Relational Actors

Rodrigo Laigner

—

Presentation given for course Distributed Systems — 2019.1 at PUC-Rio

" Ly/“n&w\ {\
ol A -
N XY v
35 SR
R R °
NWER”
N > = Z N\
& = ., N
\K; S5 u I n e
AN &)
PN
O~
? < —
SUCRAVEY -

» Introduction

» Actor Programming Model

» ReactDB

» 10T and Actor-Oriented Databases
» Case Study Implementation

» Evaluation

» Conclusion

\

f»

»;é o /‘« .
f«ém Introduction

PUC

R10O

» Latency-sensitive OLTP applications has emerged in
diverse areas
Computer games, high-performance trading, and web

» Databases are moving towards in-memory storage
Hardware systems are integrating increasingly more cores in a
single machine

» New requirements for database architecture
Efficiency in multi-core machines and careful design of
concurrency control strategies

» There is a lack of abstractions to reason about the
parallelizable application logic

\

Introductlon
PUC

R10O

» Challenges on adapting database architecture without
affecting application code

» Reactors model logical computational entities
Encapsulating state abstracted as relations

» Objective is to address architectural flexibility and
high resource efficiency in multi-core machines

» Then, Shah & Salles (2018) designed an in-memory
database system that exposes reactors as a
programming model

\

Vo

hy T .CXF\&‘ 3 N\
S ooa¢ »A’
== S

i S
P

Al

N\

On
2=0)
/.-\'ﬁ]:,,i

oY

w5 Programming Model
PUC

» Actor programming model

» Desirable primitives for concurrent and distributed
programming

» Each communication is described as a message
» Reactors are special types of actors

» Model logical computational entities encapsulating state
abstracted as relations

» They can represent application-level scaling units such as
accounts in a banking application

» Classic database programming features such as declarative
querying over the encapsulated relations

» Transaction across multiple reactors provides serializability
guarantees as in traditional databases

\

JeRAvE!

PUC

R10O

Programming Model

wold woth_pay (pprovider, pwallist,
prrm o} |

l,/ﬁ;midﬂ Reactar

SELECT g_rimk,p_sxpoaurs INTD cimk,

rsactor Exchangs |

mﬂ wath_payippresider, peallst,

FROM swtblesent_rizk: dame - VISA_ DK pralos) §
zozal rimk = O; plm'.:i.ds.‘r info SELECT g_rixk, p_sxy INTD cimk, @y
= FROM zettlesssnt_rimk:
formach & in |
SELECT m.na=s, p.iiak, p.toms, p.owindad, semalts == [];
Sl [mxpomurs) AS sxporars 2341563 | 1B-11.17 o forsach p_provider im |
RO provider p 11:45:67 adid_antry SELECT walum
INNER JUIN crosrs o - TROM provider_nazsal |
ON p.nazs = o.providec orders rex = calc_risk{sxpocaurs)
WEIRE o.msttled = N oo rmactor p_poovides:
GROUF DY p.nams, p.rizk, p.tiss, p.window] | rexalts . sdd (cen]
if s.sxposuce > mxpoauTs them]
bk 43 450 N
mimif m.time o now{] = s.window than _ _’/’) 16‘.“# Resctor total_rimk = O
prizk = mizm_riskis.nase, s ssporooe); N -E forsach cam in reaults
TFOATE provider SET rixk = primk, . total_r tm bokal riak & rex.gaki);
tims = now(] WHERE =ams = &.N&mS _ |. N k
total _rimk = total risk & primk; eiliemend ng 1f total simk ¢ pralus « roixk then
alms aplz pigh] smtry(pusllet, pralus)
total _rimk = total risk & s.rimk; = an reachbor ppoovides:
macd A8 S000.34 234.35 i St
] - mmd 12
provider_names ¥
if total rimk + pvalus € rizk then]
INSERT INTD coders WALUES e LUE
|pprovider, puwalle:, peslos, 'H")
slzs mbact: IIH:—UE
ey _ VISA_DH _,/)
. reactor Poovides |
setilement_risk i Frovider Reactor _\\- i)
N fioak calc_riskip_sxpowars}{
Aame : MC_US SELECT EEDI{'\MJ.E:I INTO -I:rpulurl
Ok FROM codsras WEIRE =ettled = °“H';
provider_info 2f mxpomucs » p_mxpoanrs then sbort:
F"—“'mr antr SELECT riak, timm, wiscow INDD g risk,
SO0GBEE | 181117 0 adkel_matey _tize, p_window
| ews mse e wioow | TEeET o peasica_inio:
VIGHA D 34156 | LB-11.17 10 af p_tims < now(] = p_wisdow than
- 1AEET orders p_rimk r= mim rizk|my_nems () sxpoaurs] ;
} } ! OFOATE provider_info SET cimk = p_risk,
MC_Us SEOEEE3 | 1B-11.17 30 auth_pay time = nowil;
104334 mmd A8
rwtusn p_siak:
[]
FROVIDER WALLET WAL UE SETTLED
woid wdd_sntryjwallet, walos)]
IHSERT INTD coZers WALULS
funlle®, walos, *H°j;
]
]
(a) (b)

Figure 1: A simplified currency exchange application in: (a) the classic transactional model, and (b) the reactor model.

Ry
)G AV

SRy
S PO
SAE
4
=N
| :
[O)) @)
N e S ‘ \)\3 e a
>)
SN~
N A~
v L
JCRAVEL

» In memory database system that exposes the reactor
programming model

» Design aims at providing control over:
Mapping of reactors to physical computational resources
Memory regions under concurrency control

» Architecture is organized as a collection of containers
Abstracts a (portion of a) machine with its own storage
(main memory)

Associated with computational resources (cores) disjoint
from other containers, abstracted by transaction executors
A reactor is mapped to one and only one container

\

" e
N O
S5 /A <
[)
= HHEE
N g
NS =D -
\
\ g \
’\\7)) 7 S / \7)3 eact D B
> o
S\~
N o
Do &S
SSCRAVEL

» Transaction Executor
Consists of a thread pool and a request queue
Responsible for executing requests, namely asynchronous
procedure calls
Each oneis pinned to a core
Each one maintains a thread pool to process (sub-
transactions)

» Concurrency

Sub-transaction invoked in different container yields
different management of transaction

\

System Architecture

Conlainer

Main Memory

Aoy T
L {r:q

| Core l I Core |
Transaction Transaction
Executor Executor

Request J L Request Container
Dueue Queus

—]

Transaction Coordinator

Transport Diviver

Contalnes

Transaction Router

Client Driver

Figure 4: REAcTDB’s architecture.

- loT and Actor-Oriented
" Databases

R10O

» Huge amount of data is being generated with loT
Challenges on volume, variety, dynamicity and ubiquity of
loT data

» Approach to model and build loT data platforms

Based on the characteristics of an Actor-Oriented Database
(AODB)

» Work aimed to illustrate the challenges and
benefits provided by AODB to meet these

requirements
Case study on Beef Cattle Tracking and Tracing

\

Non-Functional Requirements
for loT Data Platforms

<%
(IO}

» Data ingestion from endpoints

Capability to receive and store data from loT devices
» Multi-tenancy

Must provide varied information services to different users
» Support for heterogeneous data

Allow for communication employing different data formats
» Cloud-based deployment

For ease of operation, management, and maintenance
» Scalable data platform

Must not degrade in functionality or performance while
expanding

=

Non-Functional Requirements
for loT Data Platforms

» High efficiency
Must process massive amounts of concurrently generated
data effectively

» Access control and data protection
Should support data protection, enforcing authentication
and access control

\

Why Actor-Oriented Databases?

» Facilitate the management of distribution and the
encapsulation of data

» Actor modularity supports representation and sharing
of heterogeneous data

» Multiple actor types and concurrent execution among
actors to achieve scalability

» Parallelism across actors allows for processing of
massive amounts of concurrently generated data

» Encapsulation and modularity in AODBs support data
protection and access control

\

ez
=

= Modeling AODBs

/x/-fs >
75 [

o
fpg
(1
/3
\/\z‘g
T
(R

» How can actors be identified?

One actor is designed to carry out one specific real-world
task with associated logic

» What should the Granularity of Actor State be?
An actor should represent the functionality of one active
entity for which detailed tracking is required

» What about the absence of distributed transactions?
Communication is asynchronous, it is a challenge to keep
consistency across actors in the presence of updates

Keep data related to a constraint in a single actor or design
a multi-actor workflow for updates

\

42+ Beef Cattle Tracking and
< Tracin g

» Agricultural supply chains involve a complex network
of producers, retailers, distributors, transporters,
storage facilities, and consumers in the sale, delivery,
and production of a particular product

» Trackability and traceability are essential
requirements in food marketing

Tracking refers to following the path of an entity from the
source to destination

Tracing refers to identifying original information regarding
an entity and tracing it back in the system

\

- Beef Cattle Tracking and
~ Tracing

R10O

» Case study refers to a part of the beef cattle supply
chain, concentrating on cow tracking and meat
product tracing, providing tracking information and
helping consumers trace meat products

Farmer Cow Sl&ught&rhuuse Meat Cut

ot cow
|oematin

Cet meat cut Giel mesa cutd et ment cutl
imfoemation product informmstic redader information
Frovide distrimuton Provide retaier Provide meat product
n

micemation

mu Get slmughserhouse/
:E:h'h'l.rh:ll'r:ld:

I-"rm'l!:rrml cud Pwmm

Ep B O
Distributor Retailer Meat Product

R10O

- Beef Cattle Tracking and

Tracmg

» Every actor encapsulates its state and communicates

with other actors via asynchronous messages

» Accesses to data in the state of an actor are rendered
as asynchronous communication events across actors

Delivery Acto
e
destination

bype

T- [1..*] transportadby
| 11 Meat Product Actar

age
Ingradients
& generateTags()
® generaledngredients|)

r . r
. Distributor | Sla ughterhou.«e Ar_ ar
[0.%] manages = Aetor [0.*] cooperates - = ot
[1.1] managedby | g transport(y [19--7] cooperates & produceMeatCuk])

[0.9] caoperates [1..9] producedty

l [0_*] transparts

[prndunrs]

Retailer Actor
|ocation

| ® produceMeatProduci]

[1..7] producadiy i

| Meak Cut Actor
[1.*]integrates | ° -Eraigzrary
- ..'. o)
[1.#] integratedtyl & updsteitinerary() [) PrOICES
| * generateTags()

(0.4} stores [0.*] slawghiters

‘.] 'nrr.ﬂrlby

I. I:m,ar Reading |

gns cnnrdlnut:]

e

| e identifier
o = |location
[1..%] aps reading | ® updatelocation])
| ® updateTrajectory)

\

f1-

1] shaughteredby

Farmer Actor .
| @ updateCowsl |

[1..1] crwmadbs
(0.7} awns
1 i 5

B Cow Actor

[.l-l:IEEE-iEII'I

Delivery |
Actof |

SOLITE
= destination
bype

_”-“T['-.."l transporbedby

4 [0_*] manages

| D7) managedby| & ppdateltinarary()

:.Irl witor Pu{ ol
- Lranspl:-rt{r

fo.#]

| cooperates

[1.*] cooperates [0_1] producedky

[1.1] producedby o

| Retailer Actor

@ produceMeatProduct)
® ypdateltinerany()
® generabeTags()

L% generateingredients{]

[1..1] staredby

Ea!talﬁeadmg .
E gps_coordinate

" [Meat Product i b
P)
M T |{:. #] integrates /] ?-"Ieal: Cl.lt
| | [1.#] integratedby - tags -)
[0..} produces itinerary 0..*] produces
|0..%] skores

[0..#] slaughters

*] gps reading

= = location
[0..#] cooperates ® produceMeatCus()

Slaughterhouse
~AChor

@ ypdakelbneraryl)
. ® generateTagsi)
[1..1] slaughteredby

Farmer Actor
updateCows()

[1-1] ownedby
[I:I*l owng |-

Cow Actor
i identfier
* = |ocakion
| & ppdabel uml:innl::l
% wpdateTrajectory()

/ Y \
N Dy (\243
”‘f?i—%f&%ﬁ,

2x2 Case Study Implementation

» Choice of AODB

The vision for AODBs was proposed in the context of the

Orleans project

Orleans provides an explicit storage model for actor state

Thus, a cloud storage system is employed by Orleans

Features such as indexing and ACID are being implemented
» Support for Non-Functional Requirements

Modularity, data encapsulation, and asynchronous

communication were provided by virtual actors in Orleans
Support a number of data types and structures

\

¢wp Case Study Evaluation

» Development of a tool that simulates data requests
from sensors

To generate variable load for the data platform

» Amazon DynamoDB [9] was used for Orleans grain
state storage

200 writes and 200 reads per second
Populated with synthetic data

» Amazon AWS to setup environment

m5.xlarge instances were employed for the Orleans silos,
RDS db.t2.small for Orleans system storage

\

RSl .
v p Case Study Evaluation
Gem

\rk,\\//{é‘/

JCrAvES.?

R10O

» Configuration are set to not benchmark DynamoDB
storage, but rather the execution of in-memory actors

» Ingestion to the grain state storage has been
configured to only happen when the Orleans silo
service is shut down

\

» How many sensor readings can the SHMDP ingest
using a single cloud server?

» Does the SHMDP scale simultaneously on the number
of sensors and servers?

18000
i 16000 -
5 o 14000
1500
- — 12000 -
q]
iﬂﬂ' E,muuu-
Elm- E 8000 4
750 1 £ so00]
S &000
250 1 2000 -
L] r 1 1 . . o - - 1 - : . - 1
a 500 1000 1500 2000 Z5m 000 L] 1 . 3 & 5 - T B 9
Simulaied soneoes Scalo tacior

Figure 6: Single-server throughput experiment. Figure 7: Scale out experiment over multiple servers.

:», T ,lin", u‘\
N AR 74
> Ty X

AT RAS
. [

SR
N 5\
T‘\ T~

Py e

< GCRAV §) i

» Does the SHMDP deliver Low latency on online query
functions concurrently with data ingestion?

]]
50 porconile 50 porconiis
I 75 percenile I 75 peroentia
2500 4 93 parceniio 2504 4 99 parcentio
955 perceniie I 539 peroentie
2000 20040
g W
E E
E‘mﬂ %‘15011
1000 1 1004
500 504 4
o -|. -J .] a .I
a =00 L1l] 1500 2000 00 a] 1000 1500 2000 =500
Samiilaied SOnNsors Simeiaiod Sonsors

Figure 8: Latency percentiles for raw sensor channel data Figure 9: Latency percentile for organization live data re-
point time range requests. quests.

nr—

Py
57
(i 5
§ oYY
N\Nugl Sigsl
=
2\

¢ &Mﬂ/ﬂ%
\g{ o
LY &

&
\'i’i €

@
:
:

= References

&
= S
P vy

Lo
o
CRAVE

PUC

R10O

{’
=/
AP\

/
~

» Modeling and Building loT Data Platforms with Actor-Oriented
Databases . Wang et al. EDBT. 2019.

» Reactors: A Case for Predictable, Virtualized Actor Database
Systems. Shah, V. & Salles, M. SIGMOD. 2018.

\

	Relational Actors
	Outline
	Introduction
	Introduction
	Programming Model
	Programming Model
	ReactDB
	ReactDB
	System Architecture
	IoT and Actor-Oriented Databases
	Non-Functional Requirements for IoT Data Platforms
	Non-Functional Requirements for IoT Data Platforms
	Why Actor-Oriented Databases?
	Modeling AODBs
	Beef Cattle Tracking and Tracing
	Beef Cattle Tracking and Tracing
	Beef Cattle Tracking and Tracing
	Case Study Implementation
	Case Study Evaluation
	Case Study Evaluation
	Case Study Evaluation
	Case Study Evaluation
	References

