
Relational Actors
Rodrigo Laigner

Presentation given for course Distributed Systems – 2019.1 at PUC-Rio



▶ Introduction
▶ Actor Programming Model
▶ ReactDB
▶ IoT and Actor-Oriented Databases
▶ Case Study Implementation

Outline

▶

▶

▶ Case Study Implementation
▶ Evaluation
▶ Conclusion



▶ Latency-sensitive OLTP applications has emerged in 
diverse areas

Computer games, high-performance trading, and web
▶ Databases are moving towards in-memory storage

Hardware systems are integrating increasingly more cores in a 

▶

Introduction

▶

Hardware systems are integrating increasingly more cores in a 
single machine

▶ New requirements for database architecture
Efficiency in multi-core machines and careful design of 
concurrency control strategies

▶ There is a lack of abstractions to reason about the 
parallelizable application logic



▶ Challenges on adapting database architecture without 
affecting application code

▶ Reactors model logical computational entities
Encapsulating state abstracted as relations

▶ Objective is to address architectural flexibility and 

Introduction

▶ Objective is to address architectural flexibility and 
high resource efficiency in multi-core machines

▶ Then, Shah & Salles (2018) designed an in-memory 
database system that exposes reactors as a 
programming model



▶ Actor programming model 
▶ Desirable primitives for concurrent and distributed 

programming
▶ Each communication is described as a message

▶ Reactors are special types of actors 
▶

Programming Model

▶

▶ Reactors are special types of actors 
▶ Model logical computational entities encapsulating state 

abstracted as relations
▶ They can represent application-level scaling units such as 

accounts in a banking application
▶ Classic database programming features such as declarative 

querying over the encapsulated relations
▶ Transaction across multiple reactors provides serializability 

guarantees as in traditional databases



Programming Model



▶ In memory database system that exposes the reactor 
programming model

▶Design aims at providing control over:
Mapping of reactors to physical computational resources 

▶

ReactDB

▶
Mapping of reactors to physical computational resources 
Memory regions under concurrency control 

▶Architecture is organized as a collection of containers
Abstracts a (portion of a) machine with its own storage 
(main memory)
Associated with computational resources (cores) disjoint 
from other containers, abstracted by transaction executors
A reactor is mapped to one and only one container 



▶Transaction Executor
Consists of a thread pool and a request queue
Responsible for executing requests, namely asynchronous 
procedure calls
Each one is pinned to a core

ReactDB

Each one is pinned to a core
Each one maintains a thread pool to process (sub-
transactions)

▶Concurrency
Sub-transaction invoked in different container yields 
different management of transaction



System Architecture



▶Huge amount of data is being generated with IoT
Challenges on volume, variety, dynamicity and ubiquity of 
IoT data

▶Approach to model and build IoT data platforms 
Based on the characteristics of an Actor-Oriented Database

IoT and Actor-Oriented 
Databases

▶
Based on the characteristics of an Actor-Oriented Database
(AODB) 

▶Work aimed to illustrate the challenges and
benefits provided by AODB to meet these 
requirements

Case study on Beef Cattle Tracking and Tracing



▶Data ingestion from endpoints
Capability to receive and store data from IoT devices

▶Multi-tenancy 
Must provide varied information services to different users

▶Support for heterogeneous data

Non-Functional Requirements 
for IoT Data Platforms 

▶

▶Support for heterogeneous data
Allow for communication employing different data formats

▶Cloud-based deployment
For ease of operation, management, and maintenance

▶Scalable data platform
Must not degrade in functionality or performance while 
expanding



▶High efficiency
Must process massive amounts of concurrently generated 
data effectively

▶Access control and data protection
Should support data protection, enforcing authentication 

Non-Functional Requirements 
for IoT Data Platforms 

▶
Should support data protection, enforcing authentication 
and access control 



▶Facilitate the management of distribution and the 
encapsulation of data

▶Actor modularity supports representation and sharing 
of heterogeneous data

▶

Why Actor-Oriented Databases?

▶

of heterogeneous data
▶Multiple actor types and concurrent execution among 

actors to achieve scalability
▶Parallelism across actors allows for processing of 

massive amounts of concurrently generated data
▶Encapsulation and modularity in AODBs support data 

protection and access control  



▶How can actors be identified? 
One actor is designed to carry out one specific real-world 
task with associated logic 

▶What should the Granularity of Actor State be? 
An actor should represent the functionality of one active

Modeling AODBs

▶
An actor should represent the functionality of one active
entity for which detailed tracking is required 

▶What about the absence of distributed transactions?
Communication is asynchronous, it is a challenge to keep 
consistency across actors in the presence of updates
Keep data related to a constraint in a single actor or design 
a multi-actor workflow for updates



▶Agricultural supply chains involve a complex network 
of producers, retailers, distributors, transporters, 
storage facilities, and consumers in the sale, delivery, 
and production of a particular product

▶

Beef Cattle Tracking and
Tracing

and production of a particular product
▶Trackability and traceability are essential 

requirements in food marketing
Tracking refers to following the path of an entity from the 
source to destination
Tracing refers to identifying original information regarding 
an entity and tracing it back in the system



▶Case study refers to a part of the beef cattle supply 
chain, concentrating on cow tracking and meat  
product tracing, providing tracking information and 
helping consumers trace meat products 

Beef Cattle Tracking and
Tracing

helping consumers trace meat products 



▶Every actor encapsulates its state and communicates 
with other actors via asynchronous messages

▶Accesses to data in the state of an actor are rendered 
as asynchronous communication events across actors

Beef Cattle Tracking and
Tracing

▶

as asynchronous communication events across actors



▶Choice of AODB
The vision for AODBs was proposed in the context of the 
Orleans project
Orleans provides an explicit storage model for actor state
Thus, a cloud storage system is employed by Orleans

▶

Case Study Implementation

Thus, a cloud storage system is employed by Orleans
Features such as indexing and ACID are being implemented 

▶Support for Non-Functional Requirements
Modularity, data encapsulation, and asynchronous  
communication were provided by virtual actors in Orleans
Support a number of data types and structures 



▶Development of a tool that simulates data requests 
from sensors 

To generate variable load for the data platform

▶Amazon DynamoDB [9] was used for Orleans grain 

Case Study Evaluation

▶Amazon DynamoDB [9] was used for Orleans grain 
state storage 

200 writes and 200 reads per second 
Populated with synthetic data

▶Amazon AWS to setup environment
m5.xlarge instances were employed for the Orleans silos, 
RDS db.t2.small for Orleans system storage 



▶Configuration are set to not benchmark DynamoDB
storage, but rather the execution of in-memory actors

▶ Ingestion to the grain state storage has been 
configured to only happen when the Orleans silo 

Case Study Evaluation

▶

configured to only happen when the Orleans silo 
service is shut down



▶ How many sensor readings can the SHMDP ingest 
using a single cloud server? 

▶Does the SHMDP scale simultaneously on the number 
of sensors and servers?

Case Study Evaluation

▶

of sensors and servers?



▶Does the SHMDP deliver low latency on online query 
functions concurrently with data ingestion?

Case Study Evaluation



▶Modeling and Building IoT Data Platforms with Actor-Oriented 
Databases . Wang et al. EDBT. 2019. 

▶Reactors: A Case for Predictable, Virtualized Actor Database
Systems. Shah, V. & Salles, M. SIGMOD. 2018.

References


	Relational Actors
	Outline
	Introduction
	Introduction
	Programming Model
	Programming Model
	ReactDB
	ReactDB
	System Architecture
	IoT and Actor-Oriented Databases
	Non-Functional Requirements for IoT Data Platforms 
	Non-Functional Requirements for IoT Data Platforms 
	Why Actor-Oriented Databases?
	Modeling AODBs
	Beef Cattle Tracking and Tracing
	Beef Cattle Tracking and Tracing
	Beef Cattle Tracking and Tracing
	Case Study Implementation
	Case Study Evaluation
	Case Study Evaluation
	Case Study Evaluation
	Case Study Evaluation
	References



