[—
.=

2@19 1 DS - PUC-R3J
ntonio Iyda Paganelli

el sl "o_—e L W Te ¥

__::?ssssggng

Operating Systems

For Wireless Sensor Networks

Summary

* Introduction
* Requirements
* Design Choices

* TinyOs and Contiki

* Conclusions

Contiki
i)
The Open Source OS for the Internet of Things

Introduction

* Wireless Sensor Networks
v'Cheap, tiny, energy-efficient communicating devices
v" Unreliable or lossy channels
v" Limited and unpredictable bandwidth
v" Highly dynamic topology

v'High-end 10T devices: single-board computers like Raspeberry Pi
or smartphones

v'Low-end loT devices: Arduino duo, Econotag, Zolertia Z1, loT-
LAB M3, OpenMote, TelosB and so on....

 Highly constrained hardware resources

[4] Hahm et at. (2016)

Low-end IoT devices

e Constrained resources
* Energy
 CPU

 Memory capacity

Fig. 1. Examples of low-end IoT devices. (a) Arduino due. (b) Zolertia
Re-Mote. (¢) IoT-LAB-M3. (d) Atmel SAM R21.

« TETF classification
(RFC 7228 - Terminology for Constrained-Node Networks)

« Class O: << 10 kB RAM, << 100 kB Flash
e Class 1: ~10 kB RAM, ~100 kB Flash
e Class 2: more resources, but still very constrained

compared to high-end IoT devices.

Operating Systems

* Management of shared
resources:

)
3]
f -
-
©
w
o2
L-.-‘
E(ﬂ
88
s
=
Ew
‘S"LL
a9
gy
>
—
mo
o
Q
S—

processor, memory, timer,
network interfaces, other
I/0 devices

* Multiplexes resources by
time or by space

[3] Farroq & Kunz (2011)
[4] Hahm et at. (2016)

Applications

Low-power
network stack

(e.g., IEEE802.15.4,
BLE, 6LOWPAN,
IPv6, CoAP, RPL)

Device drivers
(e.g., network interfaces, sensors)

Hardware abstraction layer
(e.g., GPIO, UART, SP|, 12C)

Hardware

Transceiver

l T

Micro-Controller

Kernel
(e.g., scheduler, tasks, locks)

Operating Systems

* Class © - too small. Bare metal
software, very specialized

e Class 1 and Class 2

* Moore’s Law 1s not expected

Model ROM RAM

kB 1288
8kB 2568
16kB 5128
48kB 20488
48kB 10240B

Sleep Price

1.3uA $0.94
1.6 A $2.73
2.0pA 56.54

20uA $9.11
20uA $12.86

(a) TI MSP430 Microcontrollers

Model ROM RAM

1.M2S600 32kB 8kB
LM351608 128kB 32kB
[LM351968 256kB 64kB

Sleep Price

O50uA $2.73
050p:A $4.59
0S0uA $6.27

(b) TT ARM CortexM3 Processors

[4] Hahm et at. (2016)
[5] Levis (2012)

Context of OSs

Hard upper bounds on:

o State

o Code space

o Processing cycles

o Energy

o Network bandwidth

o Full connectivity

o Lack of broadcast [multicast

RFC 7228

for WSN

Additionally,
o Cost

o Size

o Weight

o Other scaling factors

(energy harvesting)

Requirements

o Small memory footprint

o Support for heterogeneous hardware
o Network connectivity

o Energy efficiency

o Security

o Real-time capabilities

[4] Hahm et al (2016)

Concurrency and Flexibility

[6] Tobias Reusing (2012)

They used a scientific method
to decide which new product idea to pursue.

Design choices

Technical

General Architecture and Modularity
Scheduling Model

Memory Allocation

Network Buffer Management
Programming Model

Programming Languages

Driver Model and Hardware
Abstraction Layer

Debugging Tools
Feature Set

Testing

[4] Hahm et al (2016)

Non-Technical

Standards (open)
Certification
Documentation
Maturity of Code

License of Code

Provider of the OS

General Architecture and Modularity

* Monolithic
* Single image
* Small OS memory footprint
* Interfaces for service modules
* Modules interaction costs are low

A

Hard to understand and modify
Difficult to maintain
Unreliable

[4] Hahm et al (2016)

General Architecture and Modularity

* Microkernel

* Minimum functionality provided by the kernel

Most of functionalities provided by user-level servers

Small OS memory footprint

Better reliability

Ease of extension and customization

A

Poor performance. Many cross-boundary kernel — user
More complex design

[4] Hahm et al (2016)

General Architecture and Modularity

Virtual Machine Layered
* Export VM to user programs * Implement services in layers
* VM has all the needed * Manageability

hardware features
, , - * Reliability
* Main advantage is portability
* Easy to understand

A A

Poor performance Not very flexible

[4] Hahm et al (2016)

Scheduling Model

Affects energy efficiency, real-time capabilities, and programing model

Preemptive Non-preemptive

A preemptive scheduler assigns CPU time to each process while in
the cooperative model, tasks have to yield themselves.

Many cases, preemptive scheduler requires a systick and it usually
prevents the device to enter the deepest power-save mode.

[4] Hahm et al (2016)

Memory Allocation

Memory is usually a very scarce resource

Static Dynamic
* Requires some over-provision * System design more complicated
* Less flexible to changing * Time-wise nondeterministic fashion

requirements during run time’ . .
* Handle out-of-memory situations

* Memory fragmentation

[4] Hahm et al (2016)

Network Buffer Management

Central component of an [oT OS is the network stack

Copying Memory Passing pointers
It seems expensive Who is responsible to allocate the
memory?

Upper layers — application
development more complex and
less convenient.

[4] Hahm et al (2016)

Programming Model

How an application developer can model the program

Event-driven systems

Widely used for WSN OSs

Every task has to be
triggered by an event

Can be implemented by a
simple event loop

Shared-stack model

Memory efficiency

Multithreaded systems

e Each task has its own thread
context

* Communication between tasks
by using inter-process
communication API

* Easier to design

[4] Hahm et al (2016)

Programming languages

Supported programming languages for applications

Standard programming OS-specific language
languages
* Usually ANSI C or C++ * Performance of safety-relevant
. enhancements
* Well-established and mature
development tools e Specific language structures
* Portability * Debugging facilities specific for

. those devices
* Debugging tools

[4] Hahm et al (2016)

Hardware Abstraction Layer
Systems equipped with a variety of different peripheral devices
Improves :
System design
Portability

Extensibility

However, introduces some overhead in code and runtime

[4] Hahm et al (2016)

Feature set

Kernel Higher level

* Scheduler * Shell logging

* Mutual exclusion [sync. mechanisms * Cryptographic functions
* Timers * Network stacks

Over the air updates

Dynamic loading and linking

[4] Hahm et al (2016)

Testing

* Hardware = Continuous integration
* Distributed nature = Build and integration tests
* Deeply embedded and very " Unit tests

constrained = Regression tests

> Widely used approach
Hardware /| Network emulation as well as simulation tools

[4] Hahm et al (2016)

OVERVIEW OF POTENTIAL OPEN SOURCE OSs FOR THE loT

Name

Contiki

RIOT

FreeRTOS

TinyOS
OpenWSN

nuttX

eCos

uClinux

ChibiOS/RT

Co0S

nanoRK

Nut/OS

Architecture

Monolithic

Microkernel
RTOS

Microkernel
RTOS

Monolithic
Monolithic

Monolithic or
microkernel

Monolithic RTOS

Monolithic
Microkernel
Microkernel

RTOS
Monlothic

(resource kernel)

Monolithic

Scheduler

Cooperative

Preemplive,
tickless

preemptive,
optional tickless

Cooperative
Cooperative

Preemptive
(priority-based
or round robin)

pPreemptive
Preemptive
Preemptive
Preemptive
Preemptive

Cooperative

programming
model

Event-driven,
Protothreads
Multithreading
Multithreading

Event-driven
Event-driven
Multithreading

Multithreading
Multithreading
Multithreading
Multithreading
Multithreading

Multithreading

Targeted
device class

Class 0 + 1
Class 1 +2
Class 1 +2

Class 0
Class0-2
Class 1 +2

Class 1 +2
>Class 2
Class 1 +2
Class 2
Class 0

Class 0 + 1

Supported MCU families

or vendors

AVR, MSP430, ARM7,
ARM Cortex-M, PIC32,

6502

AVR, MSP430, ARM7,
ARM Cortex-M, x86

AVR, MSP430, ARM, x86,

8052, Renesas

AVR, MSP430, px27ax
MSP430, ARM Cortex-M

AVR, MSP430, ARM7,
ARMS9, ARM Cortex-M,
MIPS32, x86, 8052,

Renesas

ARM, |A-32, Motorola,

MIPS ...

Motorola, ARM7, ARM

Cortex-M, Atari

AVR, MSP430, ARM

Cortex-M
ARM Cortex-M

AVR, MSP430,

AVR, ARM

Programming
languages

C

License

BSD

LGPLv2

modified
GPL

BSD
BSD
BSD

eCos
License

GPLv2

Triple
License

BSD

Dual
License

BSD

Network stacks

ulP, RIME

gnrc, OpenWSN,
cen-lite
None

BLIP
OpenWSN
native

IwiP, BSD
Linux
None
None
None

native

TinyOS

University of California in Berkeley — open source — TinyOS Alliance
Current version 2.1.2 (August 20, 2012)

35.000 downloads a year®

Two basic principles: (1) smaller code and data (2) bug prevention
Kernel uses less than 400 bytes of program memory

10:1 ratio of ROM:RAM

Power saving states for MCU and components (radio)
Event-driven programming model

Written in NesC language

. L '
1. http://www.tinyos.net %2]] RZY,'ZS;EZ,Q)

TinyOS

Components: Commands, events, fixed-size frames, and tasks

Component 1 Component 2

I
VirtualizeTimerC

Interface1 Interface2 Interface1 Interface2
A

AlarmToTimerC CounterToTimeC

v
Interface 1 Interface1 Interface2
Component 3 Component 4

[5] Levis (2012)
[6] Reusing (2012)

{ Domain-Specific Application Components]ﬁ
> =

Service
Interface

Persistent Device
Attributes & Attributes &
Event Streams Event Streams

OS & Net
Interface

Network Collection,
Dissemination, &
Routing

Device Links
Abstraction

interface Flash Radio / Serial Sensor / Actuator
Microcontroller

Abstraction = :
s Pace Microcontroller Core, Timers, Buses, Onboard ADCs

%ig Hardware ‘

TelosB

Intel Mote2

[3] Farroq & Kunz (2011)

TinyOS
Commands are non-blocking requests made to the low level components

Split-phase execution model

Command

Interface _ Interface

Event-handlers like tasks can store information in its frame, assign tasks,
issue high-level events, or call low-level commands.

Concurrency is achieved with tasks

[6] Reusing (2012)
[8] Chien et al (2011)

TinyOS

FIFO scheduling algorithm

Implementation of Earliest Deadline First scheduling for RT applications

Support for threads — TOS Threads

Shared-stack model

No separation between kernel and user space

o [= [~ B

[5] Levis (2012)
[6] Reusing (2012)

Contiki

Swedish Institute of Computer Science
Current version 3.0 (25/08/2015)
* Dynamic loading and unloading of code at run-time

* Core distributed in a single image [loaded programs
distributed independently

* Possibility of multi-threading atop of an event-driven
kernel

* Static allocation of memory

Loaded Programs

Drivers
Libraries C
—
Program loader E
Kernel
[4] Hahm (2012)

[6] Reusing (2012)

Contiki

Application programs and Services
Process implements event handler and [poll handler function]
Execution only through those handlers
Process has to keep its state information between calls

Scheduler can be configured to call the polling handlers of all processes that
implement one —in periodic intervals

Run to completion
Asynchronous and Synchronous events

Protothreads atop of kernel or a multithreading model explicitly linked if the
application uses it.

[6] Reusing (2012)

Contiki

Contiki Operatinmng Node Mamnagement
Systerm

N
¥
[

lication-N

)plication
sensor Conflaurato

Application-

i
f

i

II.
2
®

Froaoto T hreads

Radio Oscillator Crthers

e, .ol
Ciscillatoar

Conclusion

One size fits all approach is not appropriate for WSN OSs

One size fits most approach is also very difficult to achieve imposed by the
constrained environment of WSN

Both analyzed OSs are compliant to most of the given requirements even with
significant differences in design.

Real-time capabilities

Radio duty cycling and mote synchronization
Energy efficiency [Harvesting

Network connectivity

Security and safety

Small memory footprint

Heterogeneous device support

Intelligent loT / Local Processing

Local storage

Programming tools / strategies for adoption

Research fields

Bibliography

[1] Adam Dunkels. Poster Abstract: Rime — A Lightweight Layered Communication Stack for Sensor Networks.

[2] Farhana Javed, Muhamamd Khalil Afzal, Muhammad Sharif, Byung-Seo Kim. (2018) Internet of Things (loT)
Operating Systems Support, Networking Technologies, Applications, and Challenges: A Comparative Review. |EEE
COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 3, THIRD QUARTER 2018

[3] Muhammad Omer Farooq and Thomas Kunz (2011) Operating Systems for Wireless Sensor Networks: A Survey.
Sensors 11, 5900-5930; doi:10.3390/s110605900

[4] Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and Nicolas Tsiftes (2016) Operating Systems for Low-End
Devices in the Internet of Things: A Survey. IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 5, October 2016

[5] Philip Levis (2012) Experiences from a Decade of TinyOS Development. 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’12)

[6] Tobias Reusing (2012) Comparison of Operating Systems TinyOS and Contiki. Seminar SN SS2012. Network
Architectures and Services, August 2012

[7] Bormann C, Ersue M, Keranen, A. Ericsson (2014) RFC7228 Terminology for Constrained-Node Networks.
https://tools.ietf.org/html/rfc7228

[8] Chien et al. (2011) A comparative study on operating system for wireless sensor networks. ICASIS International
Conference on Advanced Computer Science and Information Systems, Proceedings 2011.

https://tools.ietf.org/html/rfc7228

