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Abstract
We are designing Pallene, a statically typed companion lan-

guage to the dynamically typed Lua programming language.

Our aim is to improve the performance of Lua programs by

allowing performance-sensitive parts of the program to be

written in a language that can be easily compiled to efficient

code, while also maintaining seamless interoperability with

Lua.

Pallene is designed to be amenable to standard ahead-of-

time compilation techniques, to be familiar to Lua program-

mers, and to seamlessly interoperate with Lua. This includes

sharing the runtime and garbage collector with Lua, as well

as using the same data structures.

In this paper we focus on the design of Pallene’s array

type, based on Lua’s tables (associative arrays). We consid-

ered multiple designs, and examined the performance vs

expressiveness trade-offs among them.
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1 Introduction
Dynamic languages are popular but their performance is

typically not as good as that of static languages. There are

at least three approaches to make dynamic languages faster:

scripting, just-in-time (JIT) compilation, and optional types.

The scripting approach is to combine the high-level dy-

namically typed language with a low-level statically typed

system language [11]. A main advantage of this approach is

that it allows each language to be used for the tasks it is most

suited for. The most visible disadvantage is that there is a

mismatch between the languages. Both syntactic and seman-

tic differences complicate working with both languages at

the same time. For example, it is not a trivial task to rewrite

a piece of dynamic code in the static language, if more per-

formance is desired. There is also a run-time overhead when

crossing the boundary between the languages due to the

need of converting between different data representations.

Just-in-time compilers [4] use run-time information to gen-

erate specialized and optimized machine code at run-time.

This approach is attractive for dynamically typed languages

because it can archive higher speedups than usually is possi-

ble with ahead-of-time compilation for these languages. One

challenge with JIT compilation is that implementing a JIT

compiler requires a lot of low-level work. Currently, design-

ing high-level frameworks for JITs is an active research area

and existing solutions still cannot archive the same level of

performance as hand-written compilers [3, 19].

Another problem of just-in-time compilers is that the op-

timizations are not guaranteed. Programmers often need to

rewrite their code to use idioms that the compiler is able to

better optimize [6]. This may happen due to functions or

language features that are not optimized by the JIT compiler.

For example, LuaJIT [12], a state-of-the-art JIT compiler for

Lua, cannot optimize traces that create closures [15]. For

example, if the increment_number function shown in Fig-

ure 1 is called inside a inner loop, LuaJIT will not be able to

optimize the whole loop.

Optional type systems mix the static and dynamic typing

disciplines by allowing programmers to add type annotations

to programs from a dynamically typed language. Static type

systems can be useful for compile-time error checking, as a

form of lightweight documentation and as an aid for compiler

optimizations. Optional type systems also seek to reduce the

mismatch between the static and dynamic languages, by

promoting a smooth transition between them [18]. One of

the challenging aspects of optional types is to design a type

system that is at the same time simple, sound, and amenable

to optimizations. Many optional type systems either sacrifice

soundness in search for simplicity [2] or introduce significant

type-checking overhead at run-time [17].

Based on these observations, we proposed Pallene, a stati-

cally typed companion language to Lua [5]. From the script-

ing worldview, the idea of Pallene is to be a system language

that has less of a mismatch against the dynamic language.

function increment_numbers(text)
return text:gsub("[0-9]+", function(s)

return tostring(tonumber(s) + 1)
end)

end

Figure 1. This function cannot be optimized by LuaJIT be-

cause it creates an anonymous closure.
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To reduce the static mismatch, Pallene is a subset of Lua aug-

mented with typed annotations. To reduce the run-time over-

head, Pallene shares Lua’s data structures, garbage collector

and runtime. The code generated by the Pallene compiler

also operates on Lua data structures directly, bypassing the

Lua–C API. The Lua interpreter loads Pallene modules just

like it would load a regular C extension module. Note that

Pallene runs with a standard Lua interpreter; it demands no

modifications there.

In this paper, we discuss strategies on how to design and

implement arrays in Pallene in order to interoperate effi-

ciently with Lua and its data structures. Since we do not

have the freedom to change Lua’s data representation, we do

not expect Pallene to reach the same level of performance as

low-level C code using idiomatic C data structures. However,

by using the same data representation, we should avoid in-

troducing additional run-time overhead when crossing the

boundaries between the two languages. We do expect this

approach to be competitive with a JIT compiler; the JIT is

also limited to using the same data structures as the dynamic

language does.

Section 2 discusses the design of Pallene and how it com-

bines the good aspects of scripting, just-in-time compilation,

and optional types. Section 3 presents how Lua tables are

implemented. This is important to guide our choices on the

implementation Pallene arrays. In Section 4, we discuss dif-

ferent possible designs for Pallene arrays, and how there is

a trade-off between flexibility and performance. In Section 5,

we evaluate the performance of Pallene arrays and verify

that they are competitive with a good JIT compiler. Finally,

in Section 6, we draw some conclusions.

2 The Pallene Language
To achieve good performance in the scripting approach, we

need to rewrite our programs in the static language. Similarly,

optionally typed languages demand us to add static types

to optimize our code, also restricting the use of several dy-

namic language features. The JIT approach in theory doesn’t

require any change to the code; in practice, however, we

often need to avoid language features that are “optimization

killers” and “not yet implemented” features [1, 15]. In the

end, all approaches lead programmers to use only a subset

of the original dynamic language.

This realization led us to propose the Pallene language
1
[5].

Pallene is a statically typed companion language to Lua.

Broadly speaking, it is a performance-oriented subset of Lua

with explicit type annotations. Instead of having ill-defined

restrictions, we embrace them to create a well-defined lan-

guage subset. This allows us to obtain good performance

while keeping type system and compiler implementation

simple.

1
Pallene is a fork of the Titan project [10], to allow us to concentrate on

researching performance aspects of this approach.

function copy(xs: {integer }): {integer}
local ys: {integer} = {}
for i = 1, #xs do

ys[i] = xs[i]
end
return ys

end

Figure 2. A function that copies an array of integers. In

this case, Pallene is free to not check the types of the array

elements.

Like scripting, Pallene and Lua are separate languages,

each well suited for its job. But Pallene and Lua have less of a

mismatch because one is a subset of the other; moreover, as

we will see, Pallene works directly with Lua data structures,

greatly reducing the run-time mismatch.

Pallene programs offer speedups comparable to those of

JIT compilers. Unlike JIT, these speedups are predictable—

programs that we cannot optimize are rejected by the lan-

guage instead of being allowed to run slower than the pro-

grammer expects.

Like optional type systems, we use type annotations to

aid code generation. We also borrow the idea of the Gradual

Guarantee from gradually typed languages [16]. Unlikemany

optional type systems, it is not a goal for us to be able to

type check all idioms the dynamic language supports; we

intentionally restrict ourselves to only the constructs that we

know we can generate good code for. This approach greatly

simplifies Pallene’s type system.

Unlike many optional type systems, detecting type errors

at compile time is not a priority for Pallene. Our priority

is using types to aid with performance. For example, if we

perform a run-time type test on a dynamically typed value,

we can store the result in machine registers, without the type

tag. We can contrast this to optional type systems like Type-

Script [2] and Typed Lua [9], which discard type annotations

before actually running the program.

It is also not a priority to have a well-defined behavior

for when run-time type errors should occur. We believe that

since performance is our primary goal, we should give the

Pallene compiler the freedom to move or remove run-time

type tests, as long as doing so does not impair soundness. For

example, consider the array copying operation in Figure 2.

Lua can pass any value when it calls the copy function. As
the function needs to traverse xs, Pallene must check that

it is an array (actually a Lua table, as we will see). However,

checking the type of the array elements is more subtle.

When the xs array contains a non-integer, Pallene is al-

lowed to produce a run-time type error when attempting

to read it—however, it is not required to do so. If it is more

efficient to directly move the element from xs to ys, it would
not check the types. If it is more efficient to move elements

2
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local arr = {}
for i = 1, 100 do

arr[i] = 10*i
end

Figure 3. Lua tables as arrays.

using an intermediate register to hold the integer, it will

check the type.

It is important to emphasize that Pallene is a type-safe

language, just like Lua. At run time, it will never use values

of one type as if they were of another type. For instance, in

the Figure 2 it will never attempt to index xs without first
ensuring that it is actually an array.

3 Data Representation in Lua
Lua represents all values internally with a tagged union of

type TValue. (A tagged union is a structure with a union and

a tag.) Primitive values, such as integers, floats, and booleans,

are stored directly into the union. Other values, such as

strings, tables, and closures, are dynamic allocated; the union

only stores a pointer to them. In 64-bit machines, standard

Lua use 64-bit integers and double-precision floating-point

numbers. Due to alignment, the final size of a TValue is 16
bytes. (In 32-bit machines, it is possible to compile Lua as

what is called “small Lua”, which uses 32-bit integers and

single-precision floats, resulting in TValue with 8 bytes.)

Tables are the sole data-structuring mechanism in Lua.

They can be used to represent arrays, records, modules, ob-

jects and even the global variable environment. For example,

a table with integer keys can be used as an array, as shown

in Figure 3.

The reason why tables are used for everything in Lua is

that it simplifies the language and its implementation. In

particular, having a single widely-used data structure greatly

simplifies the Lua–C API, which is used for the Lua standard

library and other C modules. This simplicity is one of the key

reasons why Lua is suited as an embeddable and extensible

scripting language [8].

Lua tables are associative arrays that can map keys of any

type (including tables or functions) to values of any type.

The exception is the nil value, which cannot be used as

a key or value—it represents the absence of a value in the

table. Reading from a key that has never been set returns

nil as a default value and assigning nil to a table field

removes it from the table. Iterating over a table only visits

keys corresponding to non-nil values.

Arrays in Lua are merely tables with integer keys. By

convention, they start at one. Nonetheless, zero and even

negative numbers are also valid keys.

Because arrays are simply tables, they do not have any

intrinsic concept of length. Sometimes, programmers store

local polyline = {
{x = 1.0, y = 2.5},
{x = 2.0, y = -0.5},
{x = 3.0, y = 2.5},
color = "red",
thickness = 3.0,

}

Figure 4. Example of mixed table in Lua.

the length in the table itself, usually using the string "n"
as the key. More often than not, however, they rely on the

length operator #.
The length operator naturally needs to be defined for

every possible Lua table, not only those that are being used

as arrays. Given the lack of an intrinsic length, the meaning

of the this operator is determined by what integer keys are

nil or non-nil. Lua does this in a unique way, defining the

length operator to return the index of a border in the array.

A border is an index that is present in the table but where

the next index is not, as described here:

isborder(t , i)
def

= (i = 0 ∨ t[i] , nil) ∧ t[i + 1] = nil

If the table has multiple borders, the length operator can

return any of them (due to performance reasons). But if

there is only one border, the result matches what most would

intuitively consider to be the length of an one-based array.

In Lua, these tables with only a single border are called

sequences.
Keys that are not positive integers interfere neither with

the concept of sequences nor with the length operator. In

Lua, the use of mixed tables is quite common, as exemplified

in Figure 4.

Implementing tables
The first versions of the reference Lua interpreter imple-

mented tables using hash tables (hence the name). Hash

tables are very general and can represent all uses of Lua

tables, but they have sub-optimal performance when used

to represent arrays. Starting with Lua 5.0, the reference in-

terpreter switched to a new hybrid representation for tables

with better performance for arrays [7].

Each Lua table is represented with a combination of an

array part and a hash part. Positive integer keys up to the

capacity of the array part are stored there. Everything else

(non-integer keys and larger integers) is stored in the hash

part. This representation has better performance for arrays

for two reasons. Accessing an array is faster than accessing

a hash table; arrays also require less memory because only

the values need to be stored—the keys are implicit.

Lua’s hybrid representation allows tables to contain non-

integer keys while still being able to use the faster array

3



DLS, November 2018, Boston, MA, USA Hugo Musso Gualandi, Gabriel deQuadros Ligneul, and Roberto Ierusalimschy

local arr = {}
for i = 100, 1, -1 do

arr[i] = 10*i
end

Figure 5. A Lua array being initialized backwards.

representation for the integer keys. As we alreadymentioned,

this kind of use is common in Lua.

The array part and the hash part of a Lua table can grow

over time as new values are inserted in the table. When a

new key is inserted, Lua first checks whether it fits in the

array part. (That is, the key is positive integer up to the array

capacity.) Otherwise, it goes to hash part. If the hash table is

already full, then Lua performs a rehash operation to resize

the array and hash parts. This operation may potentially

move some values between the hash part and the array part.

During a rehash, the hash part is resized to the smallest

power of two that can store all keys not in the array part.

What is still missing in this discussion is how Lua chooses

the capacity of the array part.

The rule that Lua uses is that it resizes the array part to

the largest power of two such that more than half of the

indices from one to the array capacity have non-nil values.

Arrays in Lua may be initialized with a capacity that is not a

power of two—this is useful to save memory in array literals

that don’t grow. Nevertheless, arrays always end up with a

power-of-two capacity after they grow.

We will now illustrate the rehash operation with some

examples. Consider the array initialization loop from Fig-

ure 3. The arr table starts empty, with zero capacity for both

the array and hash parts. When the first element is inserted

(key 1), it fits neither in the array part nor the hash part,

triggering a rehash. The array part grows to a capacity of 1

and the hash part stays at 0. The table is further rehashed

when keys 2, 3, 5, 9, 17, 33, and 65 are inserted, resulting in

an array part of capacity 128 and a hash part that remains

empty.

Now consider the example in Figure 5, which creates a

similar sequence but initializes it backwards. The table also

starts empty. When the first key (100) is set, it is stored in the

hash part because Lua doesn’t think it is worth it to allocate

a 128 element array to store just a single value. Similarly

to the case where the keys are inserted in increasing order,

the table is rehashed when the 2
nd
, 3

rd
, 5

th
, 9

th
, 17

th
, 33

rd

and 65
th
elements are added. In the initial rehashes, all the

values are stored in the hash part and the array part remains

empty. But after the final rehash, Lua switches to using a

128 element array, and the hash part becomes empty, ending

up in a similar state to the increasing keys case.

The majority of Lua sequences (arrays without holes) end

up being fully stored in the array part because they are

initialized sequentially, as in the two previous examples.

local arr = {}
arr[5] = 10*5
for i = 1, 4 do

arr[i] = 10*i
end

Figure 6. A pathological initialization order for Lua arrays.

local arr = {}
arr["a"] = 1
arr["b"] = 1
arr["c"] = 1
arr["d"] = 1
arr["e"] = 1
for i = 1, 3 do

arr[i] = 10*i
end

Figure 7. Another pathological initialization order for Lua

arrays.

However, there are rare corner cases that make it possible

to construct a sequence in Lua such that some of the values

are stored in the hash table part. For example, consider the

program in Figure 6, which initializes an array with the

unusual order 5, 1, 2, 3, 4. At first, the 5 is stored in the hash

table part. Then, as 1, 2, and 3 are inserted, they are stored in

the array part. The insertion of key 3 triggers a rehash but the

array part only grows to 4 elements, since the four elements

currently present in the table (1,2,3, and 5) are not enough

for Lua to grow the array part to a capacity of 8—for that it

would need at least 5 elements. After this, the sequence is

completed with the addition of key 4, which goes into the

array part. However, key 5 will continue to be stored in the

hash part unless more elements are inserted to trigger an

additional rehash.

Another way for sequences to end up with some keys in

the hash part is if the table contains non-integer keys which

were inserted before the integer keys. If there is extra space

available in the hash part, the integer keys may be stored

there instead of triggering a rehash and growing the array

part. This is illustrated in Figure 7. The first five string keys

("a", "b", etc) grow the capacity of the hash part to eight,

leaving space for three integer keys. In the end, all of the

table keys will be in the hash part.

4 Arrays in Pallene
As we discussed previously, to obtain maximum interoper-

ability with Lua, we want Pallene data types to be Lua data

types that can be directly manipulated by both languages.

We also want their semantics to be a restricted subset of the
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function foo(f: integer -> float ): float
local i: integer = 17
return f(i)

end

Figure 8. A higher order function in a gradually typed lan-

guage.

Lua semantics, following the Gradual Guarantee principle.

But what should these restrictions be?

According to this guarantee, Pallene code should either

behave like the equivalent (untyped) Lua code or raise a

type error. This still leaves us with some latitude for defining

what are type errors and when to raise them.

Consider the fully annotated function foo in a hypotheti-

cal gradual typed language, shown in Figure 8. Consider also

that this function is being called from dynamic code, so that

f can be any value. The usual semantics for this situation

would be that, when called, foo would immediately check

whether f is a function. The compiler already checked that

the argument i is an integer. The result of f(i), however,
is only checked after the call, and (of course) only for this

particular argument. Coming from a dynamic language, the

function f could return non-floats for other inputs.

An alternative semantics would be for the function foo to
check that f is actually a “function from integers to floats”,

whatever that means. For instance, in a hypothetical imple-

mentation, “function from integers to floats” could mean

functions whose source code could be typed with this type

annotation. Clearly, that would not be viable.

With arrays, however, this design is feasible: when receiv-

ing a value to be used as an array of floats, the code checks

whether the value is an array and that all its elements are

indeed floats. Following the terminology of gradual typing,

we can call this semantics eager ; the semantics that checks

types only as the value is used we call lazy. Note that these
terms are relative. For instance, our lazy example could be

even lazier, checking that f is a function only when it is

actually called.

From a performance point of view, a more eager semantics

introduces a high upfront cost, but it does give the compiler

more room for optimization. Conversely, a lazier semantics

has low upfront cost, but it gives weaker guarantees to the

compiler.

In the case of Lua, the meaning of what is an array is more

subtle than in most other languages, as Lua does not have

an array data type. A most strict definition for arrays in Lua

would be sequences without extra keys and with all elements

having the correct type. Less strict definitions could lift some

of theses restrictions. For instance, the array could have non-

integer keys, such as a "n" to store its size. Or the keys could
be sparse, provided that the code does not access the absent

ones.

TValue *slot;
if (i < xs->array_capacity) {

slot = &xs->array[i];
} else {

slot = hashtable_get(xs->hash , i);
}
double out = check_and_get_float(slot);

Figure 9. Reading from a Pallene array under the hash se-

mantics.

local sum: double = 0.0
for i = 1, N do

sum = sum + xs[i]
end

Figure 10. A simple Pallene loop.

We expect that a more restrictive definition for arrays

should give more opportunities for the compiler, at the cost

of restricting the programming idioms that are supported.

Our goal with Pallene is to find a sweet spot, targeting the

subset of Lua that programmers naturally use when they are

writing in a performance-minded style.

The Hash Semantics
The least restrictive approach for Pallene arrays would be to

allow any Lua table to be used as a Pallene array. We call this

approach the hash semantics. Pallene would only try to read

and write to positive integer keys of the table, but otherwise

there would be no restrictions on the contents of the table

and what Lua could do before handing it over to Pallene. For

example, the integer keys may be sparse, and the table may

also contain non-integer keys. This generality means that

at run-time some of the keys that Pallene will try to access

might be on the array part of the table, while others might

be on the hash part.

Figure 9 shows C pseudocode of how Pallene would read

an element from an array of floating-point numbers under

the hash semantics. Even in this more general approach,

Pallene presents various optimization opportunities to the

compiler, compared to interpreted Lua. The program can be

compiled directly to machine code, without going through a

bytecode interpreter. Additionally, the code can be special-

ized to assume that the key in an integer. Finally, the type

test at the end allows us to store the resulting floating point

number in a machine register, without a run-time type tag.

However, working with a generic table representation

leaves obstacles for the Pallene compiler. Although most

Pallene programs access exclusively the array part, the mere

presence of the else branch inhibits some optimizations. For

example, consider the simple loop in Figure 10. Under the

5
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if (i >= xs->array_capacity) {
/* This call never returns */
out_of_bounds_error ();

}
TValue *slot = &xs->array[i];
double out = check_and_get_float(slot);

Figure 11. Reading from a Pallene array, under the strict

array semantics.

Hash semantics, Pallene must perform a test at each iteration

of the loop to decide whether it should read from the array

part of from the hash part. This test cannot be removed or put

outside the loop unless we perform a loop switching trans-

formation, which may result in a large blowup in code size.

Therefore, we are also interested in seeing if more restric-

tive semantics for the Pallene arrays would allow additional

optimizations.

The Strict Array Semantics
On the most restrictive end of the spectrum, would be a

semantics that only allows arrays where all their values are

stored in the array part of the table. Pallene would be able to

read from these arrays using code similar to that in Figure 11.

However, what would this mean for the language semantics?

It turns out that restricting Lua tables like this would reveal

implementation details that are not naturally part of the

Lua semantics. The largest problem is that this restriction

depends on the previous history of the table, and not only on

its current contents. Even if the table is a Lua sequence (with

integer keys from 1 to N with no holes in them), it is still

possible to have some of the integer keys stored in the hash

part, as discussed in Section 3. In the end, while this more

restrictive approach for Pallene arrays would open additional

opportunities for optimization, we deem it unacceptable.

Additionally, this restrictive semantics would also forbid

some common Lua idioms, such as mixed arrays. It would

also forbid initializing an empty array by assigning to se-

quentially increasing integer keys. We would need to use

standard library functions to grow the array instead. That

said, performance-seeking programmers are usually willing

to appease the compiler by changing their coding style in

minor ways, as we discussed before.

The Resize Semantics
Another approach for arrays in Pallene is to force the keys

we want to access to be in the array part, as illustrated in

Figure 12. When reading from the array, this approach may

incur in a relatively expensive array rehash operation. How-

ever, we expect that this should be a rare occurrence, since

Lua arrays commonly store their keys in the array part.

At a first glance, both the hash semantics and the resize

semantics should have a similar impact for the compiler.

if (i >= xs->array_capacity) {
resize_array_part(xs, i);

}
TValue *slot = &xs->array[i];
double out = check_and_get_float(slot);

Figure 12. Reading from a Pallene array, under the resize

semantics.

double sum = 0.0;
if (N >= xs->array_capacity) {

resize_array_part(xs, N);
}
for (int i = 0; i < N; i++) {

TValue *slot = &xs->array[i];
double v = check_and_get_float(slot);
sum = sum + v;

}

Figure 13. The resize semantics is more friendly to loop

invariant code motion.

They both have a rarely taken if (i >= array_capacity)
branch which nevertheless gets in the way of compiler op-

timizations by calling a function that may modify the envi-

ronment, including the array itself and its capacity.

The main advantage of the resize semantics is that it is

more amenable to loop optimizations, such as moving bound-

checking tests out of the loop. For example, the resize seman-

tics allows the Pallene compiler to generate code similar to

that in Figure 13 for the simple loop from Figure 10. These

loop optimizations usually depend on knowing that the ar-

ray won’t be resized while we are operating on it. Typically,

this requires working with a fresh array that we know isn’t

being aliased elsewhere, or being in an inner loop that does

not call other Pallene or Lua functions, which might modify

the array. Nevertheless, these scenarios are not uncommon

in tight array loops.

5 Performance Evaluation
In this section, we perform experiments to evaluate some of

our assumptions and hypothesis about Pallene. This section

has two main points:

• To confirm our assumption that the "rewrite it in C"

approach is not viable in several scenarios.

• To evaluate our hypothesis that the Pallene approach

can be competitive with a good JIT compiler in terms

of performance.

We also measured the cost of some individual components

of our implementation, such as accessing the hash part and

the run-time tag checking.

6
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We selected six micro benchmarks for this evaluation. All

are array-focused benchmarks that have been commonly

used in the Lua community. They are known algorithms,

implemented in a straightforward manner, without any per-

formance tuning for a particular implementation. The six

benchmarks are the following:

Matmul: multiplies two floating-point matrices repre-

sented as arrays of arrays.

Binsearch: performs a binary search over an array of

integers.

Sieve: computes a list of primes with the sieve of Eratos-

thenes algorithm.

Queens: solves the classic eight-queens puzzle.
Conway: simulates Conway’s Game of Life, a cellular

automaton.

Centroid: computes the centroid (average) of an array

of points, each represented as an array of length 2.

We performed our tests in a 3.10 GHz Intel Core i5-4440

with 8 GB of RAM. We measured the running time of each

benchmark five times and considered only the fastest result.

The Matmul, Queens, and Conway benchmarks feature al-

gorithms with super-linear run time, and we chose a large

enough N to make the benchmarks take around a second to

run. For the Binsearch, Sieve, and Centroid benchmarks, we

repeated the benchmark inside a loop to achieve the same

effect.

For the main experiment, we ran each benchmark in four

ways: Lua, LuaJIT, Lua–C API, and Pallene. Lua means the

standard Lua interpreter version 5.4-work2. For LuaJIT we

ran the same source code under the LuaJIT 2.1.0-beta3 JIT

compiler. For Lua–C API we rewrote the benchmark code

in C, but operating on standard Lua data structures through

the Lua–C API. Pallene means our implementation, running

the same Lua source code with added type annotations.

For LuaJIT, our experimental setup did not have a warmup

step, which is commonly done when measuring JIT compil-

ers. Unlike other such compilers, LuaJIT does not require

a warmup period, because its compilation phase is unno-

ticeable [14]. We also think that it is fairer to include the

whole time, as this is actual time spent running the program.

(We do not assume that all Lua programs are running web

servers.)

Figure 14 shows the elapsed time for each benchmark, nor-

malized by the Lua benchmark results. (The precise values

are shown in Figure 17.) As we anticipated, Pallene running

times are comparable with LuaJIT. The Lua–C results are

all over the place; for benchmarks featuring lots of array

operations (Matmul and Centroid), the Lua–C API overhead

outweighs the gains from rewriting in C.

Let us now analyze the Pallene versus LuaJIT situation

in more detail. The only benchmark where LuaJIT is sig-

nificantly faster than Pallene is Matmul. This difference is

Figure 14.Comparison of Pallene with Lua, LuaJIT and Lua–

C API. The time is normalized by the Lua result.

N M

Time

ratio

Pallene

time

LuaJIT

time

Pallene

LLC miss

LuaJIT

LLC miss

800 2 1.64 2.17 1.32 44.13% 33.31%

400 16 1.05 1.26 1.20 3.38% 0.61%

200 128 1.02 1.30 1.27 0.13% 0.07%

100 1024 0.96 1.37 1.42 0.02% 0.07%

Figure 15. Time spent and cache misses for the Matmul

benchmark on different input sizes. N is the size of the input

matrix. M is how many times we repeated the multiplication.

Time ratio is Pallene time divided by LuaJIT time. Times are

in seconds. LLC load misses are a percentage of all LL-cache

hits.

due to memory access; LuaJIT uses the NaN-boxing tech-

nique to represent values [13]. This means that an array

of floating-point numbers in LuaJIT only uses 8 bytes per

number against the 16 bytes used by from Lua and Pallene,

reflecting in a higher cache miss rate for Pallene. To confirm

this explanation, we ran the same benchmark under smaller

values of N, as shown in Figure 15. Smaller matrices fit better

in the cache and result in faster execution speeds and less

cache misses for both. For this benchmark, we measured the

run time and cache-miss rates with the Linux perf tool. The
NaN-boxing also explains the smaller difference LuaJIT and

Pallene in the Centroid benchmark.

The NaN-boxing technique, however, is accompanied by

other problems that usually do not show up in benchmarks.

LuaJIT does not support unboxed 64-bit integers. (This pre-

vented us from using the xorshift128+ PRNG algorithm as

one of our benchmarks). It also limits the total memory that

LuaJIT can address to 4GB. These limitations are why NaN-

boxing is not used in standard Lua anymore.

The Binsearch benchmark highlights a particularly bad

scenario for trace-based JITs, such as LuaJIT. The inner loop

of the binary search features a highly unpredictable branch,

7
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Figure 16. Comparison of Hash, Resize, and NoCheck array

implementations. The time is normalized by the NoCheck

result.

forking the hot path. This is not an issue for Pallene and

other ahead-of-time compilers.

The Sieve and the Queens benchmark need no further

explanation as the results were quite expected. Both LuaJIT

and Pallene are around ten times faster than Lua.

The Conway benchmark is a little surprising as LuaJIT

performed worse than standard Lua. The bulk of the time

in this benchmark is spent doing string manipulation and

garbage collection. This benchmark’s unusual result is most

likely due to the new garbage collector introduced in Lua 5.4.

We also ran experiments to measure the differences be-

tween individual components in our implementation of ar-

rays in Pallene. We compared three different implementa-

tions of the compiler: Hash, Resize, and NoCheck. Hash

means the lazy implementation of Pallene arrays, which al-

lows access to arbitrary integer keys (they may be stored

either in array or hash parts of the table). Resize refers to

the implementation that resizes the array part as needed,

so it never has to use the hash part. Finally, NoCheck is a

variant of the Resize implementation without any run-time

type checks. This is obviously unsafe, but it allows us to

estimate the cost of the tag checks.

Figure 16 shows the results of this experiment, normalized

against the NoCheck implementation. As with the other

benchmarks, the real times are in Figure 17. Clearly, the

Resize implementation performed better than Hash.

For the Hash implementation, it is important emphasize

that these particular benchmarks never accesses elements

in the hash part of the tables, as the array elements are

always in the array part. The performance differences are

due to compiler optimizations. First, range analysis allows

the bound checks to be moved outside the loop. Second, the

mere presence of a function call inside loop (to access the

hash part) hinders some compiler optimizations, even if that

function is never called.

Benchmark Lua LuaJIT

Lua–C

API

Hash Resize

No

Check

Matmul 10.21 0.66 12.47 1.16 1.10 1.11

Binsearch 8.96 2.99 2.70 0.86 0.83 0.81

Sieve 7.14 0.89 4.73 1.17 1.08 1.04

Queens 14.19 1.61 3.85 1.47 1.28 1.24

Conway 2.12 2.44 1.95 1.15 1.15 1.13

Centroid 9.31 1.33 12.04 1.86 1.65 1.53

Figure 17. Exact running times for our benchmarks, in sec-

onds. Resize is the default Pallene implementation.

In all our benchmarks, the tag checks introduce little over-

head (up to 10%). Analysis with perf shows that for all them
presence of tag checks increases the number of machine

instructions the programs run. For instance, the Matmul

benchmark executes twice as many instructions when tag

checks are enabled. However, this is not reflected in the time

spent. Because our benchmarks are memory bound, the Intel

Core CPU is able to execute most of these extra instruc-

tions “for free”, due to pipelining. (This can be seen through

perf in the instructions per cycle measurement). For other

CPUs, the cost of tag checking may be higher. Additionally,

if the benchmarks were CPU-bound then we expect that the

tag-checking overhead would be higher.

6 Conclusion
In this paper we discussed the implementation of arrays in

Pallene, a companion language for Lua. A key ingredient in

the Pallene approach is to use the same data structures and

runtime as Lua. This poses some design problems that we

addressed in this paper: how to define what values corre-

spond to the array type, given that Lua doesn’t have one;

and how to maximize performance sacrificing a minimum

of flexibility.

We showed that by being aware of how Lua implements

its arrays and by taking into account how programmers

typically use them, we were able to implement arrays in

Pallene with performance compatible with LuaJIT, a state-

of-the-art JIT compiler. The final implementation imposes

no restrictions on how arrays are used. For instance, Pallene

supports mixed tables, that is, tables containing both integer

keys implementing an array and other keys with additional

data.

One of the most promising aspects of our approach is

its simplicity. By focusing on a restricted subset of the dy-

namic language, we were able implement a straightforward

ahead-of-time compiler, leveraging mature compiler back-

ends. Implementing a JIT compiler with similar performance

would be much more challenging.

Although the type system we obtained in the end is spe-

cific to Lua, we believe that the same ideas could also be used

with a different language as starting point.
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