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» Latency-sensitive OLTP applications has emerged in
diverse areas
Computer games, high-performance trading, and web

» Databases are moving towards in-memory storage
Hardware systems are integrating increasingly more cores in a
single machine

» New requirements for database architecture
Efficiency in multi-core machines and careful design of
concurrency control strategies

» There is a lack of abstractions to reason about the
parallelizable application logic
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» Challenges on adapting database architecture without
affecting application code

» Reactors model logical computational entities
Encapsulating state abstracted as relations

» Objective is to address architectural flexibility and
high resource efficiency in multi-core machines

» Then, Shah & Salles (2018) designed an in-memory
database system that exposes reactors as a
programming model
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» Actor programming model

» Desirable primitives for concurrent and distributed
programming

» Each communication is described as a message
» Reactors are special types of actors

» Model logical computational entities encapsulating state
abstracted as relations

» They can represent application-level scaling units such as
accounts in a banking application

» Classic database programming features such as declarative
querying over the encapsulated relations

» Transaction across multiple reactors provides serializability
guarantees as in traditional databases
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Programming Model
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Figure 1: A simplified currency exchange application in: (a) the classic transactional model, and (b) the reactor model.
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» In memory database system that exposes the reactor
programming model

» Design aims at providing control over:
Mapping of reactors to physical computational resources
Memory regions under concurrency control

» Architecture is organized as a collection of containers
Abstracts a (portion of a) machine with its own storage
(main memory)

Associated with computational resources (cores) disjoint
from other containers, abstracted by transaction executors
A reactor is mapped to one and only one container
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» Transaction Executor
Consists of a thread pool and a request queue
Responsible for executing requests, namely asynchronous
procedure calls
Each oneis pinned to a core
Each one maintains a thread pool to process (sub-
transactions)

» Concurrency

Sub-transaction invoked in different container yields
different management of transaction
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System Architecture
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Figure 4: REAcTDB’s architecture.
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» Huge amount of data is being generated with loT
Challenges on volume, variety, dynamicity and ubiquity of
loT data

» Approach to model and build loT data platforms

Based on the characteristics of an Actor-Oriented Database
(AODB)

» Work aimed to illustrate the challenges and
benefits provided by AODB to meet these

requirements
Case study on Beef Cattle Tracking and Tracing
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» Data ingestion from endpoints

Capability to receive and store data from loT devices
» Multi-tenancy

Must provide varied information services to different users
» Support for heterogeneous data

Allow for communication employing different data formats
» Cloud-based deployment

For ease of operation, management, and maintenance
» Scalable data platform

Must not degrade in functionality or performance while
expanding
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Non-Functional Requirements
for loT Data Platforms

» High efficiency
Must process massive amounts of concurrently generated
data effectively

» Access control and data protection
Should support data protection, enforcing authentication
and access control
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Why Actor-Oriented Databases?

» Facilitate the management of distribution and the
encapsulation of data

» Actor modularity supports representation and sharing
of heterogeneous data

» Multiple actor types and concurrent execution among
actors to achieve scalability

» Parallelism across actors allows for processing of
massive amounts of concurrently generated data

» Encapsulation and modularity in AODBs support data
protection and access control
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» How can actors be identified?

One actor is designed to carry out one specific real-world
task with associated logic

» What should the Granularity of Actor State be?
An actor should represent the functionality of one active
entity for which detailed tracking is required

» What about the absence of distributed transactions?
Communication is asynchronous, it is a challenge to keep
consistency across actors in the presence of updates

Keep data related to a constraint in a single actor or design
a multi-actor workflow for updates
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» Agricultural supply chains involve a complex network
of producers, retailers, distributors, transporters,
storage facilities, and consumers in the sale, delivery,
and production of a particular product

» Trackability and traceability are essential
requirements in food marketing

Tracking refers to following the path of an entity from the
source to destination

Tracing refers to identifying original information regarding
an entity and tracing it back in the system
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» Case study refers to a part of the beef cattle supply
chain, concentrating on cow tracking and meat
product tracing, providing tracking information and
helping consumers trace meat products
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- Beef Cattle Tracking and

Tracmg

» Every actor encapsulates its state and communicates

with other actors via asynchronous messages

» Accesses to data in the state of an actor are rendered
as asynchronous communication events across actors
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2x2 Case Study Implementation

» Choice of AODB

The vision for AODBs was proposed in the context of the

Orleans project

Orleans provides an explicit storage model for actor state

Thus, a cloud storage system is employed by Orleans

Features such as indexing and ACID are being implemented
» Support for Non-Functional Requirements

Modularity, data encapsulation, and asynchronous

communication were provided by virtual actors in Orleans
Support a number of data types and structures
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¢wp Case Study Evaluation

» Development of a tool that simulates data requests
from sensors

To generate variable load for the data platform

» Amazon DynamoDB [9] was used for Orleans grain
state storage

200 writes and 200 reads per second
Populated with synthetic data

» Amazon AWS to setup environment

m5.xlarge instances were employed for the Orleans silos,
RDS db.t2.small for Orleans system storage
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» Configuration are set to not benchmark DynamoDB
storage, but rather the execution of in-memory actors

» Ingestion to the grain state storage has been
configured to only happen when the Orleans silo
service is shut down

\




» How many sensor readings can the SHMDP ingest
using a single cloud server?

» Does the SHMDP scale simultaneously on the number
of sensors and servers?
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Figure 6: Single-server throughput experiment. Figure 7: Scale out experiment over multiple servers.
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» Does the SHMDP deliver Low latency on online query
functions concurrently with data ingestion?
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Figure 8: Latency percentiles for raw sensor channel data Figure 9: Latency percentile for organization live data re-
point time range requests. quests.
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