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Abstract: This paper defends the revival of coroutines as a general control
abstraction. After proposing a new classification of coroutines, we introduce
the concept of full asymmetric coroutines and provide a precise definition for
it through an operational semantics. We then demonstrate that full corou-
tines have an expressive power equivalent to one-shot continuations and one-
shot partial continuations. We also show that full asymmetric coroutines and
one-shot partial continuations have many similarities, and therefore present
comparable benefits. Nevertheless, coroutines are easier implemented and
understood, specially in the realm of procedural languages. Finally, we pro-
vide a collection of programming examples that illustrate the use of full
asymmetric coroutines to support direct and concise implementations of
several useful control behaviors, including cooperative multitasking.
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Resumo: Este artigo defende o resgate de corotinas como uma poderosa
abstração de controle. Nele propomos uma nova classificação para corotinas
e introduzimos o conceito de corotinas assimétricas completas, formalizado
através de uma semântica operacional. Demonstramos então que coroti-
nas completas tem poder expressivo equivalente ao de continuações one-
shot e continuações parciais one-shot. Mostramos também que corotinas
assimétricas completas e continuações parciais one-shot têm diversas semel-
hanças e, consequentemente, apresentam benef́ıcios similares. Corotinas,
porém, são mais facilmente implementadas e compreendidas, especialmente
num contexto de linguagens procedurais. Finalmente, apresentamos uma
coleção de exemplos de programação que ilustram o uso de corotinas as-
simétricas completas para implementar, de forma sucinta e elegante, diversas
estruturas de controle interessantes, incluindo concorrência cooperativa.
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1 Introduction

The concept of coroutines was introduced in the early 1960s and consti-
tutes one of the oldest proposals of a general control abstraction. It is
attributed to Conway, who described coroutines as “subroutines who act as
the master program”, and implemented this construct to simplify the co-
operation between the lexical and syntactical analyzers in a COBOL com-
piler [Conway 1963]. The aptness of coroutines to express several useful
control behaviors was widely explored during the next twenty years in sev-
eral different contexts, including simulation, artificial intelligence, concur-
rent programming, text processing, and various kinds of data-structure ma-
nipulation [Knuth 1968; Marlin 1980; Pauli and Soffa 1980]. Nevertheless,
designers of general-purpose languages have disregarded the convenience of
providing a programmer with this powerful control construct, with rare ex-
ceptions such as Simula [Birtwistle et al. 1980], BCPL [Moody and Richards
1980], Modula-2 [Wirth 1985], and Icon [Griswold and Griswold 1983].

The absence of coroutine facilities in mainstream languages can be partly
attributed to the lacking of an uniform view of this concept, which was
never precisely defined. Marlin’s doctoral thesis [Marlin 1980], widely ac-
knowledged as a reference for this mechanism, resumes the fundamental
characteristics of a coroutine as follows:

• “the values of data local to a coroutine persist between successive
calls”;

• “the execution of a coroutine is suspended as control leaves it, only to
carry on where it left off when control re-enters the coroutine at some
later stage”.

This description of coroutines corresponds to the common perception of
the concept, but leaves open relevant issues with respect to a coroutine
construct. Apart from the capability of keeping state, we can identify three
main issues that distinguish coroutine facilities:

• the control-transfer mechanism, which can provide symmetric or asym-
metric coroutines;

• whether coroutines are provided in the language as first-class objects,
which can be freely manipulated by the programmer, or as constrained
constructs;

• whether a coroutine is a stackful construct, i.e., whether it is able to
suspend its execution from within nested calls.

Depending on the intended use for the coroutine mechanism, particular
solutions for the preceding issues were adopted. As a consequence, quite
different implementations of coroutines were developed, such as Simula’s
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and Modula’s coroutine facilities, Icon’s generators and co-expressions, and,
more recently, Python generators [Schemenauer et al. 2001]. Although all
these constructs satisfy Marlin’s general characterization of coroutines, they
provide significantly different degrees of expressiveness1.

Besides the absence of a precise definition, the introduction of first-class
continuations also greatly contributed to the virtual end of research interest
in coroutines as a general control abstraction. Unlike coroutines, first-class
continuations have a well-defined semantics and are widely acknowledged as
an expressive construct that can be used to implement several interesting
features, including generators, exception handling, backtracking [Felleisen
1985; Haynes 1987], multitasking at the source level [Dybvig and Hieb 1989;
Wand 1980], and also coroutines [Haynes et al. 1986]. However, with the ex-
ception of Scheme [Kelsey et al. 1998], some implementations of ML [Harper
et al. 1991], and an alternative implementation of Python [Tismer 2000],
first-class continuations are not usually provided in programming languages.

A relevant obstacle to the incorporation of continuations in a language is
the difficulty to provide an efficient implementation of this construct. This
difficulty is mainly due to the need of supporting multiple invocations of a
continuation, which usually involves copying a captured continuation before
it is modified [Hieb et al. 1990]. The observation that in most contexts
continuations are actually invoked only once motivated Bruggeman et al.
[1996] to introduce one-shot continuations, which are limited to a single in-
vocation and thus eliminate the copying overhead associated with multi-shot
continuations. One-shot continuations can replace multi-shot continuations
in practically all their useful applications. Specially in the implementation
of multitasking, one-shot continuations can provide significant performance
benefits when compared to multi-shot continuations [Bruggeman et al. 1996].

Apart from efficiency issues, the concept of a continuation as a represen-
tation of the rest of a computation is difficult to manage and understand,
specially in the context of procedural languages. The abortive nature of a
continuation invocation complicates considerably the structure of programs;
even experienced programmers may have difficulties to understand the con-
trol flow of continuation-intensive applications. The convenience of limiting
the extent of continuations and localizing the effects of their control op-
erators motivated the introduction of partial continuations [Felleisen 1988;
Johnson and Duggan 1988] and the proposal of a series of constructs based
on this concept [Queinnec 1993]. Unlike traditional continuations, partial
continuations represent only a “continuation slice” [Queinnec 1993], or the
continuation of a subcomputation [Hieb et al. 1994]. Partial continuations
are not abortive; they are composed with the current continuation and thus
behave like regular functions. Danvy and Filinski [1990], Queinnec and Ser-
pette [1991], and Sitaram [1993] demonstrated that control constructs based

1In this paper we use the concept of expressiveness as defined by Felleisen [1990].
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on partial continuations can provide more concise and understandable imple-
mentations of the classical applications of continuations, such as generators,
backtracking, and multitasking. In all these applications, the restriction
imposed to one-shot continuations can be applied to partial continuations,
allowing more efficient implementations of the constructs. Despite their
advantages over traditional continuations, partial continuations are not pro-
vided in common implementations of programming languages, even in the
realm of Scheme.

Another significant reason for the absence of coroutines in modern lan-
guages is the current adoption of multithreading as a de facto standard for
concurrent programming. In the last years several research efforts have been
dedicated to alternative concurrency models that can support more efficient
and less error-prone applications, such as event-driven programming and co-
operative multitasking. Nevertheless, mainstream languages like Java and
C# still provide threads as their primary concurrency construct.

The purpose of this paper is to defend the revival of coroutines as a pow-
erful control abstraction, which fits nicely in procedural languages and can
be easily implemented and understood. We argue and demonstrate that,
contrary to common belief, coroutines are not far less expressive than con-
tinuations. Instead, when provided as first-class objects and implemented
as stackful constructs — that is, when a full coroutine mechanism is im-
plemented — coroutines have equivalent power to that of one-shot con-
tinuations. Based on similar arguments as presented in the proposals of
partial continuations mechanisms — easiness to manage and understand,
and support for more structured applications — we specifically defend full
asymmetric coroutines as a convenient construct for language extensibility.

The remainder of this paper is organized as follows. Section 2 proposes a
classification of coroutine mechanisms based on the three issues mentioned
earlier, and discusses their influence on the usefulness of a coroutine facility.
Section 3 provides a formal description of our concept of full asymmetric
coroutines and illustrates it with an example of a general-purpose program-
ming language that implements this mechanism. In section 4 we show that
full asymmetric coroutines can provide not only symmetric coroutine fa-
cilities but also one-shot continuations and one-shot partial continuations.
Section 5 contains a collection of programming examples that use full asym-
metric coroutines to provide direct implementations of several useful control
behaviors, including multitasking. Finally, section 6 summarizes the paper
and presents our conclusions.

2 A Classification of Coroutines

The capability of keeping state between successive calls constitutes the gen-
eral and commonly adopted description of a coroutine construct. However,
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we observe that the various implementations of coroutine mechanisms differ
widely with respect to their convenience and expressive power. In this sec-
tion we identify and discuss the three issues that most notably distinguish
coroutine mechanisms and influence their usefulness.

2.1 Control Transfer Mechanism

A well-known classification of coroutines concerns the control-transfer op-
erations that are provided and distinguishes the concepts of symmetric
and asymmetric coroutines. Symmetric coroutine facilities provide a single
control-transfer operation that allows coroutines to explicitly pass control
between themselves. Asymmetric coroutine mechanisms (more commonly
denoted as semi-symmetric or semi coroutines [Dahl et al. 1972]) provide
two control-transfer operations: one for invoking a coroutine and one for
suspending it, the latter returning control to the coroutine invoker. While
symmetric coroutines operate at the same hierarchical level, an asymmetric
coroutine can be regarded as subordinate to its caller, the relationship be-
tween them being somewhat similar to that between a called and a calling
routine.

Coroutine mechanisms to support concurrent programming usually pro-
vide symmetric coroutines to represent independent units of execution, like
in Modula-2. On the other hand, coroutine mechanisms intended for imple-
menting constructs that produce sequences of values typically provide asym-
metric coroutines. Examples of this type of construct are iterators [Liskov
et al. 1977; Murer et al. 1996] and generators [Griswold and Griswold 1983;
Schemenauer et al. 2001]. The general-purpose coroutine mechanisms im-
plemented by Simula and BCPL provide both types of control transfer. In
the absence of a formal definition of coroutines, Simula’s mechanism, a truly
complex implementation of coroutines, was practically adopted as a refer-
ence for a general-purpose coroutine mechanism and greatly contributed
to the common misconception that symmetric and asymmetric coroutines
have no equivalent power. However, it is easy to demonstrate that we can
express any of these constructs in terms of the other; therefore, a general-
purpose coroutine mechanism can provide either symmetric or asymmetric
coroutines. Providing both constructs only complicates the semantics of the
mechanism, with no increase in its expressive power.

Although equivalent in terms of expressiveness, symmetric and asym-
metric coroutines are not equivalent with respect to ease of use. Handling
and understanding the control flow of a program that employs even a mod-
erate number of symmetric coroutines may require a considerable effort from
a programmer. On the other hand, asymmetric coroutines behave like rou-
tines, in the sense that control is always transfered back to their invokers.
Since even novice programmers are familiar with the concept of a routine,
control sequencing is simpler to manage and understand. Moreover, asym-
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metric coroutines allow the development of more structured programs.

2.2 First-class versus constrained coroutines

An issue that considerably influences the expressive power of a coroutine
mechanism is whether coroutines are provided as first-class objects. In some
implementations of coroutines, typically intended for particular uses, corou-
tine objects are constrained within a textual bound and cannot be directly
manipulated by the programmer. An example of this restricted form of
coroutine is the iterator abstraction, which was originally proposed and im-
plemented by the designers of CLU to permit the traversal of data structures
independently of their internal representation [Liskov et al. 1977]. Because
a CLU iterator preserves state between successive calls, they described it
as a coroutine; actually, an iterator fits Marlin’s general characterization of
coroutines. However, CLU iterators are confined within a for loop that can
invoke exactly one iterator. This restriction imposes a considerable limita-
tion to the use of the construct; parallel traversals of two or more data collec-
tions, for instance, are not possible. Sather iterators [Murer et al. 1996], in-
spired by CLU iterators, are also confined to a single call point within a loop
construct. The number of iterators invoked per loop is not restricted as in
CLU, but if any iterator terminates, the loop terminates. Although travers-
ing multiple collections in a single loop is possible, asynchronous traversals,
as required for merging data collections, have no simple solution. Icon’s
goal-directed evaluation of expressions [Griswold and Griswold 1983] is an
interesting language paradigm where backtracking is supported by another
constrained form of coroutines, named generators — expressions that may
produce multiple values. Besides providing a collection of built-in genera-
tors, Icon also supports user-defined generators, implemented by procedures
that suspend instead of returning. Despite not being limited to a specific
construct, Icon generators are confined within an expression and can only
be invoked by explicit iteration or goal-directed evaluation. Icon generators
are easier to use than CLU and Sather iterators, but they are not powerful
enough to provide for programmer-defined control structures. This facility is
only provided when coroutines are implemented as first-class objects, which
can be freely manipulated by the programmer and invoked at any place.
First-class coroutines are provided, for instance, by Icon co-expressions and
the coroutine facilities implemented by Simula, BCPL, and Modula-2.

2.3 Stackfulness

Stackful coroutine mechanisms allow coroutines to suspend their execution
from within nested functions; the next time the coroutine is resumed, its exe-
cution continues from the exact point where it suspended. Stackful coroutine
mechanisms are provided, for instance, by Simula, BCPL, Modula-2, Icon,
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and also by CLU and Sather’s iterators.
A currently observed resurgence of coroutines is in the context of script-

ing languages, notably Python and Perl. In Python [Schemenauer et al.
2001], a function that contains an yield statement is called a generator
function. When called, this function returns an object that can be resumed
at any point in a program, so it behaves as an asymmetric coroutine. De-
spite constituting a first-class object, a Python generator is not a stackful
construct; it can only suspend its execution when its control stack is at the
same level that it was at creation time. In other words, only the main body
of a generator can suspend. A similar facility has been proposed for Perl
6 [Conway 2000]: the addition of a new type of return command, also called
yield, which preserves the execution state of the subroutine in which it is
called.

Python generators and similar non-stackful constructs permit the de-
velopment of simple iterators or generators but complicate the structure
of more elaborate implementations. As an example, if items are produced
within recursive or auxiliary functions, it is necessary to create an hierarchy
of auxiliary generators that yield in succession until the original invocation
point is reached. This type of generator is also not powerful enough to
implement user-level multitasking.

2.4 Full coroutines

Based on the preceding discussion, we can argue that, according to our clas-
sification, two issues determine the expressive power of a coroutine facility:
whether coroutines are first-class objects and whether they are stackful con-
structs. In the absence of these facilities, a coroutine mechanism cannot
support several useful control behaviors, notably multitasking, and, there-
fore, does not provide a general control abstraction. We then introduce the
concept of a full coroutine as a first-class, stackful object, which, as we will
demonstrate later, can provide the same expressiveness as obtained with
one-shot continuations.

Full coroutines can be either symmetric or asymmetric; the selection of
a particular control-transfer mechanism does not influence their expressive
power. However, asymmetric coroutines are more easily managed and can
support more succinct implementations of user-defined constructs. There-
fore, we believe that full asymmetric coroutines mechanisms provide a more
convenient control abstraction than symmetric facilities.

3 Full Asymmetric Coroutines

The purpose of this section is to provide a precise definition for our concept
of full asymmetric coroutines. We begin by introducing the basic operators
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of this model of coroutines. We then formalize the semantics of these op-
erators by developing an operational semantics for a simple language that
incorporates them. Finally, we provide an example of a programming lan-
guage that implements a full asymmetric coroutine mechanism that closely
follows our proposed semantics. We will use this language in the program-
ming examples later presented in this paper.

3.1 Coroutine Operators

Our model of full asymmetric coroutines has three basic operators: create,
resume, and yield. The operator create creates a new coroutine. It receives
a procedural argument, which corresponds to the coroutine main body, and
returns a reference to the created coroutine. Creating a coroutine does
not start its execution; a new coroutine begins in suspended state with its
continuation point set to the first statement in its main body.

The operator resume (re)activates a coroutine. It receives as its first
argument a coroutine reference, returned from a previous create operation.
Once resumed, a coroutine starts executing at its saved continuation point
and runs until it suspends or its main function terminates. In either case,
control is transfered back to the coroutine’s invocation point. When its main
function terminates, the coroutine is said to be dead and cannot be further
resumed.

The operator yield suspends a coroutine execution. The coroutine’s con-
tinuation point is saved so that the next time the coroutine is resumed, its
execution will continue from the exact point where it suspended.

Our coroutine operators provide a convenient facility to allow a coroutine
and its invoker to exchange data. The first time a coroutine is activated,
a second argument given to the operator resume is passed as an argument
to the coroutine main function. In subsequent reactivations of a coroutine,
that second argument becomes the result value of the operator yield. On the
other hand, when a coroutine suspends, the argument passed to the operator
yield becomes the result value of the operator resume that activated the
coroutine. When a coroutine terminates, the value returned by its main
function becomes the result value of its last reactivation.

3.2 Operational Semantics

In order to formalize our concept of full asymmetric coroutines, we now de-
velop an operational semantics for this mechanism. The many similarities
between asymmetric coroutines and subcontinuations (which we will discuss
in Section 4.3) allow us to base this semantics on the operational seman-
tics of subcontinuations described by Hieb et al. [1994]. We start with the
same core language, a call-by-value variant of the λ-calculus extended with
assignments. In this core language, the set of expressions (denoted by e)
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includes constants (c), variables (x), function definitions, function calls, and
assignments:

e → c | x | λx.e | e e | x := e

Expressions that denote values (v) are constants and functions:

v → c | λx.e

A store θ, mapping variables to values, is included in the definition of the
core language to allow side-effects:

θ : variables → values

The evaluation of the core language is defined by a set of rewrite rules
that are applied to expression–store pairs until a value is obtained. Evalu-
ation contexts [Felleisen and Friedman 1986] are used to determine, at each
step, the next subexpression to be evaluated. The evaluation contexts (C)
defined for the core language are

C → � | C e | v C | x := C

The preceding definition specifies a left-to-right evaluation of applica-
tions, because the argument can only be in an evaluation context when the
term in the function position is a value. The rewrite rules for evaluating the
core language are given next:

〈C[x], θ〉 ⇒ 〈C[θ(x)], θ〉 (1)
〈C[(λx.e)v], θ〉 ⇒ 〈C[e], θ[x← v]〉, x 6∈ dom(θ) (2)
〈C[x := v], θ〉 ⇒ 〈C[v], θ[x← v]〉, x ∈ dom(θ) (3)

Rule 1 states that the evaluation of a variable results in its stored value in
θ. Rule 2 describes the evaluation of applications; in this case, α-substitution
is assumed in order to guarantee that a fresh variable x is inserted into the
store. In rule 3, which describes the semantics of assignments, it is assumed
that the variable already exists in the store (i.e., it was previously introduced
by an abstraction).

In order to incorporate asymmetric coroutines into the language, we
extend the set of expressions with labels (l), labeled expressions (l : e), and
the coroutine operators:

e → c | x | λx.e | e e | x := e | l | l : e | create e | resume e e | yield e

In our extended language, we use labels as references to coroutines, and
labeled expressions to represent a currently active coroutine. As we will see
later, labeling a coroutine context allows us to identify the coroutine being
suspended when the operator yield is evaluated. Because labels are used to
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reference coroutines, we must include them in the set of expressions that
denote values:

v → c | λx.e | l

We also extend the definition of the store, allowing mappings from labels to
values:

θ : (variables ∪ labels) → values

The definition of evaluation contexts must include the new expressions.
In this new definition we have specified a left-to-right evaluation for the
operator resume, since only when its first argument (a coroutine reference)
has been reduced to a label value its extra argument is examined:

C → � | C e | v C | x := C |
create C | resume C e | resume l C | yield C | l : C

We actually use two types of evaluation contexts: full contexts (denoted
by C) and subcontexts (denoted by C ′). A subcontext is an evaluation
context that does not contain labeled contexts (l : C). It corresponds to
an innermost active coroutine (i.e., a coroutine wherein no nested coroutine
occurs).

The rewrite rules that describe the semantics of the coroutine operators
are given next:

〈C[create v], θ〉 ⇒ 〈C[l], θ[l← v]〉, l 6∈ dom(θ) (4)
〈C[resume l v], θ〉 ⇒ 〈C[l : θ(l) v], θ[l← ⊥]〉 (5)

〈C1[l : C ′
2[yield v]], θ〉 ⇒ 〈C1[v], θ[l← λx.C ′

2[x]]〉 (6)
〈C[l : v], θ〉 ⇒ 〈C[v], θ〉 (7)

Rule 4 describes the action of creating a coroutine. It creates a new label
to represent the coroutine and extends the store with a mapping from this
label to the coroutine main function.

Rule 5 shows that the resume operation produces a labeled expression,
which corresponds to a coroutine continuation obtained from the store. This
continuation is invoked with the extra argument passed to resume. In order
to prevent the coroutine to be reactivated, its label is mapped to an invalid
value, represented by ⊥.

Rule 6 describes the action of suspending a coroutine. The evaluation
of the yield expression must occur within a labeled subcontext (C ′

2) that re-
sulted from the evaluation of the resume expression that invoked the corou-
tine. This restriction guarantees that a coroutine always returns control to
its correspondent invocation point. The argument passed to yield becomes
the result value obtained by resuming the coroutine. The continuation of
the suspended coroutine is represented by a function whose body is created
from the corresponding subcontext. This continuation is saved in the store,
replacing the mapping for the coroutine’s label.
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The last rule defines the semantics of coroutine termination, and shows
that the value returned by the coroutine main function becomes the result
value obtained by the last activation of the coroutine. The mapping of the
coroutine label to ⊥, established when the coroutine was resumed, prevents
the reactivation of a dead coroutine.

3.3 An example of a full asymmetric coroutine facility

Lua [Ierusalimschy et al. 1996; Ierusalimschy 2003] is a scripting language
widely used in the game industry, an application domain where cooperative
multitasking is a typical control behavior. Since its version 5.0 Lua provides
a coroutine facility that closely follows the semantics we have just described.

3.3.1 An Overview of Lua

Lua is a light-weight language that supports general procedural program-
ming with data description facilities. It is dynamically typed, lexically
scoped, and has automatic memory management.

Lua supports eight basic value types: nil, boolean, number, string, user-
data, thread, function, and table. The types nil, boolean, number, and string
have usual meanings. The type userdata allows arbitrary C data to be
stored in Lua variables. The type thread represents an independent thread
of control and is used to implement coroutines.

Functions in Lua are first-class values: they can be stored in variables,
passed as arguments to other functions, and returned as results. Lua func-
tions are always anonymous; the syntax

function foo(x) ... end

is merely a syntactical sugar for

foo = function (x) ... end

Tables in Lua are associative arrays and can be indexed with any value;
they may be used to represent ordinary arrays, symbol tables, sets, records,
etc. In order to support a convenient representation of records, Lua uses a
field name as an index and provides a.name as syntactic sugar for a["name"].
Lua tables are created by means of constructor expressions. The simplest
constructor ({}), creates a new, empty table. Table constructors can also
specify initial values for selected fields as in {x = 1, y = 2}.

Variables in Lua can be either global or local. Global variables are not
declared and are implicitly given an initial nil value. Local variables are
lexically scoped and must be explicitly declared.

Lua provides an almost conventional set of statements, similar to those
in Pascal or C, including assignments, function calls, and traditional control
structures (if, while, repeat and for). Lua also supports some not so
conventional features such as multiple assignments and multiple results.
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3.3.2 Lua Coroutines

Lua coroutine facilities implement our concept of full asymmetric corou-
tines [Moura et al. 2004]. Following the semantics of this mechanism, three
basic operations are provided: create, resume, and yield, Like in most Lua
libraries, these functions are packed in a global table (table coroutine).

Function coroutine.create allocates a separate Lua stack for the new
coroutine. It receives as argument a Lua function that represents the main
body of the coroutine and returns a coroutine reference (a value of type
thread). Quite often, the argument to coroutine.create is an anonymous
function, like this:

co = coroutine.create(function() ... end)

Like functions, Lua coroutines are first-class values; they can be stored
in variables, passed as arguments, and returned as results. There is no
explicit operation for deleting a Lua coroutine; like any other value in Lua,
coroutines are discarded by garbage collection.

Functions coroutine.resume and coroutine.yield closely follow the
semantics of the operators resume and yield described before. However, be-
cause Lua functions can return multiple results, this facility is also provided
by Lua coroutines. This means that function coroutine.resume can receive
a variable number of extra arguments, which are all returned by the cor-
responding call to function coroutine.yield. Likewise, when a coroutine
suspends, the corresponding call to function coroutine.resume returns all
the arguments passed to coroutine.yield.

Like coroutine.create, the auxiliary function coroutine.wrap creates
a new coroutine, but instead of returning the coroutine itself, it returns a
function that, when called, resumes the coroutine. Any arguments passed
to that function go as extra arguments to resume. The function also re-
turns all the values returned by coroutine.resume, except the first one
(a boolean error code). Usually, function coroutine.wrap is simpler to
use than coroutine.create; it provides exactly what is typically needed: a
function to resume a coroutine. Therefore, in all the programming examples
provided in this paper we will be using coroutine.wrap.

As an illustration of Lua coroutines, let us consider a classical example:
an iterator that traverses a binary tree in pre-order, shown in Figure 1.
In this example, tree nodes are represented by Lua tables containing three
fields: key, left, and right. Field key stores the node value (an integer);
fields left and right contain references to the node’s respective children.
Function preorder iterator receives as argument a binary tree’s root node
and returns an iterator that successively produces the values stored in the
tree. The possibility of yielding from inside nested calls allows a concise
implementation of the tree iterator: the traversal of the tree is performed
by an auxiliary recursive function (preorder) that yields the produced value
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function preorder(node)
if node then
preorder(node.left)
coroutine.yield(node.key)
preorder(node.right)

end
end

-- create an iterator
function preorder_iterator(tree)
return coroutine.wrap(function()

preorder(tree)
return nil

end)
end

Figure 1: A binary tree iterator implemented with Lua coroutines

directly to the iterator’s caller. The end of a traversal is signalled by a nil
value, returned by the iterator’s main function when it terminates.

Figure 2 shows an example of use of the binary tree iterator: merging two
binary trees. Function merge receives as arguments the two trees’ root nodes.
It begins by creating iterators for the trees (it1 and it2) and collecting
their smallest elements (v1 and v2). The while loop prints the smallest
value and reinvokes the correspondent iterator for obtaining its next element,
continuing until the elements in both trees are exhausted.

function merge(t1, t2)
local it1 = preorder_iterator(t1)
local it2 = preorder_iterator(t2)
local v1 = it1()
local v2 = it2()

while v1 or v2 do
if v1 ~= nil and (v2 == nil or v1 < v2) then
print(v1); v1 = it1()

else
print(v2); v2 = it2()

end
end

end

Figure 2: Merging two binary trees
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4 Expressing Alternative Control Structures

It is a common belief that coroutines are far less expressive than first-class
continuations (e.g., [Friedman et al. 1984]) and, also, that asymmetric corou-
tines are less powerful than symmetric coroutines. In this section we con-
tradict these misconceptions by showing that a language that incorporates
full asymmetric coroutines can easily provide not only symmetric coroutines
but also one-shot continuations and one-shot partial continuations. There-
fore, any sort of control structure implemented by these constructs can be
provided by full asymmetric coroutines.

4.1 Symmetric Coroutines

The basic characteristic of symmetric coroutine facilities is the provision
of a single control-transfer operation that allows coroutines to pass control
explicitly among themselves. Marlin [1980] and Pauli and Soffa [1980] argued
that symmetric and asymmetric coroutines have no equivalent power and
that general coroutine facilities should provide both constructs. However, it
is easy to demonstrate that we can provide any of these mechanisms using
the other; therefore, no expressive power is lost if only asymmetric coroutines
are provided in a language.

The implementation of symmetric coroutines on top of asymmetric facili-
ties is straightforward. Symmetrical transfers of control between asymmetric
coroutines can be easily simulated with pairs of yield–resume operations and
an auxiliary dispatching loop that acts as an intermediary in the switch of
control between the two coroutines. When a coroutine wishes to transfer
control, it yields to the dispatching loop, which in turn resumes the corou-
tine that must be reactivated.

The code shown in Figure 3 illustrates this mechanism by providing a
Lua library (coro) that supports the creation of symmetric coroutines and
their control-transfer discipline. In order to allow coroutines to also transfer
control to the main program, table coro provides a field (main) to represent
it, simulating a coroutine reference. Another auxiliary field (current) is
used to store a reference to the currently active coroutine.

When a coroutine, or the main program, wishes to transfer control, it
calls function coro.transfer, passing the coroutine to be (re)activated; an
extra argument provided to this function allows coroutines to exchange data.
If the main program is currently active, the dispatching loop is executed; if
not, function coroutine.yield is called to reactivate the dispatcher. When
control is to be transfered to the main program, function coro.transfer
returns.

In our implementation, we followed Modula’s semantics of coroutine ter-
mination, which specifies that the termination of a coroutine without an
explicit transfer of control constitutes a run-time error [Wirth 1985]. In or-
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coro = {}
coro.main = function() end
coro.current = coro.main

-- function to create a new coroutine
function coro.create(f)
local co = function(val)

f(val)
error("coroutine ended")

end
return coroutine.wrap(co)

end

-- function to transfer control to a coroutine
function coro.transfer(co, val)
if coro.current == coro.main then
return coroutine.yield(co, val)

end

-- dispatching loop
while true do
coro.current = co
if co == coro.main then
return val

end
co, val = co(val)

end
end

Figure 3: Implementing symmetric coroutines facilities

der to implement this semantics, function coro.create wraps the coroutine
body in a function that issues an error to terminate the main program when
the coroutine terminates.

4.2 One-shot Continuations

A continuation represents the rest of a computation from a given point
in the computation. When they are provided as first-class objects, as in
Scheme [Kelsey et al. 1998] and some implementations of ML [Harper et al.
1991], continuations can be used to implement a wide variety of control
structures and thus represent a powerful tool for language extensibility.

In Scheme, the procedure call/cc causes the current continuation to be
packaged as a first-class object. This captured continuation is then passed
to the argument of call/cc, which must be a procedure of one argument.
If this procedure returns without invoking the continuation, its returned
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value becomes the value of the application of call/cc. If, at any time,
the captured continuation is invoked with a value, this value is immediately
returned to the continuation of the original call/cc application.

Although conventional first-class continuation mechanisms allow a con-
tinuation to be invoked multiple times, in virtually all their useful applica-
tions continuations are invoked only once. Motivated by this fact, Brugge-
man et al. [1996] introduced the concept of one-shot continuations and the
control operator call/1cc. One-shot continuations differ from multi-shot
continuations in that it is an error to invoke a one-shot continuation more
than once, either implicitly (by returning from the procedure passed to
call/1cc) or explicitly (by invoking the continuation created by call/1cc).

The implementation of one-shot continuations described by Bruggeman
et al. [1996] reveals the many similarities between this mechanism and sym-
metric coroutines. In this implementation, the control stack is represented
as a linked list of stack segments, which are structured as stacks of frames or
activation records. When a one-shot continuation is captured, the current
stack segment is “encapsulated” in the continuation and a fresh stack seg-
ment is allocated to replace the current stack segment. In terms of symmet-
ric coroutines, this corresponds to creating a new coroutine and transferring
control to it. When a one-shot continuation is invoked, the current stack
segment is discarded and control is returned to the saved stack segment.
This is exactly what happens if the new coroutine, at any time, transfers
control back to its creator.

The similarities between one-shot continuations and symmetric corou-
tines allow us to provide a concise implementation of call/1cc using the
symmetric coroutine facility described in Section 4.1. This implementation
is shown in Figure 4.

4.3 One-shot Subcontinuations

Despite their expressive power, traditional continuations, either multi-shot
or one-shot, are difficult to use; except for some trivial examples, they com-
plicate considerably the structure of programs [Felleisen 1988; Danvy and
Filinski 1990; Queinnec and Serpette 1991]. Most of the complexity involved
in the use of continuations arise from the fact that they represent the whole
rest of a computation. The need to constrain the extent of continuations
and localize the effects of control operators motivated the proposal of several
control abstractions based on the concept of partial continuations [Queinnec
1993]. The essence of these abstractions is that the invocation of a captured
partial continuation does not abort the current continuation; instead, partial
continuations can be composed like regular functions.

Subcontinuations [Hieb et al. 1994] are an example of a partial continu-
ation mechanism. A subcontinuation represents the rest of an independent
partial computation (a subcomputation) from a given point in that subcom-
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function call1cc(f)
-- save the continuation "creator"
local ccoro = coro.current

-- invoking the continuation transfers control
-- back to its creator
local cont = function(val)
if ccoro == nil then
error("one shot continuation called twice")

end
coro.transfer(ccoro, val)

end

-- when a continuation is captured,
-- a new coroutine is created and dispatched
local val
val = coro.transfer(coro.create(function()

local v = f(cont)
cont(v)

end))

-- when control is transfered back, the continuation
-- was "shot" and must be invalidated
ccoro = nil

-- the value passed to the continuation
-- is the return value of call1/cc
return val

end

Figure 4: Implementing one-shot continuations with symmetric coroutines

putation. The operator spawn establishes the base, or root, of a subcom-
putation. It takes as argument a procedure (the subcomputation) to which
it passes a controller. If the controller is not invoked, the result value of
spawn is the value returned by the procedure. If the controller is invoked,
it captures and aborts the continuation from the point of invocation back
to, and including, the root of the subcomputation. The procedure passed
to the controller is then applied to that captured subcontinuation. A con-
troller is only valid when the corresponding root is in the continuation of the
program. Therefore, once a controller has been applied, it will only be valid
again if the subcontinuation is invoked, reinstating the subcomputation.

Like one-shot continuations and symmetric coroutines, one-shot subcon-
tinuations and full asymmetric coroutines have many similarities. Full asym-
metric coroutines can be regarded as independent subcomputations. Invok-
ing a subcomputation controller is similar to suspending an asymmetric
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coroutine. Invoking a one-shot subcontinuation corresponds to resuming an
asymmetric coroutine. Like subcontinuations, asymmetric coroutines can
be composed: they behave like regular functions, always returning control
to their invoker. The main difference between subcontinuations and full
asymmetric coroutines, and also between subcontinuations and other types
of partial continuations, is that the reified subcontinuation is not restricted
to the innermost subcomputation. Instead, a subcontinuation extends from
the controller invocation point up to the root of the invoked controller, and
may include several nested subcomputations.

The similarities between one-shot subcontinuations and full asymmetric
coroutines allow us to express one-shot subcontinuations in terms of Lua
coroutines and provide the implementation of the operator spawn shown in
Figure 5. When function spawn is invoked, a Lua coroutine (subc) is cre-
ated to represent the subcomputation. This coroutine’s main body invokes
spawn’s functional argument (f), passing to it a locally defined function that
implements the subcomputation controller. Variable valid controller in-
dicates if it is legal to invoke the controller; its value is true only when
the correspondent coroutine is active. The controller function creates a sub-
continuation by suspending the coroutine; variable shot indicates whether
this subcontinuation was invoked (i.e., whether the coroutine was resumed).
When the coroutine is resumed, function controller returns to its caller,
reactivating the subcomputation from the controller invocation point. The
argument passed to the subcontinuation (returned by coroutine.yield)
becomes the result value of the controller invocation.

Function subK is responsible for spawning and reinstating the subcom-
putation; it does so by resuming the correspondent coroutine. If the sub-
computation ends without invoking the controller, the coroutine main body
returns to its invocation point the result value obtained from calling f and
a nil value (see line 6 in Figure 5). In this case, function subK terminates
(line 28) and spawn returns to its caller the value returned by f. When the
controller is invoked, the coroutine invocation (line 24) gets the argument
passed to the controller (a function to be applied to the subcontinuation) and
also a reference to the invoked controller. The controller reference, passed
as the second argument to coroutine.yield (line 13), allows us to simulate
a subcontinuation composed by an arbitrary number of nested subcompu-
tations2. When a coroutine suspends, the returned controller reference is
checked to verify if it belongs to the current scope (line 32). If it does, the
function passed to the controller is applied to the subcontinuation. If not,
it means that the invoked controller corresponds to an outer subcomputa-
tion, so the current coroutine calls coroutine.yield to reactivate it (line

2This behavior is also provided by variants of some partial-continuation mechanisms
that use marks [Queinnec and Serpette 1991] or tags [Sitaram 1993] to specify the context
up to which a partial continuation is to be reified.
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1 function spawn(f)
2 local controller, valid_controller, shot, subK
3
4 -- a coroutine represents a subcomputation
5 local subc = coroutine.wrap(function()
6 return f(controller), nil
7 end)
8
9 -- this function implements the subcomputation controller

10 function controller(fc)
11 if not valid_controller then error("invalid controller") end
12 shot = false
13 val = coroutine.yield(fc, controller)
14 shot = true
15 return val
16 end
17
18 -- this function spawns/reinstates a subcomputation
19 function subK(v)
20 if shot then error("subcontinuation called twice") end
21
22 -- invoke a subcontinuation
23 valid_controller = true
24 local ret, c = subc(v)
25 valid_controller = false
26
27 -- subcomputation terminated ?
28 if c == nil then return ret
29
30 -- if the local controller was invoked, apply
31 -- the function to the subcontinuation
32 elseif c == controller then return ret(subK)
33
34 -- the invoked controller corresponds to
35 -- an outer subcomputation
36 else
37 val = coroutine.yield(ret, c)
38 return subK(val)
39 end
40 end
41
42 -- spawn the subcomputation
43 shot = false
44 return subK()
45 end

Figure 5: Implementing spawn
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37). This process is repeated until the controller root is reached, allowing us
to include all the suspended subcomputations in the captured subcontinua-
tion. Symmetrically, invoking this subcontinuation will successively resume
the suspended coroutines until the original controller invocation point is
reached.

4.4 Efficiency issues

Haynes et al. [1986] demonstrated that continuations can be used to im-
plement coroutines. Sitaram [1994] showed that coroutines can also be ex-
pressed in terms of partial continuations. We have just shown that full asym-
metric coroutines can be used to express both one-shot continuations and
one-shot partial continuations, which allow us to argue that full asymmetric
coroutines have equivalent expressive power to those abstractions. However,
expressing one-shot continuations and subcontinuations with coroutines and
the reverse operations may not be equivalent in terms of efficiency.

In a simple implementation of one-shot continuations as described by
Bruggeman et al. [1996], the creation of a continuation involves the con-
version of the current stack segment into a continuation object and the
allocation a new stack segment to replace it. When a one-shot continuation
is invoked, the current segment is discarded and control is returned to the
saved stack segment. The creation of a coroutine also involves the allocation
of a separate stack. The actions of suspending and resuming a coroutine are
just a little more expensive than regular function calls.

In our implementation of one-shot continuations, the creation of a single
coroutine — i.e., a single stack “segment” — was sufficient to implement a
continuation. Therefore, with a language that implements full coroutines we
can provide one-shot continuation mechanisms that perform as efficiently as
a simple direct implementation of this abstraction. On the other hand, the
implementation of coroutines with continuations, as developed by Haynes
et al. [1986], typically requires the capture of a new continuation each time a
coroutine is suspended. This implementation thus involves the allocation of
a new stack segment for each control transfer and, hence, performs much less
efficiently and uses more memory than a direct implementation of coroutines.

Hieb et al. [1994] described a possible implementation of subcontinua-
tions that uses a stack of labeled stacks. To ensure efficiency, this stack is
represented by a stack of label-address pairs, with each address pointing to
a stack segment stored elsewhere. Invoking spawn results in the addition of
a new empty stack to the stack of labeled stacks; to this new stack a label
is assigned in order to associate it with its correspondent controller. When
the controller is invoked, all the stacks down to the one with the associated
label are removed from the stack of labeled stacks, and packaged into a
subcontinuation. When the subcontinuation is invoked, its saved stacks are
pushed onto the current stack of labeled stacks.

19



In our implementation of one-shot subcontinuations, the cost of spawn-
ing a subcomputation (i.e., the creation and activation of a coroutine) is
equivalent to that of the proposed implementation of spawn. When a sub-
continuation involves a single subcomputation (the more usual case), the
capture and invocation of a subcontinuation can perform at least as effi-
ciently as the described direct implementation of subcontinuations. In the
more complicated case, where a subcontinuation includes several nested sub-
computations, the successive resumptions of the involved subcomputations
impose some overhead, but with a cost no much higher than a succession of
function calls. On the other hand, the implementation of coroutines with
subcontinuations also requires the capture of a subcontinuation for each
control transfer and, so, is arguably less efficient than a simple direct imple-
mentation of coroutines.

Kumar et al. [1998] described an implementation of one-shot subcontin-
uations in terms of threads. Their basic idea is somewhat similar to ours:
a subcomputation is represented by a child thread, which is created when
spawn is invoked. The parent thread is then put to sleep, waiting on a done
condition, which is associated to the subcomputation controller. When the
controller is invoked, the child thread wakes up the root thread by sig-
nalling the correspondent done condition, and then suspends its execution
by creating and waiting on a continue condition. When a subcontinua-
tion is invoked, the correspondent thread is woken by signalling its continue
condition, and the invoker is put to sleep waiting on the controller’s done
condition. Besides the use of conditions to allow the suspension and re-
sumption of threads (which, differently from coroutines, cannot explicitly
transfer control), an additional synchronization mechanism (implemented
with a mutex) is required to prevent a spawned child thread to signal the
done condition before the parent thread is put to sleep3.

The implementation of subcontinuations with threads does not involve
the successive suspensions and resumptions of nested subcomputations that
the use of coroutines requires. However, the use of threads introduces a
considerable complexity and overhead, due to the need of synchronization
mechanisms. Moreover, the capture of a subcontinuation requires the cre-
ation of a new condition, and the allocation of its associated structures.
Besides being more efficient in the the more general case, implementing
subcontinuations with coroutines is simpler and arguably less error-prone.

3This is actually a simplified description of the implementation shown in [Kumar et al.
1998]. We have considered only the requirements for an implementation of non-concurrent
subcontinuations.
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5 Programming With Full Asymmetric Coroutines

In the previous section we showed that a language with full asymmetric
coroutines can easily provide one-shot continuations and one-shot partial
continuations and, therefore, all control behaviors that can be implemented
with those abstractions. In this section we complement our demonstration
of the expressiveness of full asymmetric coroutines by providing succinct
and elegant implementations of different control behaviors, including some
representative examples of the use of continuations.

5.1 The Producer–Consumer Problem

The producer–consumer problem is the most paradigmatic example of the
use of coroutines and constitutes a recurrent pattern in several scenarios.
This problem involves the interaction of two independent computations:
one that produces a sequence of items and one that consumes them, one at a
time. Classical illustrations of this type of interaction use a pair of symmetric
coroutines, with control being explicitly transfered back and forth between
the producer and the consumer. However, asymmetric coroutines provide a
simpler and more structured solution: we can implement the consumer as a
conventional function that resumes the producer (an asymmetric coroutine)
when the the next item is required4.

A convenient extension of the producer–consumer structure is that of a
pipeline, i.e., a producer–consumer chain consisting of an initial producer,
one or more filters that perform some transformation on the transfered items,
and a final consumer. Asymmetric coroutines provide a succinct implemen-
tation of pipelines too. A filter behaves both as a consumer and a producer,
and can be implemented by a coroutine that resumes its antecessor to get a
new value and yields the transformed value to its invoker (the next consumer
in the chain). An implementation of a filter is shown in Figure 6. In a single
statement we can create a pipeline by connecting the desired components
and activating the final consumer:

consumer(filter(producer()))

5.2 Generators

A generator is a control abstraction that produces a sequence of values, re-
turning a new value to its caller for each invocation. Actually, generators are
nothing more than a particular instance of the producer–consumer problem,
with the generator behaving as the producer.

4This is an example of a consumer-driven design. When appropriate, a producer-driven
solution can also be developed.
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function filter(ant)
return coroutine.wrap(function()

while true do
-- resume antecessor to obtain value
local x = ant()
-- yield transformed value
coroutine.yield(f(x))

end
end)

end

Figure 6: Implementing a filter with asymmetric coroutines

A typical use of generators is to implement iterators, a related con-
trol abstraction that allows traversing a data structure independently of
its internal implementation. Besides the capability of keeping state, the
possibility of exchanging data when transferring control makes asymmetric
coroutines a very convenient facility for implementing iterators. A classi-
cal example of an iterator implemented with Lua coroutines was shown in
Section 3.3.2. However, the usefulness of generators is not restricted to im-
plementing data-structure iterators. The next section provides an example
of the use of generators in a quite different scenario.

5.3 Goal-oriented programming

Goal-oriented programming, as implemented in pattern-matching [Griswold
and Griswold 1983] and also in Prolog-like queries [Clocksin and Mellish
1981] involves solving a problem or goal that is either a primitive goal or
a disjunction of alternative goals. These alternative goals may be, in turn,
conjunctions of subgoals that must be satisfied in succession, each of them
contributing a partial outcome to the final result. In pattern-matching prob-
lems, matching string literals are primitive goals, alternative patterns are
disjunctions of goals, and sequences of patterns are conjunctions of subgoals.
In Prolog, the unification process is an example of a primitive goal, a rela-
tion constitutes a disjunction, and rules are conjunctions. In this context,
solving a problem typically requires the implementation of a backtracking
mechanism that successively tries each alternative until an adequate result
is found.

Some implementations of Prolog-style backtracking in terms of continu-
ations (e.g., [Haynes 1987]) use multi-shot success continuations to produce
values, and are used as examples of scenarios where one-shot continuations
cannot be used [Bruggeman et al. 1996]. However, this type of control be-
havior can be easily implemented with full asymmetric coroutines used as
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-- matching a string literal (primitive goal)
function prim(str)
return function(S, pos)

local len = string.len(str)
if string.sub(S, pos, pos+len-1) == str then
coroutine.yield(pos+len)

end
end

end

-- alternative patterns (disjunction)
function alt(patt1, patt2)
return function(S, pos)

patt1(S, pos)
patt2(S, pos)

end
end

-- sequence of sub-patterns (conjunction)
function seq(patt1, patt2)
return function(S, pos)

local btpoint = coroutine.wrap(function()
patt1(S, pos)

end)
for npos in btpoint do patt2(S, npos) end

end
end

Figure 7: Goal-oriented programming: pattern matching

generators5. Wrapping a goal in a coroutine allows a backtracker (a sim-
ple loop) to successively retry (resume) the goal until an adequate result is
found. A primitive goal can be defined as a function that yields a result
at each invocation. A disjunction can be implemented by a function that
sequentially invokes its alternative goals. A conjunction of two subgoals
can be defined as a function that iterates on the first subgoal, invoking the
second one for each produced outcome.

As an example, let us consider a pattern-matching problem. Our goal
is to match a string S with a pattern patt, which can be expressed by
combining subgoals that represent alternative matchings or sequences of
sub-patterns. An example of such a pattern is

("abc"|"de")."x"

5This style of backtracking can also be implemented with one-shot partial continua-
tions, as shown by Sitaram [1993], or even with restricted forms of coroutines, such as
Icon generators.
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The implementation of pattern matching is shown in Figure 7. Each
pattern function receives the subject string and a starting position. For
each successful matching, it yields the next position to be checked. When it
cannot find more matchings, it returns nil. Our primitive goal corresponds
to matching a substring of S with a string literal. Function prim implements
this goal; it receives as argument a string value and returns a function that
tries to match it with a substring of S starting at the given position. If
the goal succeeds, the position in S that immediately follows the match is
yielded. Function prim uses two auxiliary functions from Lua’s string li-
brary: string.len, which returns the length of a string, and string.sub,
which returns a substring starting and ending at the given positions. Alter-
native patterns for a substring correspond to a disjunction of goals. They are
implemented by function alt, which receives as arguments the two alterna-
tive goals and returns a function that tries to find a match in S by invoking
these goals. If a successful match is found, the new position yielded by the
invoked goal goes directly to the function’s caller.

Matching a substring with a sequence of patterns corresponds to a con-
junction of subgoals, which is implemented by function seq. The resulting
pattern function creates an auxiliary coroutine (btpoint) to iterate on the
first subgoal. Each successful match obtained by invoking this subgoal re-
sults in a new position in S where the second subgoal is to be satisfied. If a
successful match for the second subgoal is found, the new position yielded
by it goes directly to the function’s caller.

Using the functions just described, the pattern ("abc"|"de")."x" can
be defined as follows:

patt = seq(alt(prim("abc"), prim("de")), prim("x"))

Finally, function match verifies if string S matches this pattern:

function match(S, patt)
local len = string.len(S)
local m = coroutine.wrap(function() patt(S, 1) end)
for pos in m do
if pos == len + 1 then
return true

end
end
return false

end

5.4 Cooperative Multitasking

One of the most obvious uses of coroutines is to implement multitasking.
However, due mainly to the wide adoption of multithreading in modern main-
stream languages, this suitable use of coroutines is currently disregarded.
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-- list of "live" tasks
tasks = {}

-- create a task
function create_task(f)
local co = coroutine.wrap(function() f(); return "ended" end)
table.insert(tasks, co)

end

-- task dispatcher
function dispatcher()
while true do
local n = table.getn(tasks)
if n == 0 then break end -- no more tasks to run
for i = 1,n do
local status = tasks[i]()
if status = "ended" then
table.remove(tasks, i)
break

end
end

end
end

Figure 8: Implementing Cooperative Multitasking

A language with coroutines does not require additional concurrency con-
structs: just like a thread, a coroutine represents a unit of execution with
its private, local data while sharing global data and other resources with
other coroutines. But while the concept of a thread is typically associated
with preemptive multitasking, coroutines provide an alternative concurrency
model which is essentially cooperative: a coroutine must explicitly request
to be suspended to allow another coroutine to run.

Preemptive scheduling and the consequent need for complex synchro-
nization mechanisms make developing a correct multithreading application
a difficult task. In some contexts, such as operating systems and real-time
applications, timely responses are essential, and, therefore, preemption is
unavoidable. However, the timing requirements for most concurrent ap-
plications are not critical. Moreover, most thread implementations do not
provide any real timing guarantees. Application developers, also, have usu-
ally little or no experience in concurrent programming. In this scenario, a
cooperative multitasking environment, which eliminates conflicts due to race
conditions and minimizes the need for synchronization, seems much more
appropriate.

The implementation of cooperative multitasking in terms of full asym-
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metric coroutines is straightforward, as illustrated in Figure 8. Concurrent
tasks are modeled by coroutines; when a new task is created, it is inserted
in a list of live tasks. A simple task dispatcher is implemented by a loop
that iterates on this list, resuming the live tasks and removing the ones that
have finished their work (this condition is signalled by a predefined value
returned by the coroutine main function). Occasional fairness problems,
which are easy to identify, can be solved by adding suspension requests in
time-consuming tasks.

The only drawback of cooperative multitasking arises when using block-
ing operations; if, for instance, a coroutine calls an I/O operation and blocks,
the entire program blocks until the operation completes. For many concur-
rent applications, this is an unacceptable behavior. However, this situation
is easily avoided by providing auxiliary functions that initiate an I/O opera-
tion and suspend the active coroutine when the operation cannot be imme-
diately completed. Ierusalimschy [2003] shows an example of a concurrent
application that uses Lua coroutines and includes non-blocking facilities.

Currently, there is some renewal of interest in cooperative multitasking
as an alternative to multithreading [Adya et al. 2002; Behren et al. 2003].
However, the concurrent constructs that support cooperative multitasking
in the proposed environments are usually provided by libraries or system
resources like Window’s fibers [Richter 1997]. Interestingly, although the
description of the concurrency mechanisms employed in these environments
is no more than a description of coroutines plus a dispatcher, the term
coroutine is not even mentioned.

5.5 Exception Handling

A language that provides an exception handling mechanism typically im-
plements two basic primitives: try and raise [Friedman et al. 2001]. The
try primitive gets two expressions: a body and and an exception handler.
When the body returns normally, its returned value becomes the value of
try, and the exception handler is ignored. If the body encounters an ex-
ceptional condition, it raises an exception that is immediately sent to the
handler; in this case, any unevaluated portion of the body is ignored. An
exception handler can either return a value, which becomes the value of the
associated try, or it can raise another exception, which is sent to the next
dynamically enclosing handler.

A language with full asymmetric coroutines can easily support exception
handling. A try primitive can be implemented as a function that gets two
function values (body and handler) and executes body in a coroutine. A
raise primitive is merely a function that yields an exception.
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-- save original version of coroutine.wrap
local wrap = coroutine.wrap

-- redefine coroutine.wrap
function coroutine.wrap(tag, f)

-- create a "tagged" coroutine
local co = wrap(function(v) return tag, f(v) end)
return function(v)

local rtag, ret = co(v) -- resume coroutine
while (rtag ~= tag) do

-- reactivate outer coroutine if tags do not match
v = coroutine.yield(rtag, ret)

-- reinstate inner coroutine
tag, ret = co(v)

end

-- tags match
return ret

end
end

Figure 9: Avoiding Interference Between Control Actions

5.6 Avoiding Interference Between Control Actions

When asymmetric coroutines implement different control structures in a
single program and these structures are nested, it may be necessary to avoid
interferences between control actions. An undesirable interference may arise,
for instance, when an iterator is used within a try structure and it raises
an exception.

We can avoid simple interferences if we identify pairs of control oper-
ations by associating each control structure with a different tag (a string,
for instance) and implement a new version of function wrap that supports
tags, as shown in Figure 9. In addition, function coroutine.yield takes a
required first argument (a tag) in order to allow us to match yield–resume
pairs. Notice that the basic idea of this solution is similar to that used for
matching a subcomputation with its correspondent controller in our imple-
mentation of subcontinuations (see Section 4.3).

While avoiding simple interferences is trivial either with coroutines or
continuations, in the presence of concurrency interferences between control
actions, and error handling in general, can be hard to tackle [Gasbichler
et al. 2003]. However, due to the compositional nature of asymmetric corou-
tines, handling errors does not present difficulties when concurrency is also
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implemented with asymmetric coroutines.

6 Conclusions

After a period of intense investment, from the middle 1960s to the early
1980s, the research interest in coroutines as a general control abstraction
virtually stopped. Besides the absence of a precise definition of the concept,
which led to considerably different implementations of coroutine facilities,
the other factors that greatly contributed to the discard of this interesting
construct were the introduction of first-class continuations (and the general
belief that they were far more expressive than coroutines), and the adoption
of threads as a “standard” concurrent construct.

We now observe a renewal of interest in coroutines, notably in two differ-
ent scenarios. The first corresponds to research efforts that explore the ad-
vantages of cooperative task management as an alternative to multithread-
ing. In this scenario, some forms of coroutines are provided by libraries,
or system resources, and are solely used as concurrent constructs. Another
resurgence of coroutines is in the context of scripting languages, such as
Python and Perl. In this case, restricted forms of coroutines support the
implementation of simple iterators and generators, but are not powerful
enough to constitute a general control abstraction; in particular, they can-
not be used as a concurrent construct.

In this paper we argued in favor of the revival of full asymmetric corou-
tines as a convenient general control construct, which can replace both one-
shot continuations and multithreading with a single, and simpler, concept.
In order to support this proposition, we provided the contributions described
next.

To fulfill the need of an adequate definition of the concept of a corou-
tine, we proposed a classification of coroutines based on three main issues:
whether coroutines are symmetric or asymmetric, whether they are first-
class objects, and whether they are stackful constructs. We discussed the
influence of each of these issues on the expressive power of a coroutine fa-
cility, and introduced the concept of full coroutines as first-class, stackful
objects. We also discussed the advantages of full asymmetric coroutines
versus full symmetric coroutines, which are equivalent in power, but not in
ease of use.

Next we provided a precise definition of a full asymmetric coroutine
construct, supported by the development of an operational semantics for
this mechanism. We then demonstrated that full asymmetric coroutines
can provide not only symmetric coroutines but also one-shot continuations
and one-shot partial continuations, and discussed the similarities between
one-shot continuations and full symmetric coroutines, and between one-shot
partial continuations and full asymmetric coroutines. We also showed that,
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although these constructs have equivalent power, they may not be equivalent
in terms of efficiency.

Finally, we provided a collection of programming examples that illus-
trate the use of full asymmetric coroutines to support concise and elegant
implementations of several useful control behaviors, including some of the
most relevant examples of the use of continuations.
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