
Implementation of an Agent Architecture
for Automated Index Tuning

Rogério Luı́s de Carvalho Costa, Sérgio Lifschitz,
Maı́ra Ferreira de Noronha and Marcos Antonio Vaz Salles

Departamento de Informática
Pontifı́cia Universidade Católica do Rio de Janeiro (PUC-Rio) - Brazil

{rogcosta,sergio,maira,mvsalles}@inf.puc-rio.br

Abstract

It has been important to extend database management
systems to support new requirements of applications and
administration. We focus in this paper on the automatic
tuning feature, particularly manipulation of indexes. The
architectural approach considered here is based on soft-
ware agents. We briefly present the heuristics involved in
the decision upon creation, dropping and the exact moment
to proceed with either action. Then we discuss our agent-
based database architecture, with its layers and coupling
within an actual DBMS. Finally, we explain the way our
hypothetical indexes are integrated in PostgreSQL and how
they can be used in practice for automated index tuning.

1 Introduction

Database tuning is a quite complex activity, usually car-
ried out by database administrators [18]. For current sys-
tems, these fine manipulations may be needed for hard-
ware configuration, physical design and query specifica-
tions, among others. At each new edition of commercial
DBMSs, additional operational parameters appear to be ad-
justed. Therefore, tuning has become very important and, at
the same time, more expensive, as highly specialized pro-
fessionals are needed.

It is part of the tuning process to perceive that a given
system resource is not efficiently used, diagnose its causes
and take corrective actions. Database systems would, ide-
ally, be configured in such a way that no tuning activities
would ever be needed. All the resources would be always
placed and adjusted in the best possible way. When there
are mandatory changes, however, the DBMS would then be
able to execute them automatically. This capacity of per-
ception and automatic adjustment is known as self-tuning.

Due to the high complexity of DBMSs’ current imple-

mentations, self-tuning solutions are still very restricted.
We need to adapt the DBMSs’ architecture in order to
achieve an actual automatic behavior (e.g. [5]). In this
paper we consider the use of software agents to deal with
self-tuning and DBMSs operational requirements.

The software agents’ research area aims at building sys-
tems that deal with heterogeneous, distributed and dynamic
environments [19]. When agents are present, systems can
detect the external environment where they are inserted and
react in different ways according to the existing system con-
figuration .

We are mainly concerned here with a particular kind of
autonomic behavior: automated index tuning. We present
an approach that enables the automation of the complete in-
dex self-tuning process, requiring no human intervention.
Our approach matches agents systems and DBMSs in a fea-
sible architecture. Indeed, we use a software agent coupled
with the DBMS optimizer to manage indexes.

Our agent architecture is implemented within Post-
greSQL [16], an open source DBMS. We show that, given
some particular heuristics for decision upon creation and
dropping of indexes, the agents enable autonomic manage-
ment in a very effective way, through the use of hypothet-
ical indexes integrated with the DBMS optimizer. A hy-
pothetical index exists only in the database schema and is
not actually materialized [11]. We also evaluate the quality
of estimates when compared to optimizer values for actual
indexes.

In the next Section some previous works directly related
to ours are given. Then, we briefly show the heuristics used
within the self-tuning engine to support automated index
management in Section 3. In Section 4 we present ways
software agent systems may interact with database systems
and our specific choice. Then, in Section 5, we detail im-
plementation issues regarding our self-tuning agent and its
coupling with the PostgreSQL source code. In Section 6
we discuss hypothetical indexes, which enable the feasibil-

1

Proceedings of the 21st International Conference on Data Engineering (ICDE ’05)
1084-4627/05 $20.00 © 2005 IEEE

ity of our approach. Section 7 lists our main contributions,
ongoing and future work.

2 Related Work

There are many approaches to automatic index selection
described in the literature. They mostly focus on construct-
ing tools with detailed rules that encode the knowledge of
good database design. Due to space limitations, we will
comment briefly some of the most important works related
to this paper. For a more thorough discussion of work done
on self-tuning for relational database systems, see [14].

In [10] the proposed index selection tool makes use of
the optimizer’s cost estimates to compare the gains of al-
ternative hypothetical designs. This is a key observation
because it avoids asynchrony between the cost models used
by the tool and the system. The work of [11] proposes to ex-
tend the optimizer’s interface to allow the experimentation
of alternative hypothetical index sets.

Tools for indexes suggestion implemented in Microsoft’s
SQL Server are discussed in [3, 4], as part of the AutoAd-
min project. The objective of the index suggestion tools is
to generate an index set for a given input workload, obtained
by the DBA. The workload is broken into single statement
inputs and candidate indexes for each statement are gener-
ated. These are, then, arranged into configurations and their
costs are evaluated by the query optimizer. A greedy algo-
rithm extends the number of statements and index configu-
rations considered until a best index configuration is deter-
mined to the workload as a whole. As not all the possible
indexes evaluated exist in the database, a separate module
enables the simulation of hypothetical indexes. Additional
work on index selection heuristics done by the same authors
is documented in [2].

The work of [15] suggests that the index selection heuris-
tic should be tightly integrated with the optimizer. The op-
timizer itself is extended with an index suggestion mode.
This means that, before the optimization of a given query,
hypothetical indexes for all relevant columns are generated.
Then, the indexes picked by the optimizer are recommended
for the query. The single query recommendations serve as
input to an index selection heuristic that tries to find the best
index configuration for a given workload.

There still exists some other commercial tools (e.g.
[8, 20]) that are capable to recommend indexes for a work-
load. However, all of these previous proposals do not ad-
dress the automation of the complete cycle of workload col-
lection, index selection and actual data structure creation
or destruction. Indeed, they need the intervention of the
database administrator, who not always has all the informa-
tion and tools needed to characterize the system’s workload
in an efficient manner.

Therefore, the final decision of index creation or destruc-
tion requires human intervention. Our work studies a possi-
ble solution to these problems through the use of a software
agents architecture. The idea is to completely automate the
index tuning process. The architectural approach that makes
this feasible will be detailed in the next sections.

3 Heuristics Overview

As the main focus of this paper is on implementation
issues, we briefly describe in this section the basic heuris-
tics that allow the total automation of index choice, creation
and destruction, during the DBMS’s normal operation. This
is done through the use of a self-tuning agent called Self-
Tuning Agent Based on Differences that is coupled with the
DBMS.

The basic database objects used are the hypothetical in-
dexes. These exist only in the database catalog and are not
materialized [11, 4]. Hypothetical indexes are used by the
optimizer to recommend an execution plan that would use
such an index if it was physically created. Analogously, for
indexes that should be dropped, the optimizer should be ex-
tended to be able to find an execution plan that disregards
actual indexes present in the database.

Our agent senses each query submitted to the DBMS,
creates several hypothetical indexes that can be interesting
to the query, and selects the indexes that bring the greatest
benefits as measured by the optimizer’s cost estimates. The
indexes chosen are then considered as candidate indexes to
our differences evaluation procedure.

The enumeration of candidate indexes has been studied
in other works in the literature [10, 11, 3, 15]. We have
chosen to implement the SAEFIS (“Smart column Enumer-
ation for Index Scans”) heuristic detailed in [15] because of
its simplicity and efficiency. The SAEFIS heuristic has also
been implemented in DB2 Universal Database.

In our model, for one given operation submitted to the
DBMS, the query optimizer generates the best plan with the
best real configuration, that is, it only uses objects material-
ized in the database.

Then, the self-tuning agent enumerates hypothetical in-
dexes that may speed-up the operation. When such indexes
do not exist, the execution of the operation continues nor-
mally. When good hypothetical indexes exist, these are cre-
ated in the database’s schema and a plan is generated ac-
cording to a hypothetical configuration.

The costs of the best plan according to the real configu-
ration (CR) and of the best plan according to a hypotheti-
cal configuration (CH) are compared and a decision on cre-
ation/destruction of an index is taken.

Proceedings of the 21st International Conference on Data Engineering (ICDE ’05)
1084-4627/05 $20.00 © 2005 IEEE

C = CR – CH ;
If C > 0, then

If C > CC, then
Create Indexes & Execute the query;

Else
Execute the query;
CP = CP + C;
If CP + C >= CC then

Create indexes & Reset CP;
End if;

End if;
Else

CP = CP + CRI ;
End if;

Figure 1. Queries and previous operations

Query evaluation

When evaluating queries, a factor C is defined as the differ-
ence between the cost of the best plan according to the real
configuration and the cost of the best-established plan ac-
cording to hypothetical configurations. When positive, we
compare it with the cost of creation of the necessary indexes
used in the hypothetical configuration, called CC (creation
cost). If C is lower than CC, then it will be advantageous
to create the indexes before query execution. On the other
hand, an evaluation of previous operations will be carried
through, in accordance with the stored statistics. This pro-
cedure is represented in Figure 1.

The evaluation of the previous operations is extremely
simple. It consists on deciding if an index should be created
or not by analyzing the time that could have been saved in
the last queries in consequence of the existence of such in-
dex. The creation decision is taken when the total costs that
could have been already saved, in case that index existed,
reaches the forecasted index creation cost. This is repre-
sented in Figure 1, where CP is the stored value represent-
ing the total cost’s reduction if the related index had already
been created.

When CH is equal or bigger than CR, the query is exe-
cuted according to the real configuration. If the optimizer
always finds the best plans, CH would never be bigger than
CR, as CH would represent the optimal plan. We should
consider that the indexes that are used in the query execu-
tion plan, in the real configuration, are reducing the query
execution costs. So, we should add to CP another factor,
CRI , which is the cost of execution if the indexes used in
the real configuration were dropped.

Update evaluation

The case of updates and exclusions is a little more complex
than the one of queries: actions that could be taken include
create and/or destroy an index.

We call CD the destruction cost of an index. When C is

C = CR – CH ;
If C > 0, then
 If C > CC + CD, then
 Create proposed indexes;
 Drop indexes proposed to be dropped;
 Execute the query;
 Else
 If CHC > CC then

Create proposed indexes & Execute the query;
Reset CP;
Exit;

 End if;
 If CHD > CC then

Drop proposed indexes & Execute the query;
Reset CP;
Exit;

 End if;
 Execute the query;
 CPC = CPC + CHC ;
 CPD = CPD - CHD ;
 If CPC >= CC then

Create index & Reset CPC;
 End if;
 If |CPD | >= |CC| then

Drop index & Reset CPD;
 End if;
End if;
Else
 CP = CP + CRI ;
End if;

Figure 2. updates and previous operations

negative or equal to zero, the actions to be taken are similar
to those taken in the query operations evaluation, just de-
scribed. On the other hand, when C is positive, we should
evaluate if C will be greater then the sum of the indexes cre-
ation costs and the indexes destruction costs (CC + CD).
If it is, then we create/destroy the indexes and carry through
the query. If C is lower than CC + CD, then we should
obtain CHC that is the cost of execution of the operation if
the suggested indexes are created but no index is dropped.
CHC should be compared to CC. If CHC is lower then
CC the indexes are created and the update/delete is exe-
cuted. If CHC is not lower then CC, then we should obtain
CHD. CHD is the cost of execution of the operation if the
suggested indexes are destructed but no index is created. If
CHD is lower then CD the indexes are dropped and the
update/delete is executed.

The other way around, we only make an evaluation of
previous operations. The evaluation of previous operations
for the case of an update/delete is composed of two parts:
(i) for the indexes which were proposed to be created, CP

is increased of the value of CHC ; (ii) for the indexes which
were proposed to be dropped, we update the value of CP

deducting CHD. When CP is positive and |CP | reaches
the cost of indexes creation, these are created. When CP is
negative and |CP | reaches the cost of indexes creation, these
are destroyed. The procedure for update/delete operations
is represented in Figure 2.

Proceedings of the 21st International Conference on Data Engineering (ICDE ’05)
1084-4627/05 $20.00 © 2005 IEEE

4 Agent-based Databases

There are multiple definitions for the agent term but con-
sensus exists only for the characteristics of autonomy. In-
deed, this is a central point related to the agency concept.
We consider here basically the definition given in [19]:
an agent system is a computational system that lives in a
given environment, being able to execute autonomous ac-
tions over this environment in order to achieve its goals.

The agent architecture implemented here is based on a
object-oriented framework for building agent systems pro-
posed in [12]. This framework (Figure 3) defines a layered
architecture which identifies each agent function and can be
used for both simple and complex agents. We shall discuss
how each of the layers presented were implemented for in-
dex tuning in Section 5.

Sensory

Action

Reasoning

Mobility

Collaboration

Translation

Believes

Layered Agent Layer’s functionalities

Layer for communication between agents

Messages are formulated and translated for others
languages or semantics

This layer determines how the agent should collaborate with
others agents, including accept or reject incoming requests

The Reasoning layer intentions are carried out

The next action is chosen. This can mean request for
services or answers for requests

The models/information that the agent has about its actions
and the environment

Gets information about the environment

Figure 3. Layered architecture for agents

Some works investigate the use of software agents to ex-
tend DBMSs functionalities in general [1] and also specif-
ically for self-tuning [9]. We have observed in our im-
plementation that the agent abstraction effectively permits
the introduction of self-tuning functions in the system with
small impact in DBMS components and architecture.

If one opts not to use software agents, changes to in-
clude system data collection and autonomic system modifi-
cation functions must be done directly to existing or newly
added DBMS components. This means trying to alter the
architecture of an already complex system to include new
functionality for which it was not originally designed. The
complexity of this task must not be underestimated. Indeed,
some argue that a more compelling path would be to com-
pletely rethink DBMS architecture and implement simpler,
RISC-style systems [5]. In our work, we show that it is pos-
sible to take a less radical approach to coding self-tuning
functionality by using software agents to set apart existing
DBMS components and novel tuning algorithms.

In [13] three integration architectures between agents
and DBMSs are proposed: Layered, Integrated and Built-
in. Each one of the three integration architectures has ad-

vantages and disadvantages. The Layered architecture is
the one implemented in most existing approaches but is also
the one where less functionalities are supported. In the Inte-
grated architecture the maximum agency level is obtained,
as agents systems replace all (or almost all) of the DBMSs’
components. However, building such an integrated system
is extremely complex. The Built-in architecture enables the
reuse of DBMSs’ existing components. The degree of ex-
tension of DBMSs’ functionalities depends on the coupling
level between agents and components.

We have considered the built-in architecture to imple-
ment the self-tuning feature in an agent-based database ar-
chitecture, as will be presented next.

5 Self-tuning Agent Implementation

We discuss in this section the way our agent was inte-
grated with the DBMS’s code and some important choices
made during the implementation that made our solution fea-
sible.

Agent Layers

Our agent interacts with the DBMS to obtain the queries
and updates submitted to the system. For each statement
processed, the agent updates its beliefs on index accumu-
lated costs and evaluates new indexing possibilities. This
evaluation may involve interactions with the system’s opti-
mizer and enumeration of hypothetical indexes. After in-
dexing alternatives are examined, indexes may be created
or destroyed. The agent executes these actions by making
calls to the DBMS’s internal components.

We have followed the agent architecture presented in
Figure 3 to implement our index self-tuning agent. A de-
tailed object-oriented design for the layers is discussed in
[7]. We have mapped the desired index agent’s functionali-
ties to each of the layers as presented below:

1. Sensory: this layer is responsible for obtaining infor-
mation from DBMS’s components. The agent must
receive each statement processed by the system’s op-
timizer as well as cost, table and actual index infor-
mation for the statement. In order to achieve this, we
propose that DBMS code be instrumented to send in-
formation to the agent after statement optimization but
before execution. We can implement this kind of in-
formation collection in an efficient manner using a no-
tification mechanism. This represents less overhead
when compared to the alternative of using polling to
obtain system information. Additionally, if we stan-
dardize information gathered from the DBMS, we can
ease the integration of the index tuning agent with dif-
ferent database systems.

Proceedings of the 21st International Conference on Data Engineering (ICDE ’05)
1084-4627/05 $20.00 © 2005 IEEE

2. Believes: this layer stores information on database ta-
bles, actual and candidate indexes. This information is
necessary to calculate index selection heuristics imple-
mented in the Reasoning layer.

3. Reasoning: this layer evaluates agent’s beliefs and
enumerates possible courses of action. The Self-
Tuning Agent Based on Differences uses two heuris-
tics. The first heuristic performs hypothetical indexes
enumeration and chooses candidate indexes for each
statement. In order to simulate the existence of hypo-
thetical indexes in the database, the Reasoning layer
invokes action execution procedures available at the
Action layer. The candidate indexes found are stored
on the Believes layer of the agent. The second heuris-
tic then decides which indexes should be created and
which should be destroyed. Actual index modification
actions are executed through calls to the Action layer.
Refer to Section 3 for a brief explanation of the index
selection heuristics used by our agent.

4. Action: this layer carries out the modifications cho-
sen by the Reasoning layer. For the index tun-
ing agent, the layer must offer capabilities for hy-
pothetical indexes simulation and actual indexes cre-
ation/destruction. As an implementation of these func-
tions requires direct interaction with the DBMS, the
procedures on this layer shall fire effectors specifically
coded to the DBMS used.

The Collaboration, Translation and Mobility layers are
responsible for dealing with communication among agents
in distant societies, that may interact with distinct proto-
cols, languages and message formats. The implementation
of these layers might be helpful for dealing with multiple
agents, possibly distributed in various databases. These var-
ious agents can negotiate in order to achieve global tuning
decisions that take into consideration the trade-offs among
possible adjustments. In this paper, we study the implemen-
tation of an individual index tuning agent integrated with a
centralized database. Therefore, the Collaboration, Trans-
lation and Mobility layers will not be further discussed.

Integration with PostgreSQL

Figure 4 depicts how the Self-Tuning Agent Based on
Benefits was integrated with PostgreSQL. We use a Built-
in architecture, in which the agent is compiled along with
other DBMS’s components.

We had to make the agent interact with PostgreSQL’s
server process model. The DBMS follows a client/server
structure. Each client process is connected to exactly one
server process. As the quantity of connections is not known
at the outset, one master process (postmaster) is created

when the database is started. For each connection request, a
new server process (postgres) is created. All postgres pro-
cesses communicate with each other using semaphores and
shared memory in order to ensure data integrity.

Query
Rewrite

Planner

Query
Rewrite

Planner

Sensory

Beliefs

Reasoning

Action

Postgres Postgres

Queue

Storage
Managers

Built-in Agent

Postmaster

Figure 4. Agent and PostgreSQL

Every postgres process contains instrumentation code
that interprets the statements being processed and records
column usage information to a shared queue. The agent
senses information present in this queue, updates its beliefs,
evaluates index selection heuristics and, if necessary, exe-
cutes actions. These actions can make invocations of inter-
nal database routines.

A few challenges had to be overcome to accomplish this
level of integration. While the agent has been coded in C++,
PostgreSQL is completely written in C. Therefore, we had
to create interface functions and structures in order to com-
pile the agent and the database system together [6].

Another important issue was process synchronization.
The self-tuning agent is a server process that must have ac-
cess to information present in the query trees of each state-
ment submitted to the optimizer. Therefore, we have in-
troduced an operating system message queue that holds the
query information that should be considered by the agent to
apply its heuristics.

As the agent is compiled along with the database sys-
tem, it has access to all DBMS functions. When an action
must be carried out in the system, such as index creation or
destruction, the agent’s Action layer invokes interface rou-
tines that call the appropriate DBMS’s internal functions.
This has been possible because we have initialized the agent
process as a regular postgres process is initialized. There-
fore, the agent process is transparently capable to deal with
all shared DBMS structures, such as the lock table and the
catalog cache.

Proceedings of the 21st International Conference on Data Engineering (ICDE ’05)
1084-4627/05 $20.00 © 2005 IEEE

6 Hypothetical Indexes Implementation

In order to properly simulate the pros and cons of an in-
dex configuration, we have extended the optimizer’s inter-
face to recognize the concept of hypothetical indexes. We
have created new SQL statements in PostgreSQL to allow
the manipulation of hypothetical indexes. There are two
commands to create and drop hypothetical indexes and also
a third command that is used to generate a query plan that
acknowledges the existence of both hypothetical and actual
indexes.

[CREATE,DROP] HYPOTHETICAL INDEX

In order to support these commands, we have modified
some of PostgreSQL’s modules. First, we altered the sys-
tem’s parser to recognize the new syntax. For the create
hypothetical index statement, we have included a parame-
ter in the query tree indicating that the index to be created
is a hypothetical one. When the query tree is sent to ex-
ecution, a reference to the index is created on the system
catalog, but the index is not actually materialized. A new
column has been added to the catalog to inform if the index
is hypothetical or not. As we will see, the explain and the
explain hypothetical statements will use this new column to
distinguish hypothetical indexes from actual ones.

Instead of adding a new column to the system catalog,
we could have chosen to create an user specified table to
represent hypothetical index information, as was done in
[4]. This option could bring some benefits in terms of con-
tention on the system catalog, since every hypothetical in-
dex creation demands a row exclusive lock in the catalog.
Exclusive locks may have a negative impact on system per-
formance because the agent tries to enumerate hypotheti-
cal indexes concurrently with the processing of normal user
queries. Using separate tables for hypothetical information
is also interesting if more complex simulations are to be
done with the optimizer, such as multiplying the cardinality
of user tables by scaling factors.

In spite of such potential advantages, creating separate
user specified tables makes the impact on database server
code greater. The DBMS’s code must be altered in many
distinct points in order to make the optimizer aware of
where to get its statistics and schema information from.

Another important factor to consider is that actual index
creations acquire a shared lock on the underlying table, thus
avoiding the execution of concurrent updates on the table.
Hypothetical indexes are not materialized and, therefore, we
have used less restrictive lock levels for the creation of our
simulated structures. We only block concurrent data defini-
tion language operations.

To drop an hypothetical index, we have included in the
system a drop hypothetical index command. As we have

chosen to represent hypothetical indexes in the system cat-
alog, this new statement is very close to the conventional
drop index statement. The main difference in the routines
is, once again, the acquisition of a less restrictive lock level
on the underlying table. This similarity of the hypothetical
indexes logic to the logic used by actual indexes is an im-
plementation advantage of using the system catalog to store
the hypothetical indexes metadata.

EXPLAIN HYPOTHETICAL

The explain hypothetical statement is an extension of the
conventional explain command [10]. We have included a
parameter in the explain statement query tree to indicate to
the optimizer if hypothetical configurations should be eval-
uated. In explain hypothetical, the resulting query plan gen-
erated by the optimizer may include both hypothetical and
actual indexes.

The modifications that had to be made to the optimizer
were very localized. Basically, when the system tries to
obtain optimization information about a relation, hypothet-
ical indexes are also included if and only if the optimizer is
working in the explain hypothetical mode.

One important concern that applies to the creation and
use of hypothetical indexes is statistics management [4, 15].
Some statistics aproximations were necessary to generate
cost estimates for hypothetical indexes. In PostgreSQL’s
cost model, indexes make use of the following statistical
components: selectivity, correlation, number of tuples and
number of pages.

Selectivity and correlation estimates in PostgreSQL do
not involve specific index information, so generic routines
can used both for hypothetical and actual indexes yielding
the same results. Therefore, no extensions were necessary
to estimate these parameters.

We have approximated the number of tuples is an index
by the number of tuples in the underlying table. This is al-
ways true for dense indexes, which is the type of indexes
that we deal with in PostgreSQL. We have followed the
same policy for the number of pages in an index, approx-
imating it by the number of pages in the underlying table.
For most index creation scenarios, this will yield conser-
vative cost estimates for index scans, as a table tends to be
larger than any one of its individual indexes. On the tests we
have conducted, the cost values estimated for hypothetical
indexes and its materialized counterparts have been reason-
ably close (see the discussion in the next subsections).

As the implementation we made is general, we can use
the explain hypothetical command combined with any of
PostgreSQL’s DML statements. Hypothetical indexes are
a basic infrastructure to index selection. Therefore, our
implementation of hypothetical indexes in PostgreSQL not
only enabled the coding of the Self-Tuning Agent Based on

Proceedings of the 21st International Conference on Data Engineering (ICDE ’05)
1084-4627/05 $20.00 © 2005 IEEE

Benefits, but also permits that other developers create index
selection tools similar to the ones proposed in [3, 15] for
commercial databases.

Hypothetical Indexes Evaluation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 50 100 150 200 250

C
re

at
io

n
T

im
e

(m
s)

Number of Tuples (thousands)

Actual Index
Hypothetical Index

Figure 5. Hypothetical vs actual indexes

We have made some experiments to validate the perfor-
mance gains involved in using hypothetical indexes and also
to evaluate the quality of the estimates made compared to
optimizer estimates for actual indexes. In our first experi-
ment, we have investigated the time difference between cre-
ating a hypothetical and corresponding actual indexes. This
difference in time justifies the usage of hypothetical indexes
as a simulation tool for large databases.

We have populated an example table, called sales, with
growing numbers of tuples and have defined an index to be
created on the table (due to space limitations, please refer to
[17] for more details on the creation of the test scenarios).
For each size of the sales table, we have taken ten time mea-
surements for hypothetical and actual index creation. The
average of those ten measurements corresponds to a data
point in Figure 5. Time measurement was accomplished
through the use of the timing option of PostgreSQL’s psql
client [16]. Both client and server were run on the same
machine and, therefore, no network delays were introduced
in the values obtained.

As we can see in Figure 5, actual index creation times
grow linearly with table size. Hypothetical indexes, on the
other hand, have creation times that remain practically con-
stant and equal to a few hundredths of a second in the hard-
ware we have used. A database user or administrator can
use hypothetical indexes to evaluate the potential benefits
to queries with very little computational costs inflicted to
the system.

Another important point is the estimation quality that the
optimizer achieves when hypothetical indexes are used. It

Query Type Query Text
Point query select *

from sales
where s num = 100;

Range and aggregation query select s prod num, s date,
sum(s value) as total
from sales
where s value > 1500000
and s date between ’20040101’
and ’20040131’
group by s prod num, s date;

Ordering query select *
from sales
order by s num;

Table 1. Samples queries

must be comparable to the quality achieved for actual in-
dexes. Therefore, we have made additional experiments to
validate if the optimizer would find the same query plans in
the presence of hypothetical indexes and their actual coun-
terparts.

We have selected some types of queries that make use of
indexes (for a classification, see [18]). For these queries, we
have used the optimizer to calculate the cost to process the
query with a convenient hypothetical index and the cost to
process the query with the same actual index.

Table 1 shows a sample of some of the queries we have
experimented with. As we have approximated the number
of pages in a hypothetical index by the number of pages
in the underlying table, we have picked queries that scan
different numbers of pages from the index.

The first query is a point query, that is, a query that ac-
cesses only one tuple from the table. The sales number at-
tribute is a sequential identifier for sales entry in the system.
An index on this attribute can bring benefits to the query.
For this query, cost estimates made with hypothetical and
actual indexes were identical. The number of pages esti-
mated for the hypothetical index has no impact as only one
page from it will be accessed.

The second query makes a range selection and then an
aggregation. An index on the date and value attributes of
the sales table could speed the query up. For this query, the
differences in estimates for hypothetical and actual indexes
were small and equal to 0,10%. Once again, only a few
pages of the index should be accessed and thus the approx-
imation made for the number of pages has little impact.

Last, the third query obtains all the tuples from the ta-
ble ordered by the sequential identifier of the sale. There
is a high correlation between the order of the tuples in the
table and the order of the sequential identifier (clustering).
Therefore, an index can be used in such setting to eliminate
the need to process a sort operation to resolve the order by

Proceedings of the 21st International Conference on Data Engineering (ICDE ’05)
1084-4627/05 $20.00 © 2005 IEEE

clause of the query. For this query, we had a greater cost dif-
ference, equal to 26.94%. As the query scans all the pages
in the index, the estimates made for the number of pages
are significant. Yet, the query plans chosen were exactly
the same, both with hypothetical and actual indexes. This
consistently happened in other experiments with the same
characteristics.

7 Conclusions

In this work we have presented an engine that enables au-
tomatic indexes creation and destruction for DBMSs. The
engine presented is based in an integration between soft-
ware agents and DBMS’s components.

Our reasoning model uses heuristics to choose and au-
tomatically create or destroy indexes during normal DBMS
operation. We have implemented the proposed heuristics
in a layered software agent coupled with PostgreSQL. We
have presented some of the implementation issues in this
paper, such as the extension of PostgreSQL to include hypo-
thetical indexes and the process synchronization necessary
to integrate the software agent with the DBMS.

As main contributions of our work, we can cite (i) an ex-
tension of PostgreSQL to include the notion of hypothetical
indexes, and (ii) an actual implementation of a self-tuning
agent integrated with PostgreSQL.

As ongoing work, we can mention the conduction of a
detailed performance evaluation of the index tuning agent
[17]. In the future, we plan to refine the implementation
of hypothetical indexes in PostgreSQL in order to improve
estimation quality. Finally, a longer-term goal is to inves-
tigate the construction of new local self-tuning agents and
their integration in a global self-tuning architecture.

References

[1] J. V. D. Akker and A. Siebes. Enriching Active Databases
with Agent Technology. In Proceedings of the First Interna-
tional Workshop on Cooperative Information Agents (CIA-
97).

[2] S. Chaudhuri, M. Datar, and V. Narasayya. Index selection
for databases: A hardness study and a principled heuristic
solution. IEEE Transactions on Knowledge and Data Engi-
neering, 16(11):1313–1323, 2004.

[3] S. Chaudhuri and V. Narasayya. An efficient, cost-driven
index selection tool for microsoft sqlserver. In Proceedings
of the International Conference on Very Large Databases
(VLDB), pages 146–155, 1997.

[4] S. Chaudhuri and V. Narasayya. Autoadmin “what-if” index
analysis utility. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages 367–
377, 1998.

[5] S. Chaudhuri and G. Weikum. Rethinking database system
architecture: Towards a self-tuning risc-style database sys-

tem. In Proceedings of the International Conference on Very
Large Databases (VLDB), pages 1–10, 2000.

[6] S. Clamage. Mixing c and c++ code in the same program.
http://developers.sun.com/tools/cc/articles/mixing.html.

[7] R. Costa, S. Lifschitz, and M. Salles. Index self-tuning with
agent-based databases. CLEI Electronic Journal, 6(1):22
pages, 2003.

[8] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and
M. Ziauddin. Automatic sql tuning in oracle 10g. In
Proceedings of the International Conference on Very Large
Databases (VLDB), pages 1098–1109, 2004.

[9] Y. Diao, F. Eskesen, S. Froehlich, J. L. Hellerstein,
L. Spainhower, and M. Surendra. Generic, on-line optimiza-
tion of multiple configuration parameters with application to
a database server. submetido para Distributed Systems Op-
erations and Management, 2003.

[10] S. Finkelstein, M. Schkolnick, and P. Tiberio. Physical
database design for relational databases. ACM Transactions
on Database Systems, 13(1):91–128, 1988.

[11] M. Frank, E. Omiecinski, and S. Navathe. Adaptive and au-
tomated index selection in rdbms. In Proceedings of the In-
ternational Conference on Extending Database Technology
(EDBT), pages 277–292, 1992.

[12] E. Kendall, P. Krishna, P. Murali, C. Pathak, and C. Suresh.
A framework for agent systems. In M. Fayad, D. Schmidt,
and R. Johnson, editors, Implementing Application Frame-
works: Object-Oriented Frameworks, pages 113–154. John
Wiley & Sons, 1999.

[13] S. Lifschitz and J. A. F. Macêdo. Agent-based databases
and parallel join load balancing. In Proceedings of the Latin
Conference on Informatics (CLEI), 2001.

[14] S. Lifschitz, A. Y. M. Milanes, and M. V. Salles. State of
the art in self-tuning relational database systems (in por-
tuguese). Technical report, Departamento de Informática,
PUC-Rio.

[15] G. Lohman, G. Valentin, D. Zilio, M. Zuliani, and A. Skel-
ley. Db2 advisor: An optimizer smart enough to recommend
its own indexes. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), pages 101–110,
2000.

[16] Postgresql dbms. http://www.postgresql.org.
[17] M. Salles. Autonomic index creation in databases (in por-

tuguese). Master’s thesis, Departamento de Informática,
Pontifı́cia Universidade Católica do Rio de Janeiro (PUC-
Rio), 2004.

[18] D. Shasha and P. Bonnet. Database Tuning: Principles, Ex-
periments and Troubleshooting Techniques. Morgan Kauf-
mann, 2003.

[19] M. Wooldridge. Intelligent Agents. In G. Weiss, editor,
Multiagent Systems - A Modern Approach to Distributed Ar-
tificial Intelligence, chapter 1, pages 27–78. The MIT Press,
Cambridge, Massachussetts, 1999.

[20] D. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm,
C. Garcia-Arellano, and S. Fadden. Db2 design advisor: In-
tegrated automatic physical database design. In Proceedings
of the International Conference on Very Large Databases
(VLDB), pages 1087–1097, 2004.

Proceedings of the 21st International Conference on Data Engineering (ICDE ’05)
1084-4627/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

