
A Knowledge Representation and Data Provenance Model
to Self-Tuning Database Systems

Ana Carolina Almeida - Sérgio Lifschitz - Karin Breitman
Departamento de Informática

PUC-Rio
Rio de Janeiro, Brazil

{abrito – sergio - karin} @inf.puc-rio.br

Abstract— Most autonomic database systems do not explicit
their decision rationale behind tuning activities. Consequently,
users may not trust some of the automatic tuning decisions. In
this paper we propose a rather transparent strategy, that
provides feedback to database administrators, based on
information extracted from the database log. The proposed
approach consists in transforming log results into a user-
friendly knowledge representation, based on the graphical
representation for OWL. This model provides users with the
rationale behind system decisions, adds semantics to the
database self-tuning actions, and provides useful provenance
information about the whole process.

Keywords- ontologies, transparency, self-tuning database.

I. INTRODUCTION
The task of self-tuning database systems involve

automating the activities commonly done by database
administrators (DBAs) to speed up database systems and
application processing. Most of these systems keep the
decision rationale behind parameter changes hidden from
DBAs and end users. It is often the cast that self tuning
systems are not adopted because DBAs do trust the tuning
component decisions.

There is a growing interest in developing systems that
provide transparency. Software transparency includes
characteristics about information such as completeness,
friendly, accessibility, objectivity, reliability, accuracy and
consistency [12].

In this paper we propose a strategy that tackles the
transparency issue. By providing user feedback, based on
information extracted from the database logs, we provide a
simple and intelligible way to represent tuning decisions.

The proposed approach consists in transforming log
results into friendlier knowledge representation, based on
the graphical representation for the OWL ontology
language. This model provides users with better
explanations about the system decisions, adds semantics to
self-tuning actions, and provides useful provenance
information about tuning process.

This paper is organized as follows: Section 2 comments
on related works, Section 3 relates some important concepts,
particularly about rationale and provenance; Section 3
briefly describes the self-tuning system to which this
approach was applied, while Section 4 reports all steps
involved in Knowledge Representation Model development.

Finally, Section 5 concludes this paper with our final
remarks and the future work.

II. RELATED WORK
While there is seminal work regarding rationale

capturing and provenance in software engineering, this is
not true regarding self-tuning databases [3, 17]. Indeed, we
were no able to find literature pointing to a direct
relationship involving rationale capture, provenance data
and tuning database systems.

Nevertheless, some commercial databases may include
self-tuning components that allow relating rationale and
database tuning. For example, Oracle Database 10g has a
self-tuning component called the SQL Tuning Advisor [18].
It receives one or more SQL statements as input and
provides advice on how to optimize their execution plans.
Furthermore, it gives the rationale for the advice, the
estimated performance benefit and the actual command to
implement the recommended advice. It relates to a
collection of statistics on objects, creation of new indexes,
restructuring the SQL statements, or even the creation of a
SQL Profile. A user can choose if he or she accepts the
recommendation to complete the tuning of the SQL
statements.

There are also some proposals that relate provenance
with databases. For example, the authors in [2] describe an
approach to track the user’s action while browsing database
sources. Data are then copied into a curated database, in this
case, applied to the bioinformatics context. The work in [8]
brings a presentation data model with a higher level of
abstraction that is located on top of the database logical
schema in order to enhance usability. This high-level
schema comprises only a small number of concepts. This
model allows to the user to query the new schema summary
directly. The authors in [8] also stress the importance of
provenance and consistency across presentation models.

The Oracle SQL Tuning Advisor component, shows the

rationale and detailed log about decisions but to a limited
extent. It deals with automatic index dropping or re-creating
indexes. Also, this component does not provide an actual
knowledge model, that is, rationale with semantics. Neither
does it provide rationale behavior in spite of having the
provenance traceability.

Despite our efforts, we were not able to find literature
that contemplated data provenance, transparency and
rationale in respect to self-tuning database systems.

In what follows, we discuss some concepts that are

relevant to understanding the importance of obtaining the
design rationale behavior and the data provenance in the
context of this paper.

III. DESIGN RATIONALE AND DATA
PROVENANCE

Rationale methods aim at capturing, representing, and
maintaining records about why developers have made the
decisions they have, including the options they investigated,
the criteria they selected to evaluate options, and, most
important, the debate that lead to making decisions.
Rationale can serve two different purposes: discourse and
knowledge capture [1].

Design rationale includes background knowledge e.g.,
deliberating, reasoning, trade-off and decision-making in the
design process of an artifact [5].

Design rationale capture is a technique that aims at
providing a full description of decision making processes
[3] by registering what decisions are made, when and why.

The rationale design approach can be applied to database
design to obtain the explicit background knowledge that is
usually only implicit in self-tuning database processes. It is
useful because not only decision rationale is captured, but
also dependencies and the justification behind the decisions’
component system.

In fact, a great part of process knowledge is already
captured by the tuning component and registered in the logs.
In this paper we propose to use the logs to extract, organize
and store rationale knowledge so as to provide an
intelligible, user friendly, explanation of self-tuning actions.

In addition we are explore the possibilities of providing
data provenance, that can be useful to the database
administrators. Data provenance may be defined as “the
source or origin of an object; its history and pedigree; a
record of the ultimate derivation and passage of an item
through its various owners.” by The Oxford English
Dictionary. In scientific experiments, provenance helps us
interpret and understand results: by examining the sequence
of steps that led to a result [7].

In respect to self-tuning databases, provenance
information will helps us interpret and understand decision-
making processes behind the design rationale behavior of
the tuning component such as index creation, dropping or

re-creation (reindex) and indexes decisions. With
provenance information, database administrators will be
able to identify weather the tuning component is performing
according to the desired behavior.

The combination of design rationale and provenance
information can be useful in helping database administrators
understand the automatic decisions performed by the self
tuning component and in the anticipating decisions, if
necessary.

In the next section, we discuss self-tuning systems in
more detail.

IV. SELF-TUNING SYSTEMS
One of the most important tasks of DBAs is to guarantee

optimal response times to statements submitted by users of a
very large DBMS (Database Management System). In [10]
we have proposed a self-tuning tool to a relational DBMS
that allows creating, dropping and recreating indexes
automatically, in order to decrease SQL requests response
times. Our tool extends existing proposals (e.g. [17] [11])
introducing automatic reindex the index structures through
the investigation of the fragmentation level of indexes. We
have implemented our architecture and ideas within the
PostgreSQL RDBMS.

Our system’s decisions are based on a set of heuristics
that work on the expected benefits [9] [4] of a given index.
Whenever the index benefit gets a negative value or a value
that cannot justify its existence, the index could be dropped,
or else it would only harm system’s maintenance. When a
workload is submitted to our self-tuning tool, all system
component decisions are stored in a working file based on
user submitted statements, as shown in Figure 1. For a given
query we store their accumulated benefit and their creation
cost. Our heuristics compare these 2 values, among others,
to decide if the candidate (hypothetical) index should be
automatically created or not.

This additional file generated, however, is not as
friendly as a DBA could expect. Though, it has important
information about the rationale behind the self-tuning
component behavior.

It is usually not clear to most DBAs what have
motivated the decisions behind automatic index
management, especially if presented as a simple text file.
Important information contained in these text files may
include: candidate indexes, submitted statements and
accumulated benefits, among others.

Figure 1. Text File Example

Figure 2. Text File Example

decisions earlier and faster. For example, the DBA
would not have to wait for the automatic index creation if he
could analyze the rationale and find out that the index was
essential to the RDBMS submitted workload.

In the next Section we present the proposal of creating a
knowledge representation model to provide more semantics
and transparency about self-tuning actions based on logs.

V. KNOWLEDGE REPRESENTATION MODEL
In order to provide more semantics and transparency to

the self-tuning tool actions, this paper proposes the use of

ontology as a representation model in which to capture log
information and redress it in a more user-friendly fashion. In
what follows we describe the construction process for the
ontology that captures the log information.

First, the terms used in text file generated by system and
their concepts are identified and analyzed. From this
analysis, the ontology is built. Figure 3. shows presents the
central concepts in the ontology in a graphical way, while
TABLE I. details theirs concepts.

Figure 3. Self-tuning tool - Ontology model proposal

TABLE I. SELF-TUNING TOOL - DESCRIPTIONS OF TERMS

Term Description
Statement Statement may be a select (query), an insert, an

update or a delete command in any structure (table,
index, tuples) of database.

CandidateIndex Hypothetical indexes for all relevant columns that
can be used in the statement.

RelevantIndex Real indexes for all relevant columns that can be
used in the statement.

Table A set of data elements (values).
Column A set of data values of a particular simple type.
Index A data structure that improves the speed of

operations on a database table.
Real Real index that has a physical materialization in the

database.
Hypothetical Hypothetical index that allows simulating the

presence of an index in the database without its
physical materialization.

Following, disjoint classes are created: Real and
Hypothetical index, CandidateIndex and RelevantIndex.
These classes are disjoint because an index can not be real
and hypothetical at the same time. Also, object and data
properties were elaborated and applied to classes and data
(see TABLE II.).

TABLE II. OBJECT AND DATA PROPERTIES

Object Properties
Property Description/Use example

about Used to show the relationship between index and
column, that is “Index about Column”. All indexes are
created about one or many columns of table.

couldBe Used to show the relationship between index and its
type. For example: “Index couldBe Hypothetical” and
“Index coulBe Real”.

has Used to show the relationship between statement and
indexes or table and index or column. A statement can
have indexes that are relevant or candidate to accelerate
its execution. So, we created relationships as: “Statement
has RelevantIndex” and “Statement has
CandidateIndex”. Also, a table can have indexes to
accelerate queries about it (Table has Index) and
columns as part of its composition (Table has Column).

is Used to show the relationship between two objects that
are similar because of their definitions. For example, all
candidate indexes are hypothetical indexes created to
evaluate their benefits about each query (CandidateIndex
is Hypothetical). These candidate indexes are suggested
by heuristic. Also, all relevant indexes are real indexes
created because they are relevant to the statement
(RelevantIndex is Real).

Data Properties
Property Description

aboutColumn Columns that are used by relevant indexes.
All relevant indexes are created about one or
more columns in table.

aboutTable Columns and indexes (candidate or real) are
created about table.

accumulatedBenefit Candidate and Relevant indexes have
accumulated benefit that is used by
component system to decide to create or to
drop this index or not.

atPosition Columns and relevant indexes are created at
the physically position on the table.

Bonus Candidate and Relevant indexes have bonus
that is used by component system to show
the index bonus in the statement execution.

Cost The execution statement cost.
creationCost Candidate index has creation cost that is the

cost of the creation of this index when it
turns real.

dropSituation How many times the relevant indexes are
dropped.

eliminationCost Relevant indexes elimination cost to the
database.

executionNumber The statement execution number. The
statement can be executed one or more times
in the same workload.

firstUsageNotification Notification about first usage of a relevant
index.

Pages How many pages the table uses physically.
rowsProcessed How many table rows need to be processed

to execute the statement.
Scans How many table scans need to be did to

execute the statement.
Statement The statement that is submitted against the

database.
timesUsed How many times the candidate index is used

by the database to execute a statement.
tuples How many tuples the table has.

The object properties are used to relate classes to other

classes in the ontology. They are used to explicit the
relationship between indexes and columns as well as to
statements in the ontology.

The data properties, on the other hand, are attributes of
the classes themselves. They are very useful to provide
additional information about the columns, e.g., the ones that
are used by such and such indexes. Attributes play a central
role in capturing information used to mine the self-tuning
mechanism rationale, as they provide more details of the
self tuning mechanism behavior.

Once the ontology is defined, we have developed a
script to create RDF triples. The log of the system
transformed to the RDF notation to facilitate processing by
the semantic system, designed to extract the design rationale
and provenance. The system is detailed in the following
section.

VI. SEMANTIC SYSTEM
We have developed a Perl script to map the log and

create RDF triples. These triples provide more semantics
about the database log due to the ontology used. It should be
noted that other self-tuning systems can use the same
ontology. Similarly, other systems can use the semantic
system implemented.

In our case, the RDF triples created may be stored in the
virtuoso database [15] [13] that fully supports sparql
queries. We are currently developing a semantic system
using python language [14] that access the virtuoso database
and shows the information about the log system in friendlier
manner. Figure 3 illustrates the information related to the
hi_new_order_1 created index.

In Figure
the rationale a
system show
execution num

Figure 5 s
an accumulat
other SQL sta
benefit is rang
submitted to
accumulated
780.518 acc
component de
reduce query

One shou
“execution nu

4 we illustrate
about a given

ws the accum
mber and the s
shows that the
ted benefit of
atements we c
ging accordin
 the databas
benefit is rea

cumulated b
ecides to creat
execution cos

uld not misun
umber”. The f

Fig

e how the sem
n index. In this
mulated bene
statement used
e index, first a
f 158.6. Durin
can analyze th

ng to the speci
se. Note tha
ached (e.g., l
enefit value
te this index, a
sts.
nderstand “ex
first one is the

gure 4. Semantic

mantic system
s particular ca
efit, creation
d by this index
as hypothetica
ng the execut
hat the accum
ific statement
at, when a
last execution

e) the self-
as it would pro

xecution” wit
e execution nu

c system main pa

shows
ase the

cost,
x.
al, has
tion of

mulated
that is
highly
n with
tuning
obably

th the
umber

ea
to
la
d

“e
ex
th
re

to
In
g

age – Created Ind

ach time the c
o the statemen
abel (or tag) is

database.
There is a

execution” an
xplain this w
he database th
elevant in resp

 In the futu
o the log syste
ndeed, we are

graphic to show

dex Query

component sys
nt. On the othe
s the statement

a difference i
nd the “execu
ith the presen

hat the self-tun
pect to the ind
ure, more data
em to provide
e extending th
w the accumul

stem shows th
er hand, the “e
t number that

in the last b
ution number”
nce of a statem
ning componen
ex.
abase informa
additional inf

he semantic sy
lated benefit e

he index as rele
execution num
is submitted t

block between
” information
ment submitte
nt did not con

ation can be a
formation to u
ystem to prov
evolution.

evant
mber”
to the

n the
. We
ed to

nsider

added
users.
vide a

Figure 5. Semaantic system – Real Index Query RResults

VII. CONCLUSIONS
In this paper the problem of transparency behind

decisions made by database self-tuning tools is addressed.
Most commercial systems make important decisions without
providing users the rationale that supports their reasoning.

The contribution of this paper is providing tool strategy
that tackles the transparency issue. By providing user
feedback, based on information extracted from the database
logs, we provide a simple and intelligible way to represent
tuning decisions.

The proposed approach maps the self-tuning tool
execution log to an ontology and creates RDF triples that
provide semantic concepts that both describe and backup the
system self-tuning component decisions. Particularly useful
is to provide users with provenance data and reasoning to
explain index automatic creation or dropping.

The proposed approach can be extended to cover other
self-tuning applications to provide semantic concepts as
[[6]]. Also, this approach can be improved to show, either
periodically or by demand, reasoning behind other automatic
decisions, given different scenarios and workloads. For
instance, a DBA could anticipate the creation of an index
before the self-tuning component would decide upon doing
so.

REFERENCES
[1] J. Bosch, “Software architecture: the next step”, in: Proceedings 1st

European Workshop on Software Architecture (EWSA’04), Springer-
Verlag, pp. 194—199, 2004.

[2] P. Buneman, A. P. Chapman, J. Cheney, “Provenance management in
curated databases”, in: SIGMOD 2006, pp. 539-550, Chicago,
Illinois, USA, 2006.

[3] E. J. Conklin, K. C. B. Yakemovic, “A process-oriented approach to
design rationale”, in: Human-Comput. Interaction, 6(3–4), pp. 357—
391, 1991.

[4] R. L. C. Costa, S. Lifschitz, M. V. Salles, “Index self-tuning and
agent-based databases”, in: Proceedings of the Latin-American
Conference on Informatics (CLEI), p. 76, Abstracts Proceedings; 12
pp. CD–ROM Proceedings, 2002.

[5] A. H. Dutoit, B. Paech, “Rationale management in software
engineering”, in: Handbook of Software Engineering and Knowledge
Engineering, World Scientific Publishing Company, p. 92, 2000.

[6] J. M. S. M. Filho, “A non-intrusive approach to automatic
maintenance of database physical design” (in portuguese), Ph.D.’s
Thesis, Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro (PUC-Rio), 2008.

[7] J. Freire, D. Koop, E. Santos, C. T. Silva, “Provenance for
computational tasks: a survey”, in: IEEE Computing in Science &
Engineering, 10(3), pp. 11—21, 2008.

[8] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A.
Nandi, C. Yu, “Making database systems usable”, in: Proceedings of
the 2007 ACM SIGMOD international conference on Management of
data, pp. 13-24, 2007.

[9] G. Lohman, G. Valentin, D. Zilio, M. Zuliani, A. Skelley, “DB2
advisor: an optimizer smart enough to recommend its own indexes”,
in: Proceedings of the IEEE International Conference on Data
Engineering (ICDE), pp. 101—110, 2000.

[10] E. Morelli, J. M. Monteiro, A. C. Almeida, S. Lifschitz, “Automatic
Reindexing in Relational DBMS” (in portuguese), in: XXIV Database
Brazilian Symposium (SBBD), pp. 31-45, Fortaleza, 2009.

[11] Costa, R. L. C., Lifschitz, S., Noronha, M. and Salles, M. V.,
“Implementation of an Agent Architecture for Automated Index
Tuning”, in Proceedings of the ICDE Workshops, p. 1215, 2005.

[12] A. P. Oliveira, C. Cappelli, H. S. Cunha, J. C. S. P. Leite, V. M. B.
Werneck, “Engenharia de requisitos intencional: tornando o software
mais transparente”, in: SBES’07, http://www.sbbd-
sbes2007.ufpb.br/tuto3.pdf, 2007.

[13] Openlink software - universal server plataform for the real-time
enterprise, http://virtuoso.openlinksw.com/, 2009.

[14] Python software foundation: python programming language – official
website”. Available in: http://www.python.org/, 2009.

[15] J. Rapoza, “OpenLinks virtuoso has many talents” in: eWeek
magazine, 2004.

[16] W. C. Regli, X. Hu, M. Atwood, W. Sun, “A survey of design
rationale systems: approaches, representation, capture and retrieval”,
in: Engineering with Computers, vol. 16, pp. 209--235, Springer-
Verlag London Limited, 2000.

[17] Salles, M. A. V., Morelli, E.T., Lifschitz, S, “Towards Autonomic
Index Maintenance”, in: XX Brazilian Symposium on Database
(SBBD), pp. 176-190, 2006.

[18] S. Surapaneni, “Automatic SQL tuning using SQL tuning advisor”,
in: Database Journal, The Knowledge Center for Database
Professionals, Chicago, 2005.

