
Operating Systems
For Wireless Sensor Networks

2019-1 DS – PUC-RJ
Antonio Iyda Paganelli

Summary

• Introduction

• Requirements

• Design Choices

• TinyOs and Contiki

• Conclusions

Introduction

• Wireless Sensor Networks

Cheap, tiny, energy-efficient communicating devices

 Unreliable or lossy channels

 Limited and unpredictable bandwidth

 Highly dynamic topology

[4] Hahm et at. (2016)

with unreliable or lossy channels, limited and unpredictable bandwidth, and a highly dynamic topology

High-end IoT devices: single-board computers like Raspeberry Pi
or smartphones

Low-end IoT devices: Arduino duo, Econotag, Zolertia Z1, IoT-
LAB M3, OpenMote, TelosB and so on …
• Highly constrained hardware resources

Low-end IoT devices

• Constrained resources

• Energy

• CPU

• Memory capacity

• IETF classification
(RFC 7228 – Terminology for Constrained-Node Networks)

• Class 0: << 10 kB RAM, << 100 kB Flash

• Class 1: ~10 kB RAM, ~100 kB Flash

• Class 2: more resources, but still very constrained
compared to high-end IoT devices.

Terminology for Constrained-Node NetworksTerminology for Constrained-Node Networks

Operating Systems

• Management of shared
resources:

processor, memory, timer,
network interfaces, other
I/O devices

• Multiplexes resources by
time or by space

[3] Farroq & Kunz (2011)
[4] Hahm et at. (2016)

B
a

tt
e

ry

Micro-Controller

Transceiver

Memory

Sensing Unit

ADC

Operating Systems

• Class 0 – too small. Bare metal
software, very specialized

• Class 1 and Class 2

• Moore’s Law is not expected

[4] Hahm et at. (2016)
[5] Levis (2012)

Context of OSs for WSN

Hard upper bounds on:

o State

o Code space

o Processing cycles

o Energy

o Network bandwidth

o Full connectivity

o Lack of broadcast / multicast

RFC 7228

Additionally,

o Cost

o Size

o Weight

o Other scaling factors

(energy harvesting)

Requirements

oSmall memory footprint

oSupport for heterogeneous hardware

oNetwork connectivity

oEnergy efficiency

oSecurity

oReal-time capabilities

[4] Hahm et al (2016)

Concurrency and Flexibility

[6] Tobias Reusing (2012)

Design choices

Technical

• General Architecture and Modularity

• Scheduling Model

• Memory Allocation

• Network Buffer Management

• Programming Model

• Programming Languages

• Driver Model and Hardware
Abstraction Layer

• Debugging Tools

• Feature Set

• Testing

Non-Technical

• Standards (open)

• Certification

• Documentation

• Maturity of Code

• License of Code

• Provider of the OS

[4] Hahm et al (2016)

General Architecture and Modularity

• Monolithic
• Single image

• Small OS memory footprint

• Interfaces for service modules

• Modules interaction costs are low

 Hard to understand and modify

 Difficult to maintain

 Unreliable

[4] Hahm et al (2016)

General Architecture and Modularity

• Microkernel

• Minimum functionality provided by the kernel

• Most of functionalities provided by user-level servers

• Small OS memory footprint

• Better reliability

• Ease of extension and customization

 Poor performance. Many cross-boundary kernel – user

 More complex design

[4] Hahm et al (2016)

General Architecture and Modularity

Virtual Machine

• Export VM to user programs

• VM has all the needed
hardware features

• Main advantage is portability

Poor performance

Layered

• Implement services in layers

• Manageability

• Reliability

• Easy to understand

Not very flexible

[4] Hahm et al (2016)

Scheduling Model

Preemptive Non-preemptive

A preemptive scheduler assigns CPU time to each process while in
the cooperative model, tasks have to yield themselves.

Many cases, preemptive scheduler requires a systick and it usually
prevents the device to enter the deepest power-save mode.

Affects energy efficiency, real-time capabilities, and programing model

[4] Hahm et al (2016)

Memory Allocation

Static Dynamic

• Requires some over-provision

• Less flexible to changing
requirements during run time’

Memory is usually a very scarce resource

• System design more complicated

• Time-wise nondeterministic fashion

• Handle out-of-memory situations

• Memory fragmentation

[4] Hahm et al (2016)

Network Buffer Management

Copying Memory Passing pointers

It seems expensive

Central component of an IoT OS is the network stack

Who is responsible to allocate the
memory?

Upper layers – application
development more complex and
less convenient.

[4] Hahm et al (2016)

Programming Model

Event-driven systems Multithreaded systems

• Widely used for WSN OSs

• Every task has to be
triggered by an event

• Can be implemented by a
simple event loop

• Shared-stack model

• Memory efficiency

How an application developer can model the program

• Each task has its own thread
context

• Communication between tasks
by using inter-process
communication API

• Easier to design

[4] Hahm et al (2016)

Programming languages

Standard programming
languages

OS-specific language

• Usually ANSI C or C++

• Well-established and mature
development tools

• Portability

• Debugging tools

Supported programming languages for applications

• Performance of safety-relevant
enhancements

• Specific language structures

• Debugging facilities specific for
those devices

[4] Hahm et al (2016)

Hardware Abstraction Layer

Improves :

System design

Portability

Extensibility

However, introduces some overhead in code and runtime

Systems equipped with a variety of different peripheral devices

[4] Hahm et al (2016)

Feature set

Kernel

• Scheduler

• Mutual exclusion / sync. mechanisms

• Timers

Higher level

• Shell logging

• Cryptographic functions

• Network stacks

Over the air updates

Dynamic loading and linking

[4] Hahm et al (2016)

Testing

• Hardware

• Distributed nature

• Deeply embedded and very
constrained

 Continuous integration

 Build and integration tests

 Unit tests

 Regression tests

[4] Hahm et al (2016)

Widely used approach
Hardware / Network emulation as well as simulation tools

[4] Hahm et al (2016)

TinyOS

University of California in Berkeley – open source – TinyOS Alliance

Current version 2.1.2 (August 20, 2012)

35.000 downloads a year1

Two basic principles: (1) smaller code and data (2) bug prevention

Kernel uses less than 400 bytes of program memory

10:1 ratio of ROM:RAM

Power saving states for MCU and components (radio)

Event-driven programming model

Written in NesC language

[5] Levis (2012)
[6] Reusing (2012)1. http://www.tinyos.net

TinyOS

[5] Levis (2012)
[6] Reusing (2012)

Components: Commands, events, fixed-size frames, and tasks

Component 1

Interface 1 Interface 2

Component 2

Interface 1 Interface 2

Component 3

Interface 1

Component 4

Interface 1 Interface 2

Configuration

TinyOS

[3] Farroq & Kunz (2011)

TinyOS

[6] Reusing (2012)
[8] Chien et al (2011)

Split-phase execution model

Concurrency is achieved with tasks

Commands are non-blocking requests made to the low level components

Event-handlers like tasks can store information in its frame, assign tasks,
issue high-level events, or call low-level commands.

TinyOS

• FIFO scheduling algorithm

• Implementation of Earliest Deadline First scheduling for RT applications

• Support for threads – TOS Threads

• Shared-stack model

• No separation between kernel and user space

[5] Levis (2012)
[6] Reusing (2012)

NesC C
Native
CodeToolchain

Contiki

Swedish Institute of Computer Science

Current version 3.0 (25/08/2015)

• Dynamic loading and unloading of code at run-time

• Core distributed in a single image / loaded programs
distributed independently

• Possibility of multi-threading atop of an event-driven
kernel

• Static allocation of memory

[4] Hahm (2012)
[6] Reusing (2012)

Loaded Programs

Kernel

Program loader

Libraries

Drivers

C
O
R
E

Contiki

• Application programs and Services

Process implements event handler and [poll handler function]

Execution only through those handlers

Process has to keep its state information between calls

• Scheduler can be configured to call the polling handlers of all processes that
implement one – in periodic intervals

• Run to completion

• Asynchronous and Synchronous events

• Protothreads atop of kernel or a multithreading model explicitly linked if the
application uses it.

[6] Reusing (2012)

Contiki

Conclusion

One size fits all approach is not appropriate for WSN OSs

One size fits most approach is also very difficult to achieve imposed by the
constrained environment of WSN

Both analyzed OSs are compliant to most of the given requirements even with
significant differences in design.

Research fields

Real-time capabilities
Radio duty cycling and mote synchronization
Energy efficiency / Harvesting
Network connectivity
Security and safety
Small memory footprint
Heterogeneous device support
Intelligent IoT / Local Processing
Local storage
Programming tools / strategies for adoption

Bibliography

[1] Adam Dunkels. Poster Abstract: Rime — A Lightweight Layered Communication Stack for Sensor Networks.

[2] Farhana Javed, Muhamamd Khalil Afzal, Muhammad Sharif, Byung-Seo Kim. (2018) Internet of Things (IoT)
Operating Systems Support, Networking Technologies, Applications, and Challenges: A Comparative Review. IEEE
COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 3, THIRD QUARTER 2018

[3] Muhammad Omer Farooq and Thomas Kunz (2011) Operating Systems for Wireless Sensor Networks: A Survey.
Sensors 11, 5900-5930; doi:10.3390/s110605900

[4] Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and Nicolas Tsiftes (2016) Operating Systems for Low-End
Devices in the Internet of Things: A Survey. IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 5, October 2016

[5] Philip Levis (2012) Experiences from a Decade of TinyOS Development. 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’12)

[6] Tobias Reusing (2012) Comparison of Operating Systems TinyOS and Contiki. Seminar SN SS2012. Network
Architectures and Services, August 2012

[7] Bormann C, Ersue M, Keranen, A. Ericsson (2014) RFC7228 Terminology for Constrained-Node Networks.
https://tools.ietf.org/html/rfc7228

[8] Chien et al. (2011) A comparative study on operating system for wireless sensor networks. ICASIS International
Conference on Advanced Computer Science and Information Systems, Proceedings 2011.

https://tools.ietf.org/html/rfc7228

