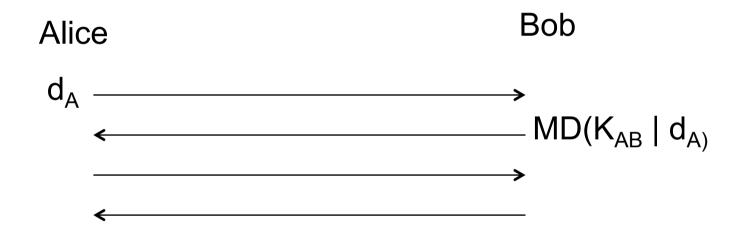
algoritmos de chave pública e privada

- técnicas aritméticas
 - manipulação de números primos muito grandes
- surgimento do conceito com Diffie-Hellman, em 1976
 - D-H apenas para estabelecimento de segredo compartilhado
- processamento mais custoso que o de algoritmos de chave secreta

Distribuição de chave pública

- intruso ainda pode fazer crer que sua chave pública é a de outra entidade
- infraestutrura de distribuição
 - certificados
 - autoridades de certificação
 - infraestruturas de chaves públicas
 - problemas de raizes de certificação
 - listas de confianca

algoritmos de hash


- funções de hash:
 - dado um blobo de dados de tamanho arbitrário, retornam um string de bytes de tamanho fixo
 - entrada: mensagem
 - saída: hash ou digest
 - pequenas alterações nos dados de entrada devem alterar o valor do hash
 - não é possível descobrir a mensagem a partir do hash
 - duas mensagens diferentes dificilmente levam ao mesmo hash

hash como técnica criptográfica

em conjunto com segredo compartilhado K_{AB}

ataques para descoberta de chaves

- Diferentes níveis de dificuldade se atacante dispõe de:
 - apenas texto criptografado
 - pares (texto aberto, texto criptografado)
 - pares escolhidos
- ataques de "força bruta"
 - tentativa de quebra com cada chave possível
 - tamanho de chaves e o "computacionalmente difícil"

usos em comunicação

- confidencialidade
- autenticidade
- não repudiação
- integridade
 - aplicação de criptografia sobre digest da msg
 - uso combinado de criptografia simétrica e assimétrica

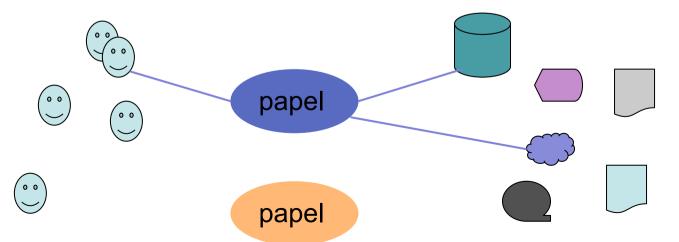
Autenticação

- login e senha
- biometria
- algoritmos de autenticação

algoritmos de autenticação

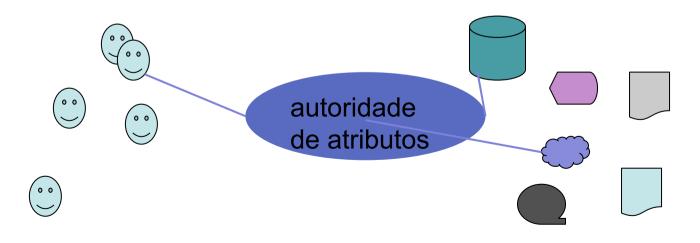
- uso de desafios e criptografia
 - simétrica e assimétrica

Controle de acesso


- matrizes de acesso
 - usuários X recursos
- normalmente esparsas
- opções:
 - lista de recursos para cada usuário/grupo
 - lista de usuários/grupos para cada recurso

RBAC

- direitos nem sempre associados a usuários individuais
 - papel do usuário na organização
 - um mesmo usuário pode desempenhar diferentes papéis
 - dinamismo



ABAC

- simplificação de RBAC
 - atributos de usuário utilizados para definir autorizações

Autenticação em sistemas distribuídos

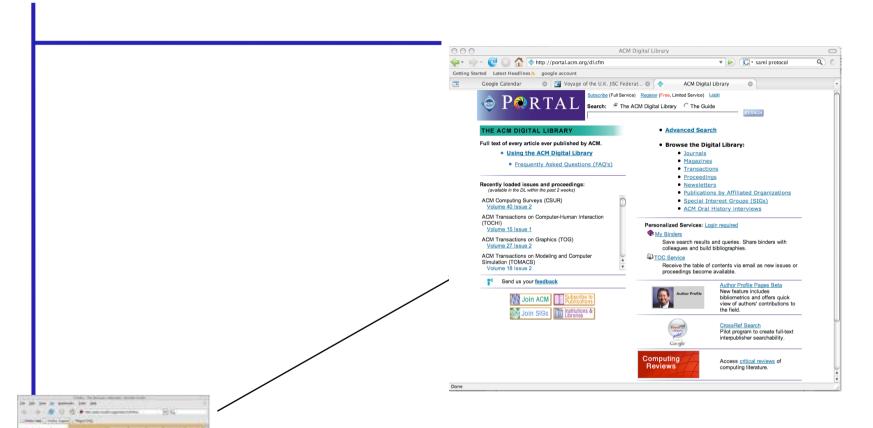
- acesso a serviços em diferentes pontos
 - (administrativos e geográficos)
 - escalabilidade
- cada um deles deve identificar o usuário individualmente?
 - cenários como grades, bibliotecas digitais, etc
 - autenticação e controle de acesso

soluções clássicas

- cadastro individual de cada usuário em cada serviço
 - ônus para administrador de serviço
 - · cadastro de cada usuário e de seus direitos
 - ônus para usuário:
 - senha (ou outra coisa) para cada serviço?
- conta única para todos os usuários de certa instituição
 - ônus para administrador de serviço:
 - não há como fazer auditoria
 - ônus para usuário
 - · não há como diferenciar direitos

sistemas de identidade web

- institucionais
- centrados em usuários


arquiteturas distribuídas

- provedor de serviço:
 - responsável por serviço controlado
- provedor de identidade
 - responsável por autenticação de usuários
- provedor de atributos
 - fornece informações que podem ser usadas pelo controle de acesso
 - rede de confiança entre provedores
 - propostas específicas para aplicações web

exemplos

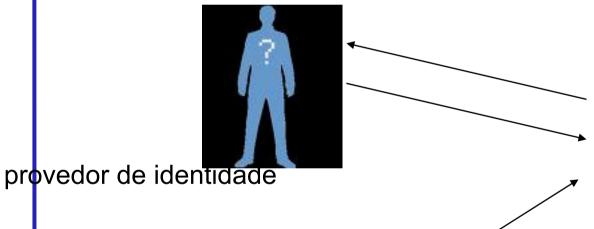
mozilla

acesso a editoras online
reconhecimento de usuários de instituições cadastradas

exemplos

vendas com descontos p/ estudantes

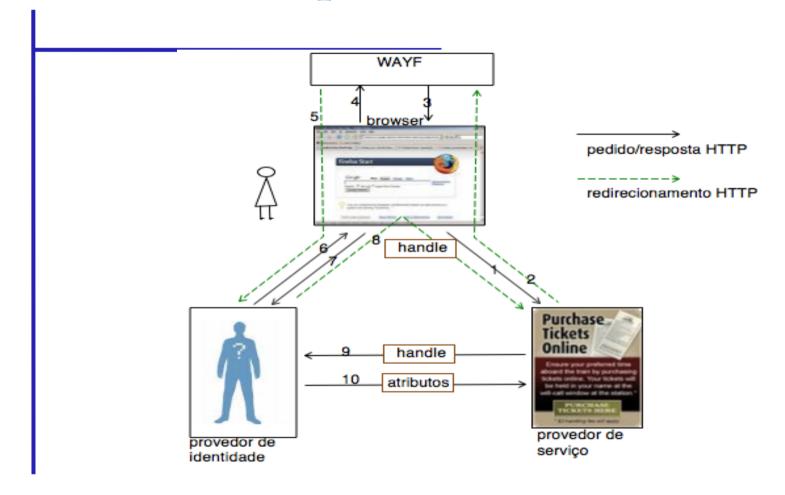
- como saber que usuário é estudante?
- certificado? mas serviço tem que conhecer cada usuário?



uso de provedores de identidade

provedores de serviços confiam em algumas fontes

de indentidade

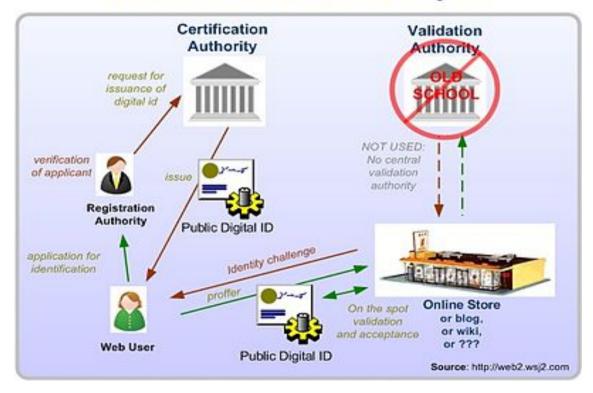


serviço em qualquer lugar

exemplo: uso de shibboleth

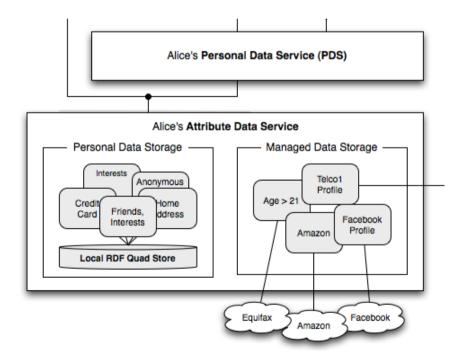
protocolo SAML usado na comunicação (shib 2.x)

federações


- em andamento em muitos países
- acoplamento com projetos de infraestruturas de chaves públicas
- privacidade: fornecimento do conjunto mínimo de atributos necessários
- foco atual em aplicações web

identidades centradas em usuários

Making The Two-Way Web Safe and Scalable with Identity 2.0



identidades centradas em usuários

 um conceito semelhante ao do intermediário confiável pode ser usado para armazenar dados do usuário

Bibliografia

- Charlie Kaufman, Radia Perlman, Mike Speciner. Network Security: Private Communication in a Public World. Prentice-Hall, 1995.
- Ihor Kuz, Felix Rauch, Manuel M. T. Chakravarty, Gernot Heiser. Security in Distributed Systems. Notes for Lectures on COMP9243. University of New South Wales

www.cse.unsw.edu.au/~cs9243/lectures/

• Dan Alistarh, Seth Gilbert, Rachid Guerraoui, Zarko Milosevic, and Calvin Newport. 2010. Securing every bit: authenticated broadcast in radio networks. In *Proc. of the 22nd ACM symposium on Parallelism in algorithms and architectures* (SPAA '10).

