
Autonomic Index Management

Sérgio Lifschitz, Marcos Antonio Vaz Salles
Departamento de Informática

Pontifı́cia Universidade Católica do Rio de Janeiro (PUC-Rio)
{sergio,mvsalles}@inf.puc-rio.br

Abstract

This work presents the core ideas for an approach that
enables index tuning with no human intervention at all. SQL
statements submitted to the database are monitored and in-
dices are created or dropped according to the benefits or
overheads regarding the actual workload. We have imple-
mented this strategy using a software agent architecture em-
bedded in PostgreSQL. We discuss here some of the archi-
tecture core ideas and present initial experimental results.

1 Introduction

The database tuning task consists of fine manipulations
aiming at obtaining better performance of DBMS-based ap-
plications by means of an efficient use of the available com-
putational resources. Tuning can as well be done in hard-
ware configuration, physical design and query specifica-
tions. Due to the high complexity of DBMSs’ current im-
plementations, self-tuning or autonomic solutions are still
very restricted.

We are mainly concerned in this paper with index au-
tonomic management for database systems. We briefly
discuss an approach that matches software agents systems
and DBMSs in a feasible architecture. In our work we
study strategies to completely automate the index self-
tuning process. This means no human intervention at all.
We integrate a software agent with the DBMS optimizer to
choose good indices and create them when needed. We have
implemented our architecture in PostgreSQL and obtained
promising improvements to system performance. It is im-
portant to note that, unlike our proposal, all previous works
in the literature require DBA intervention in order to com-
plete the whole index tuning process.

The rest of the paper is organized as follows: in the next
Section, we discuss our agent architecture for autonomic in-
dex management. Then, in Section 3, we present initial ex-
perimental results. Finally, we conclude in Section 4 listing

our contributions and future work.

2 Index Management Architecture

Finding an adequate index design depends fundamen-
tally on the workload submitted to the DBMS. Workloads
mix query and update statements (insert/delete/update) with
varied frequencies. Performance conflicts can be created
when an index benefits queries and hurts updates. To re-
solve such a conflict one should choose the alternative index
design that minimizes the total impact on computational re-
sources and, therefore, maximizes throughput.

In our approach, we use a component embedded in the
DBMS to manage indexes automatically. Our architecture
uses a layered software agent, here called Benefits Agent,
that monitors the system and creates or destroys indexes.
Software engineering techniques needed to build such an
agent are discussed in [1]. Figure 1 shows the self-tuning
model for the Benefits Agent.

DBMS
Self-tuning

Agent

Situation 
Evaluation and

Possible 
Alterations 
Enumeration

Component N

Component N + 1

Component M

Component M + 1

Area being
adjusted

Preliminary information
retrieval

Alterations on jobs
execution settings

Information retrieval 
after alterations

Final execution information
retrieval

Figure 1. Index self-tuning model

The self-tuning agent interacts with DBMS components
guided by a self-tuning process with the following stages:
Information Retrieval, Situation Evaluation, Possible Alter-
ations Enumeration and Alterations Accomplishment. Dur-
ing Information Retrieval, the Benefits Agent interacts with
the DBMS to obtain every SQL statement that is optimized,

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05) 
0-7695-2276-9/05 $ 20.00 IEEE



along with cost and index usage information. For each state-
ment, Situation Evaluation takes place, causing the agent
to update its beliefs about the statement currently being
processed by the system. The agent then applies heuristics
to enumerate hypothetical index designs and to evaluate the
fitness of candidate indices.

The benefits brought by candidate indexes are estimated
using the system’s optimizer. These calculations comprise
the Possible Alterations Enumeration stage. More details
on the heuristics we have used can be found at [3]. Finally,
the Alterations Accomplishment stage is executed, with the
consequent creation or destruction of actual indices, if nec-
essary.

3 Implementation

We have implemented the Benefits Agent on PostgreSQL
7.4, beta 3, running on Red Hat Linux 8. Our prototype
deals, so far, with index creation but not removal. To evalu-
ate its effectiveness, we have used OSDL’s DBT-2 toolkit
[2] to submit PostgreSQL to an OLTP workload. This
toolkit uses TPC-C transactions and, therefore, simulates a
wholesale parts supplier operating out of a number of ware-
houses and their associated sales districts.

The DBT-2 toolkit comes with a set of suggested indices
that improve the evaluation of the given workload. In order
to evaluate the contribution brought by our agent, we have
observed system throughput in three test configurations:

1. A database with no indices at all and our agent turned
off, which we call here I0A0 (both indices and agent
zero).

2. No indices at the database and agent turned on (I0A1 -
indices zero, agent one).

3. Agent turned off and the database with the indices sug-
gested by the DBT-2 toolkit (I1A0 - indices one, agent
zero).

Two variables may affect the experiments’ throughput.
The first one, the number of warehouses in the application,
may be viewed as a scale factor and, therefore, the greater
this number is, also greater will be database tables’ sizes
and the user load on the system.

The second variable to be considered is how long the ex-
periment takes. When the agent is active, it must first learn
which are the best indices for the submitted commands and
materialize them. Then the agent enters a steady state phase,
in which it only verifies whether or not the existing indices
are still adequate. The throughput in the steady state phase
is considerably greater than during learning periods, con-
sequently leading to a greater average throughput in longer
experiments.

Transactions per Minute

0,00

10,00

20,00

30,00

40,00

50,00

60,00

1 2 3 4

Number of Warehouses

N
O

T
P

M

No indexes,
agent off
(I0A0)

No indexes,
agent on
(I0A1)

Indexes
created,
agent off
(I1A0)

Figure 2. Throughput in a 90 minute test

Figure 2 shows the results obtained for a 90 minute time
test. It is worth noting that the throughput for the I0A0
configuration decreases when the number of warehouses in-
creases. This is due to full scan query processing, leading
to worse performances when we deal with larger tables. As
expected, an intermediate throughput appears for the I0A1
configuration.

The agent eventually reaches the end of the learning step
and the workload remains active for a while with adequate
indices. Therefore, the throughput gets closer to the I1A0
configuration throughput as the steady state phase duration
increases. Additional experiments indicate that the longer
are tests’ running times, the more interesting it gets to have
our agent present in the environment [3].

4 Conclusion

In this paper we have integrated a software agent with
PostgreSQL and have conducted experiments that indicate
that our agent may tune up the database’s index design dy-
namically. As future work, we would like to extend the
implementation to deal with index destruction and to inves-
tigate how to make our agent able to deal with workloads for
decision support applications and involving ad hoc queries.

References

[1] R. Costa, S. Lifschitz, and M. Salles. Index self-tuning with
agent-based databases. CLEI Electronic Journal, 6(1):22
pages, 2003. http://www.clei.cl/cleiej/paper.php?id=88.

[2] Open source development labs database test 2 (osdl-dbt-2).
http://www.osdl.org/lab activities/kernel testing/
osdl database test suite/osdl dbt-2/.

[3] M. Salles. Autonomic index creation in databases (in por-
tuguese). Master’s thesis, Dep. de Informática, Pontifı́cia
Universidade Católica do Rio de Janeiro (PUC-Rio), 2004.

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05) 
0-7695-2276-9/05 $ 20.00 IEEE


