
Hypothetical
I dIndexes on
PostgreSQLPostgreSQL

This tutorial shows the usage of hypothetical indexes on PostgreSQL HypotheticalThis tutorial shows the usage of hypothetical indexes on PostgreSQL. Hypothetical
indexes were first discussed in [Frank, Omiecinski, Navathe, 92]

Hypothetical indexes are simulated index structures created solely in the database
catalog. This type of index has no physical extension and, therefore, cannot be usedg yp p y
to answer queries. The main benefit is to provide a means for simulating how query
execution plans would change if the hypothetical indexes were actually created in the
database. Thus this feature is useful for database tuners and DBAs.

Index selection tools such as Microsoft’s SQL Server Index Tuning Wizard makeIndex selection tools, such as Microsoft s SQL Server Index Tuning Wizard, make
use of hypothetical indexes in the database server to evaluate candidate index
configurations.

We have made some server extensions to PostgreSQL 9.0.1 to include the notion ofg
hypothetical indexes in the system. We have introduced three new commands:
create hypothetical index, drop hypothetical index and explain
hypothetical. To download the Hypothetical Plugin code, click here.

Begin TutorialBegin Tutorial

Hypothetical
I dIndexes on
PostgreSQLPostgreSQL

This tutorial uses an example database that stores product (produto) and

Product (Produto) Sale (Venda)

sale (venda) information for an enterprise. The database consists of two
relations:

Product (Produto)

num – int

descricao – varchar(50)

num – int

prodNum – int

data – date
Number of tuples: 4

data date

qtd – int

valor – numeric(10,2)

Number of tuples: 400000Number of tuples: 400000

Actual indexes are created for all of the tables’ primary keys. Scripts to create
the enterprise database can be found here.

NextPrevious Back to Beginning

Hypothetical
I dIndexes on
PostgreSQLPostgreSQL

Select prodNum, data, sum(valor) as total
from venda

The following query is very frequently issued by the enterprise application:

from venda
where valor > 1500000 and

data between '2004-01-01' and '2004-01-31'
group by prodNum, data;

Lets take a look at its query execution plan using the explain statement:Lets take a look at its query execution plan using the explain statement:

explain
select prodNum, data, sum(valor) as total
from venda
h l 1500000 dwhere valor > 1500000 and

data between '2004-01-01' and '2004-01-31'
group by prodNum, data;

NextPrevious Back to Beginning

Hypothetical
I dIndexes on
PostgreSQLPostgreSQL

Query Execution Plan

HashAggregate (cost=9778.97..9779.11 rows=11 width=18)

-> Seq Scan on venda (cost=0.00..9759.00 rows=2663 width=18)

Filter: ((valor > 1500000::numeric) AND (data >= '2004-01-01'::date) AND
(data <= '2004-01-31'::date))

A sequential scan was chosen by the planner to access the venda table. Perhaps
we could improve this by creating an index on the valor and data columns.

NextPrevious Back to Beginning

Hypothetical
I dIndexes on
PostgreSQLPostgreSQL

Although we could benefit from the existence of an index on the valor and data
columns , we should be careful to create it. Firstly, we do not know if the DBMS will
actually choose to use an index in the valor and data columns if it exists. Secondly, if
we try to create an actual index in these columns, the DBMS will prevent writers from
accessing the table So it is hard to experiment with new indexes and evaluate howaccessing the table. So it is hard to experiment with new indexes and evaluate how
good they are.

Instead of incurring the burden of creating an actual index on the columns, we could
simulate if this index would be useful to the database. To do that, we create it as a
hypothetical index:hypothetical index:

create hypothetical index hi_venda_valor_data
on venda (valor, data);

The create hypothetical index command also exists in other DBMSs, but with a
different syntax. For example, see the syntax proposed for SQL Server in [Chaudhuri,
Narasayya, 98]

NextPrevious Back to Beginning

Hypothetical
I dIndexes on
PostgreSQLPostgreSQL

The hypothetical index is not actually materialized in the database. Therefore, we will not
incur in heavy creation costs or obtain locks on the underlying table to create it. The
DBMS, however, cannot use the hypothetical index to answer a user query. If we query
the database again or use the explain statement the system will still use a sequentialthe database again or use the explain statement, the system will still use a sequential
scan to access the employee table.

We can see how the DBMS would behave if the hypothetical index were materialized
using the explain hypothetical statement:

explain hypothetical
select prodNum, data, sum(valor) as total
from venda
where valor > 1500000 andwhere valor > 1500000 and

data between '2004-01-01' and '2004-01-31'
group by prodNum, data;

NextPrevious Back to Beginning

Hypothetical
I dIndexes on
PostgreSQLPostgreSQL

Query Execution Plan

HashAggregate (cost=3976.05..3976.19 rows=11 width=18)

> Bitmap Heap Scan on venda (cost=1072 26 3956 08 rows=2663 width=18)-> Bitmap Heap Scan on venda (cost=1072.26..3956.08 rows=2663 width=18)
Recheck Cond: ((valor > 1500000::numeric) AND (data >= '2004-01-01'::date)

AND (data <= '2004-01-31'::date))

-> Bitmap Index Scan on hi_venda_valor_data (cost=0.00..1071.60

If the index hi venda valor data was materialized, the DBMS would use it to

rows=2663 width=0)
Index Cond: ((valor > 1500000::numeric) AND (data >= '2004-01-01'::date)

AND (data <= '2004-01-31'::date))

_ _ _ ,
process the query. The estimated cost to process the query would drop from
9778.97..9779.11 using the sequential scan to 3976.05..3976.19 using the index
scan.

NextPrevious Back to Beginning

Hypothetical
I dIndexes on
PostgreSQLPostgreSQL

Now that we know that the index is beneficial to performance, we can drop the
hypothetical index and create a corresponding actual one:

drop hypothetical index hi_venda_valor_data;
create index i_venda_valor_data on venda (valor, data);

NextPrevious Back to Beginning

Hypothetical
I dIndexes on
PostgreSQLPostgreSQL

Lets check the query execution plan for the query with the actual index created:

explain
select prodNum, data, sum(valor) as total
from venda
where valor > 1500000 and

data between '2004-01-01' and '2004-01-31'
group by prodNum, data;

NextPrevious Back to Beginning

Hypothetical
I dIndexes on
PostgreSQLPostgreSQL

Query Execution Plan

HashAggregate (cost=3880.04..3880.18 rows=11 width=18)

-> Bitmap Heap Scan on venda (cost=976.25..3860.07 rows=2663 width=18)
Recheck Cond: ((valor > 1500000::numeric) AND (data >= '2004-01-01'::date)

AND (data <= '2004-01-31'::date))

-> Bitmap Index Scan on i venda valor data (cost=0.00..975.59

The cost estimated by the planner for the query using the hypothetical index was

 Bitmap Index Scan on i_venda_valor_data (cost 0.00..975.59
rows=2663 width=0)

Index Cond: ((valor > 1500000::numeric) AND (data >= '2004-01-
01'::date) AND (data <= '2004-01-31'::date))

The cost estimated by the planner for the query using the hypothetical index was
3976.05..3976.19. With the actual index, the planner gave us an estimate of
3880.04..3880.18. Cost estimates for hypothetical indexes tend to be conservative,
but always close to the cost of using the actual index.

NextPrevious Back to Beginning

Hypothetical
I dIndexes on
PostgreSQLPostgreSQL

Estimations made for hypothetical indexes tend to produceyp p
conservative cost values. The cost values are bigger than those
verified for the corresponding actual indexes. This happens because
we have made some approximations to estimate the index size.

W i t th t t l b f t l t i th i d b thWe approximate the total number of tuples present in the index by the
number of tuples present in the table being indexed. We also
approximate the number of pages in the index by the number of pages
in the table.

Using these estimates, the query optimizer tends to consider the index
bigger than it would actually be if materialized. This means that the
cost calculations made for this index will produce higher I/O figures
than the calculations for the corresponding actual index.p g

A positive consequence of this policy is that we will never recommend
an index that will not be chosen by the optimizer when materialized.

Previous NextBack to Beginning

Hypothetical
I dIndexes on
PostgreSQLPostgreSQL

That ends our tutorial. We hope the tutorial has been useful for you to
understand how hypothetical indexes can be used to simulate index
configurations for the database. One important fact to notice is that the
addition of hypothetical indexes does not impact previously existing
applications. The new feature is aimed primarily at database tuners
and DBAs.

After implementing the server extensions for hypothetical indexes theAfter implementing the server extensions for hypothetical indexes, the
next logical step is to implement automatic index selection tools and
algorithms for the PostgreSQL database. We are currently doing that
at PUC-Rio. One interesting research prototype we obtained is a
software agent written in C++ that can be integrated to the DBMS insoftware agent, written in C++, that can be integrated to the DBMS in
order to make index selection and creation totally autonomic.

Previous NextBack to Beginning

Hypothetical
I dIndexes on
PostgreSQLPostgreSQL

If you would like more details on how all of this stuff was implemented,
email abrito@inf.puc-rio.br. You can also contact our research group
head sergio@inf.puc-rio.br.

Thank you for your interest! ☺

Previous Back to Beginning

