
Pallene: A statically typed companion language for Lua
Hugo Musso Gualandi

PUC-Rio
hgualandi@inf.puc-rio.br

Roberto Ierusalimschy
PUC-Rio

roberto@inf.puc-rio.br

ABSTRACT
The simplicity and flexibility of dynamic languages make them
popular for prototyping and scripting, but the lack of compile-time
type information makes it very challenging to generate efficient
executable code.

Inspired by ideas from scripting, just-in-time compilers, and op-
tional type systems, we are developing Pallene, a statically typed
companion language to the Lua scripting language. Pallene is de-
signed to be amenable to standard ahead-of-time compilation tech-
niques, to interoperate seamlessly with Lua (even sharing its run-
time), and to be familiar to Lua programmers.

In this paper, we compare the performance of the Pallene com-
piler against LuaJIT, a just in time compiler for Lua, and with C
extension modules. The results suggest that Pallene can achieve
similar levels of performance.

CCS CONCEPTS
• Software and its engineering → Scripting languages; Just-
in-time compilers; Dynamic compilers; Imperative languages;

ACM Reference Format:
Hugo Musso Gualandi and Roberto Ierusalimschy. 2018. Pallene: A stati-
cally typed companion language for Lua. In Proceedings of XXII Brazilian
Symposium on Programming Languages (SBLP). ACM, New York, NY, USA,
8 pages.

1 INTRODUCTION
The simplicity and flexibility of dynamic languages make them
popular for prototyping and scripting, but the lack of compile-time
type information makes it very challenging to generate efficient
executable code. There are at least three approaches to improve
the performance of dynamically typed languages: scripting, just-in-
time compilation, and optional type systems.

The scripting approach [19] advocates the use of two separate
languages to write a program: a low-level system language for
the parts of the program that need good performance and that
interact with the underlying operating system, and a high-level
scripting language for the parts that need flexibility and ease of
use. Its main advantage is that the programmer can choose the
programming language most suited for each particular task. The
main disadvantages are due to the large differences between the
languages. That makes it hard to rewrite a piece of code from one

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SBLP, September 2018, São Carlos, São Paulo, Brazil
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6480-5.

language to the other and also adds run-time overhead in the API
between the two language runtimes.

Just-in-time compilers [6] dynamically translate high level code
into low-level machine code during the program execution, on
demand. To maximize performance, JIT compilers may collect run-
time information, such as function parameter types, and use that
information to generate efficient specialized code. The most ap-
pealing aspect of JIT compilers for dynamic languages is that they
can provide a large speedup without the need to rewrite the code
in a different language. In practice, however, this speedup is not
always guaranteed as programmers often need to rewrite their code
anyway, using idioms and “incantations” that are more amenable
to optimization [10].

As the name suggests, optional type systems allow programmers
to partially add types to programs.1 These systems combine the
static typing and dynamic typing disciplines in a single language.
From static types they seek better compile-time error checking,
machine-checked lightweight documentation, and run-time per-
formance; from dynamic typing they seek flexibility and ease of
use. One of the selling points of optional type systems is that they
promise a smooth transition from small dynamically typed scripts
to larger statically typed applications [27]. The main challenge
these systems face is that it is hard to design a type system that is
at the same time simple, correct, and amenable to optimizations.

Both scripting and optional types assume that programmers
need to restrict the dynamism of their code when they seek bet-
ter performance. Although in theory JIT compilers do not require
this, in practice programmers also need to restrict themselves to
achieve maximum performance. Realizing how these self-imposed
restrictions result in the creation of vaguely defined language sub-
sets, and how restricting dynamism seems unavoidable, we asked
ourselves: what if we accepted the restrictions and defined a new
programming language based on them? By focusing on this “well
behaved” subset and making it explicit, instead of trying to optimize
or type a dynamic language in its full generality, we would be able
to drastically simplify the type system and the compiler.

To study this question, we are developing the Pallene program-
ming language, a statically typed companion to Lua. Pallene is
intended to act as a system language counterpart to Lua’s script-
ing, but with better interoperability than existing static languages.
To avoid the complexity of a JIT compilation, Pallene should be
amenable to standard ahead-of-time compiler optimization tech-
niques. To minimize the run-time mismatch, Pallene should use
Lua’s data representation and garbage collector. To minimize the
conceptual mismatch, Pallene should be familiar to Lua program-
mers, syntactically and semantically.

In the next section of this paper, we overview the main ap-
proaches currently used to tackle the performance problems of

1Gualandi [9] presents a historical review of type systems for dynamic languages.



SBLP, September 2018, São Carlos, São Paulo, Brazil Hugo Musso Gualandi and Roberto Ierusalimschy

dynamic languages. In Section 3, we describe how we designed
Pallene, aiming to combine desirable properties from those ap-
proaches. In Section 4, we discuss how our goals for Pallene affected
its implementation. In Section 5, we evaluate the performance of
our prototype implementation of Pallene on a set of micro bench-
marks, comparing it with the reference Lua implementation and
with LuaJIT [20], a state of the art JIT compiler for Lua. This eval-
uation suggests that it is possible to produce efficient executable
code for Pallene programs. In the last two sections of this paper
we compare Pallene with related research in type systems and opti-
mization for dynamic languages, and we discuss avenues for future
work.

2 OPTIMIZING SCRIPTING LANGUAGES
In this section we discuss the existing approaches to optimizing
dynamic languages that we mentioned in the introduction.

2.1 Scripting
Oneway to overcome the slowness of dynamic languages is to avoid
them for performance-sensitive code. Dynamic scripting languages
are often well-suited for a multi-language architecture, where a
statically typed low-level system language is combined with a flexi-
ble dynamically typed scripting language, a style of programming
that has been championed by John Ousterhout [19].

Lua has been designed from the start with scripting in mind [13]
and many applications that use Lua follow this approach. For in-
stance, a computer game like Grim Fandango has a basic engine,
written in C++, that performs physical simulations, graphics ren-
dering, and other machine intensive tasks. The game designers,
who are not professional programmers, wrote all the game logic in
Lua [18].

The main advantages of this scripting architecture are its prag-
matism and its predictability. Each language is used where it is more
adequate and the software architect can be relatively confident that
the parts written in the system language will have good perfor-
mance. The main downside is the conceptual mismatch between
the languages.

Rewriting modules from one language to the other is difficult.
A common piece of advice when a Lua programmer seeks better
performance is to “rewrite it in C”, but this is easier said than done.
In practice, programmers only follow this advice when the code
is mainly about low-level operations that are easy to express in
C, such as doing arithmetic and calling external libraries. Another
obstacle to this suggestion is that it is hard to estimate in advance
both the costs of rewriting the code and the performance benefits
to be achieved by the change. Often, the gain in performance is not
what one would expect: As we will see in Section 5, the overhead
of converting data from one runtime to the other can cancel out
the inherent gains of switching to a static language.

2.2 JIT Compilers
Just-in-time (JIT) compilers are the state of the art in dynamic lan-
guage optimization. A JIT compiler initially executes the program
without any optimization, observes its behavior at runtime, and
then, based on this, generates highly specialized and optimized ex-
ecutable code. For example, if it observes that some code is always

operating on values of type double, the compiler will optimistically
compile a version of this code that is specialized for that type. It
will also insert tests (guards) in the beginning of the code that jump
back to a less optimized generic version in case some value is not
of type double as expected.

JIT compilers are broadly classified as either method-based or
trace-based [7], according to their main unit of compilation. In
method-based JITs, the unit of compilation is one function or sub-
routine. In trace-based JITs, the unit of compilation is a linear trace
of the program execution, which may cross over function bound-
aries. Trace compilation allows for a more embedable implemen-
tation and is better at compiling across abstraction boundaries.
However, it has trouble optimizing programs which contain unpre-
dictable branch statements. For this reason, most JIT compilers now
tend to use the method-based approach, with the notable exceptions
of LuaJIT [20] and the RPython Framework [5].

JIT compilers detect types at run-time because inferring types at
compile type is very hard and usually produces less specific results.
Additionally, in many dynamic languages data types are created
at run-time and there are no data definition declarations or type
annotations for the compiler to take advantage from. As an example,
the PyPy authors explicitly mentioned this as one of their main
motivations for using JIT technology [23].

Implementing a JIT compiler can be challenging. The most per-
formant JITs depend heavily on non-portable low-level code and
are architected around language-specific heuristics. High level JIT
development frameworks are still an active research area. There
are various promising approaches, such as the metatracing of the
RPython framework [5] and the partial evaluation strategy of Truf-
fle [29], but so far these have not been able to compete in terms of
performance and resource usage with hand-written JITs such as
LuaJIT [20], V8 [26] and HHVM [1].

From the point of view of the software developer, the most at-
tractive feature of JIT compilers is that they promise increased
performance without needing to modify the original dynamically
typed program. However, these gains are not always easy to achieve,
because the effectiveness of JIT compiler optimizations can be hard
to predict. Certain code patterns, known as optimization killers,
may cause the whole section they are in to be de-optimized, re-
sulting in a dramatic performance impact. Programmers who seek
performance must carefully avoid the optimization killers for the
JIT engines they are targeting, by following advice from the official
documentation or from folk knowledge [2, 22].

Since there may be an order of magnitude difference in perfor-
mance between JIT-optimized and unoptimized code, programmers
have an incentive to write their programs in a style that is more
amenable to optimization. This leads to idioms that are not always
intuitive. For example, the LuaJIT documentation recommends
caching Lua functions from other modules in a local variable before
calling them [21], as is shown in Figure 1. However, for C functions
accessed via the foreign function interface the rule is the other way
around: functions from the C namespace should not be cached in
local variables, as shown in Figure 2.

Another example from LuaJIT is the function in Figure 3, which
runs into several LuaJIT optimization killers (which the LuaJIT doc-
umentation calls “Not Yet Implemented” features). As of LuaJIT 2.1,
traces that call string pattern-matching methods such as gsub are



Pallene: A statically typed companion language for Lua SBLP, September 2018, São Carlos, São Paulo, Brazil

-- Bad
local function mytan(x)

return math.sin(x) / math.cos(x)
end

-- Good
local sin , cos = math.sin , math.cos
local function mytan(x)

return sin(x) / cos(x)
end

Figure 1: LuaJIT encourages programmers to cache im-
ported Lua functions in local variables.

-- Good (!)
local function hello()

C.printf("Hello , world!")
end

-- Bad (!)
local printf = C.printf
local function hello()

printf("Hello , world!")
end

Figure 2: Surprisingly, LuaJIT encourages programmers not
to cache C functions called through the foreign function in-
terface.

function increment_numbers(text)
return (text:gsub("[0-9]+", function(s)

return tostring(tonumber(s) + 1)
end))

end

Figure 3: This function cannot be optimized by LuaJIT be-
cause it calls the gsubmethod and because it uses an anony-
mous callback function.

not compiled into machine code by the JIT. The same is true for
traces that create closures or define anonymous functions, even if
the anonymous function does not close over any outer variables.

The different coding style that JITs encourage is not the only way
they affect the software development process. Programmers also
monitor the performance of their programs to verify whether the
JIT compiler is actually optimizing their code. When it is not, they
resort to specialized debugging tools to discover which optimization
killer is the culprit [11]. This may require reasoning at a low level
of abstraction, involving the intermediate representation of the JIT
compiler or its generated machine code [12].

Another aspect of JIT compilers is that before they can start op-
timizing they must run the program for many iterations, collecting
run-time information. During this initial warmup period the JIT
will run only as fast or even slower than a non-JIT implementation.

In some JIT compilers the warmup time can also be erratic, or even
cyclic, as observed by Barrett et al [3].

2.3 Optional Types
Static types serve several purposes. They are useful for error detec-
tion, as a lightweight documentation, and they facilitate efficient
code generation. Therefore there are many projects aiming to com-
bine the benefits of static and dynamic typing in a single language.

A recurring idea to help the compiler produce more efficient code
is to allow the programmer to add optional type annotations to the
program. Compared with a more traditional scripting approach,
optional typing promises a single language instead of two different
ones, which makes it easier for the static and dynamic parts of the
program to interact with each other. The pros and cons of these
optional type system approaches vary from case to case, since each
type system is designed for a different purpose. For example, the
optional type annotations of Common LISP allow the compiler to
generate extremely efficient code, but without any safeguards [8].

A research area deserving special attention is Gradual Typ-
ing [24], which aims to provide a solid theoretical framework for
designing type systems that integrate static and dynamic typing in a
single language. However, gradual type systems still face difficulties
when it comes to run-time performance. On the one hand, systems
that check types as they cross the boundary between the static and
dynamic parts of the code are often plagued with a high verification
overhead cost [25]. On the other hand, type systems that do not
perform this verification give up on being able to optimize the static
parts of the program.

One problem with optional types is that, to embrace the ideal
of smooth transition between the typed and untyped worlds, the
static type system should support common idioms from the dynamic
language. This requirement for flexibility usually leads to a more
complex type system, making it more difficult to use and, more
importantly to us, to optimize. For example, in Typed Lua [16] all
arrays of integers are actually arrays of nullable integers. In Lua,
out of bound accesses result in nil; moreover, to remove an element
from a list one has to assign nil to its position. Both cases require
the type system to accept nil as a valid element of the list.

3 THE PALLENE PROGRAMMING
LANGUAGE

Although JIT compilers and optional type systems are said to be
designed to cover all aspects of their dynamic languages, this is
not the case in practice. Normally there is a “well behaved” subset
of the language that is more suitable to the optimizer or the type
system, and programmers will restrict themselves to this subset to
better take advantage of their tools.

For example, programmers targeting LuaJIT will tend to restrict
themselves to the subset of Lua that LuaJIT can optimize. Similarly,
those using TypeScript (an optional type system for Javascript) will
prefer to write programs that can fit inside TypeScript’s type system.
From a certain point of view, we could say that these programmers
are no longer programming in Lua or Javascript, at least as these
languages are normally used.

As we already mentioned in the introduction, the realization
that programmers naturally restrict themselves to a subset of the



SBLP, September 2018, São Carlos, São Paulo, Brazil Hugo Musso Gualandi and Roberto Ierusalimschy

language in the search for better performance led us to think about a
new language that makes these restrictions explicit. Our hypothesis
is that programmers would be willing to accept these restrictions
in exchange for guarantees from the compiler that it will be able to
generate good code.

Pallene is intended to be that language. As we described before,
our plan for Pallene is that it should be amenable to standard ahead-
of-time compiler optimization techniques and be compatible with
Lua, not only in terms of the run time and data structures, but also
in terms of language semantics and familiarity. In the following
paragraphs we describe how these goals affected the design of
Pallene.

Pallene should be amenable to standard ahead-of-time compiler
optimization techniques. This goal led us not only to make Pallene
statically typed, but also statically typed with a simple and conven-
tional type system. The compile-time guarantees afforded by such
type system can make it much easier for a compiler to produce effi-
cient code. Naturally, we should expect that this same type-system
rigidity that aids the compiler will also restrict the programming
idioms available in Pallene, which is why Pallene is designed from
the start to be used in conjunction with Lua, following a traditional
scripting architecture. Since Lua is available when more flexibility
is desired, our intention is that Pallene’s type system will only sup-
port idioms that can be compiled to efficient code. This includes
primitive types like floats and integers, arrays, and records. It ex-
cludes dynamic language features such as ad-hoc polymorphism.
This design should allow programmers to trust that their Pallene
programs will have good performance, which is not the case for
compilers that rely on speculative optimizations, as is the case with
JIT compilers.

Pallene should share the Lua runtime. To allow for seamless in-
teroperability with Lua, Pallene can directly manipulate Lua data
structures and also shares Lua’s garbage collector. This should re-
duce the run-time overhead of communicating with Lua. Other
languages must use the Lua–C API to manipulate Lua values and
can only reference these values indirectly, through the API’s stack
and registry [14].

C code, when manipulating Lua values, does not keep direct
pointers to Lua objects. Instead, Lua exposes them to C through a
stack, known as the Lua stack, and C functions refer to Lua objects
by integer indexes into the stack. This scheme facilitates accurate
garbage collection (live objects are rooted in the stack) and dy-
namic typing (stack slots can contain Lua values of any type) but
introduces some overhead.

Pallene should be familiar to Lua programmers, syntactically and
semantically. To make it easier to combine Lua and Pallene in a
single system, Pallene is very close to a typed subset of Lua, inspired
by optional and gradual typing. For example, Figure 4 shows a
Pallene function that computes the sum of an array of floating-
point numbers. Other than the type annotations, it is valid Lua
code. Semantically, it also behaves exactly like the Lua version,
except that this Pallene function will raise a run-time error if Lua
calls it with an argument of the wrong type (for example, an array
of integers).

function sum(xs: {float }): float
local s: float = 0.0
for i = 1, #xs do

s = s + xs[i]
end
return s

end

Figure 4: A Pallene function for summing numbers in a Lua
array.

-- Pallene Code:
function add(x: float , y:float): float

return x + y
end

-- Lua Code:
local big = 18014398509481984
print(add(big , 1) == big)

Figure 5: An example illustrating why Pallene avoids auto-
matic type coercions.

This follows the idea behind the Gradual Guarantee [24] of grad-
ual type systems, which states that adding type annotations to a
program should not change its behavior except for perhaps intro-
ducing run-time type errors. This guarantee means that program-
mers can rely on their knowledge about Lua when programming
in Pallene.

Syntactically speaking, Pallene is almost the same as Lua: all of
Lua’s control-flow statements are present and work the same in Pal-
lene. Whenever reasonable, we try to ensure that the semantics of
Pallene are the same as Lua’s, following the Gradual Guarantee. For
instance, Pallene does not perform automatic coercions between
numeric types, unlike most statically typed languages. Consider
the example in Figure 5. In Lua, as in many dynamic languages, the
addition of two integers produces an integer while the addition of
two floating-point numbers produces another floating point num-
ber. If we remove the type annotations from the Pallene function
add, and treat it as Lua code, Lua will perform an integer addition
and the program will print false. On the other hand, if Pallene
automatically coerced the integer arguments to match the floating-
point type annotations, it would perform a floating-point addition
and the program would print true: double-precision floating-point
numbers cannot accurately represent 254+1. To avoid this inconsis-
tency, Pallene instead raises a run-time type error, complaining that
an integer was passed where a floating-point value was expected.

Pallene’s standard library is similar to Lua’s but not exactly the
same. The most noticeable difference is that some functions are
missing, such as those that would require polymorphic types. Other
functions are more restricted: for instance, string pattern-matching
functions only accept literal (constant) patterns. Furthermore, the
Pallene library is immutable and does not support monkey patching,
unlike regular Lua libraries. If some Pallene code calls math.sin,



Pallene: A statically typed companion language for Lua SBLP, September 2018, São Carlos, São Paulo, Brazil

the compiler knows that the function has not been redefined and
generates code that directly calls the sine function from the C stan-
dard library. It is worth noticing that programmers concerned with
performance most likely already avoid monkey patching.

Summing up, the main difference between Pallene and Lua is
that Pallene is statically typed with a simple type system. This mere
change restricts several common Lua programming practices, such
as functions that return a different number of results depending on
their arguments, ad-hoc polymorphism, and heterogeneous collec-
tions. On the other hand, this makes Pallene an ordinary imperative
language, amenable to standard compiler optimization techniques.
The precise details of the type system are not yet fully defined, as
Pallene is still evolving. Nevertheless, they would not affect the
results presented here.

4 IMPLEMENTING PALLENE
Pallene’s compiler is quite conventional. It traverses the syntax tree
and emits C code, which is then passed to a C compiler (such as gcc)
to produce the final executable. This binary complies with Lua’s
Application Binary Interface (ABI) so that it can be dynamically
loaded by Lua just like other modules written in C.

Leveraging an existing high quality compiler backend keeps
the Pallene compiler simple and makes Pallene portable to many
architectures. Using C also allows us to reference datatypes and
macros defined in Lua’s C header files.

The main peculiarity of Pallene compilation is that the code it
generates for accessing data-structure fields directly manipulates
the Lua data structures, which is not allowed for regular C code.
This allows better performance than what is currently possible
with C Lua modules as we will show. This style of programming
would be dangerous if exposed to C programmers, but in Pallene
the compiler is able to guarantee that the invariants of the Lua
interpreter are respected.

Because of static typing, Pallene can optimize this code much
more than the interpreter. As a striking example, when we write
xs[i] in Pallene (as happens in Figure 4), the compiler knows that
xs is an array and i is an integer, and generates code accordingly.
The equivalent array access in Lua (or in C code using the C–API)
would need to account for the possibility that xs or i could have
different types or even that xsmight actually be an array-like object
with an __index metamethod.

From the point of view of garbage collection, Pallene’s direct-
manipulation approach is closer to the APIs of Python and Ruby,
which expose pointers to objects from the scripting language. How-
ever, since Pallene is a high level programming language, it can
come with an accurate garbage collector. In Python the programmer
is tasked with manually keeping track of reference counts and in
Ruby the garbage collector is conservative regarding local variables
in the C stack.

One of the few points where the resulting C code is not a di-
rect translation of the corresponding Pallene code regards garbage
collection. Pallene currently uses lazy pointer stacks [15] to inter-
act with the garbage collector. Collectable Lua values in Pallene
are represented as regular C pointers, which at runtime will be
stored in machine registers and the C stack, with low overhead. At
locations in the program where the garbage collector is invoked,

Pallene saves all the necessary Lua pointers in the Lua stack, so
that the garbage collector can see them.

Another situation where Pallene does not directly match a con-
ventional static language is run-time type checking. Pallene must
insert run-time type checks in the frontier between its statically
typed code and Lua’s dynamically typed code, in order to guaran-
tee type safety. Currently, this means function calls (when a Lua
function calls a Pallene one, or when a Lua function returns to
Pallene) and data-structure reads (Lua might have written values of
the wrong type to the field). Note that these type checks can only
raise errors and do not affect the semantics and the code in any
other way.

We avoided using wrappers to implement our type tests because
obtaining good performance in a system with wrappers is challeng-
ing. In the worst case they can slow down a program by a factor of
more than ten, as shown by Takikawa et al [25] and avoiding this
overhead is still an open problem. Another problem with wrappers
is that they interact poorly with reference equality (object identity).
Instead of wrappers, we use a more lazy system of type checks,
similar to the tag checks that JITs insert to guard their specialized
code or to the transient semantics for Reticulated Python [28].

5 PERFORMANCE EVALUATION
Wewant to verify whether Pallene is competitive with JIT compilers
and we want to verify whether bypassing the Lua–C API can lead
to relevant performance gains. We are not looking to prove that
Pallene can beat JITs—we are primarily concerned with whether
Pallene is a viable alternative to JIT compilation for the optimization
of Lua programs.

We prepared a small suite of benchmarks to evaluate the perfor-
mance of Pallene. The first benchmark is a prime sieve algorithm.
The second is a matrix multiplication (using Lua arrays). The third
one solves the N-queens problem. The fourth one is a microbench-
mark that simulates a binary search. The fifth one is a cellular
automaton simulation for Conway’s Game of Life.

All the benchmarks were prepared specifically for this study.
For the algorithms with at least quadratic running time we ran a
single iteration with a suitably large N. For the prime sieve and
binary search, we repeated the computation inside a loop to obtain
a measurable time. As expected, all benchmarks run the same in
Pallene and Lua: the source code is identical, except for type an-
notations, and they produce the same results. Most of the code is
also what one would naturally write in Lua. One exception was
in the code for the N-queens benchmark, where we used if-then-
else statements in places where in Lua it would be more idiomatic
to use the idiom x and y or z as a ternary operator. (Currently
Pallene only supports using and and or with boolean operands.)
For the matrix multiplication and the cellular automaton bench-
marks, we manually hoisted some loop-invariant array operations.
LuaJIT already implements this optimization, but Pallene does not
yet. By optimizing it manually, we could obtain a more accurate
comparison of the costs of array reads and writes.

We cannot rely on the C compiler for all optimizations, such as
the loop-invariant code motion we just mentioned. Pallene array
operations may call Lua runtime functions (e.g. to grow the array)
and these function calls inhibit several optimizations at the C level.



SBLP, September 2018, São Carlos, São Paulo, Brazil Hugo Musso Gualandi and Roberto Ierusalimschy

Unlike the C compiler, the Pallene compiler is aware of Pallene’s
semantics in general and array operations in particular; therefore
it is better suited to perform these optimizations.

We also implemented all these benchmarks in C, but using Lua
data structures manipulated through the Lua–C API. This allowed
us to compare how the standard scripting approach with C com-
pares to Pallene, which bypasses the API.

We ran our experiments in a 3.10 GHz Intel Core i5-4440 with
8 GB of RAM and normalized the execution times to the ones of the
reference Lua interpreter (PUC-Lua).We used Lua version 5.4-work1
for the benchmarks.2

We compared Pallene programs with their Lua equivalents, ran
under both the reference Lua implementation and under LuaJIT. In
all benchmarks the only difference between the Lua and Pallene
programs is the presence of type annotations, since we restricted
the Lua programs to the language subset supported by Pallene. The
results are shown as a table in Figure 6 and normalized by the Lua
running time in Figure 7.

The first benchmarks—prime sieve and matrix multiplication—
heavily feature array operations and arithmetic. In both, Pallene and
LuaJIT achieved similar performance, with an order of magnitude
improvement when compared to the reference Lua implementa-
tion. The Lua–C API implementation had much smaller gains. This
shows the costs of using the Lua–C API at this level of granularity
(single access to array elements). The small gain is probably due to
arithmetic being performed in C instead of in dynamically-typed
Lua.

The third benchmark—the N-queens problem—also features ar-
ray operations and arithmetic, but has a larger proportion of arith-
metic compared to array operations. Pallene and LuaJIT performed
as well as they did in the previous two benchmarks. The C-API did
better, due to the heavier weight of arithmetic operations.

In the fourth benchmark—binary search—Pallene ran more than
three times faster than LuaJIT and the Lua–C API implementation.
We can see that the performance of Pallene was similar to the other
benchmarks which indicates that the difference is due to LuaJIT
doing worse on this particular benchmark. The binary search does
many unpredictable branches, which is very bad for trace-based JIT
compilers. This illustrates the unpredictability of JIT compilation
in general and trace-based JIT compilation in particular.

The final benchmark—Conway’s game for life—spends much
time doing string operations and generates a lot of garbage. The
C-API implementation could not obtain a speedup compared to the
reference interpreter and LuaJIT could barely beat it. We suspect
that this is due to recent improvements in the PUC-Lua garbage
collector. (Lua 5.3 takes 150% longer to run than Lua 5.4 .)3 Given
that this benchmark spends so much time in the garbage collector,
Pallene’s 2x speedup seems respectable.

6 RELATEDWORK
JIT compilers answer a popular demand to speed up dynamic pro-
grams without the need to rewrite them in another language. How-
ever, they do not evenly optimize all idioms of the language, which

2The source code for the Pallene compiler and the benchmarks can be found at https:
//github.com/pallene-lang/pallene/releases/tag/sblp2018
3LuaJIT had plans to update its garbage collector but that still hasn’t happened.

Benchmark Lua Lua–C
API LuaJIT Pallene

Sieve 6.641 4.522 1.079 1.054
Matmul 2.502 2.200 0.212 0.263
N Queens 14.276 3.850 1.610 1.500
Binary Search 8.816 2.694 2.991 0.843
Game of Life 2.133 1.990 2.459 1.151

Figure 6: Exact running times for the benchmarks, in sec-
onds.

0.0

0.2

0.4

0.6

0.8

1.0

Sieve
Matmul

N Queens

Binary Search

Game of Life

T
im

e
 (

n
o
rm

a
liz

e
d

)

Lua
Lua–C API

LuaJIT
Pallene

Figure 7: Comparison of Pallene’s performance against Lua,
LuaJIT and the Lua–CAPI. Times are normalized by the Lua
result.

in practice affects programming style, encouraging programmers to
restrict themselves to the optimized subset of the language. Pallene
has chosen to be more transparent about what can be optimized,
and made these restrictions a part of the language.

Like Gradual Typing systems, Pallene recognizes that adding
static types to a dynamic language provides many benefits, such as
safety, documentation, and performance. Pallene is also inspired
by the Gradual Guarantee, which states that the typed subset of
the language should behave exactly as the dynamic language, for
improved interoperability. Unlike many gradually typed systems,
Pallene can only statically type a restricted subset of Lua. This
avoids the complexity and performance challenges that are common
in many gradually typed systems.

Common Lisp is another language that has used optional type
annotations to provide better performance. As said by Paul Graham
in his ANSI Common Lisp Book [8], “Lisp is really two languages:
a language for writing fast programs and a language for writing
programs fast”. Pallene and Common Lisp differ in how their sub-
languages are connected. In Common Lisp, they live together under
the Lisp umbrella, while in Pallene they are segregated, under the
assumption that modules can be written in different languages.

Cython [4] is an extension of Python with C datatypes. It is well
suited for interfacing with C libraries and for numerical computa-
tion, but its type system cannot describe Python types. Cython is

https://github.com/pallene-lang/pallene/releases/tag/sblp2018
https://github.com/pallene-lang/pallene/releases/tag/sblp2018


Pallene: A statically typed companion language for Lua SBLP, September 2018, São Carlos, São Paulo, Brazil

unable to provide large speedups for programs that spend most of
their time operating on Python data structures.

Terra is a low-level system language that is embedded in and
meta-programmed by Lua. Similarly to Pallene, Terra is also focused
on performance and has a syntax that is very similar to Lua, to
make the combination of languages more pleasant to use. However,
while Pallene is intended for applications that use Lua as a scripting
language, Terra is a stage-programming tool. The Terra system
uses Lua to generate Terra programs aimed at high-performance
numerical computation. Once produced, these programs run inde-
pendently of Lua. Terra uses manual memory management and
features low-level C-like datatypes. There are no language features
to aid in interacting with a scripting language at run-time.

7 CONCLUSION AND FUTUREWORK
Our initial results suggest that Pallene’s approach of providing a
statically typed companion language for a dynamically typed script-
ing language is a promising approach for applications and libraries
that seek good performance. It apparently will be able to compete
with LuaJIT as an alternative to speeding up Lua applications. As
we expected, Pallene performs better than the scripting approach.
Moreover, porting a piece of code from Lua to Pallene seems much
easier than porting it to C.

We also want to study the impact of implementing traditional
compiler optimizations such as common sub-expression elimina-
tion and loop invariant code motion. Our current implementation
relies on an underlying C compiler for almost all optimizations, and
our work suggests that implementing some optimizations at the
Pallene level might lead to significant improvements. The C com-
piled cannot be expected to understand the Lua-level abstractions
needed to perform these optimizations.

One question we wish to answer in the future is whether the type
system simplicity and the good performance results we achieved
in the array-based benchmarks will be preserved as we add more
language features, such as records, objects, modules and a foreign
function interface.

ACKNOWLEDGMENTS
We would like to thank Hisham Muhammad, Gabriel Ligneul, Fábio
Mascarenhas, and André Maidl for useful discussions about the
initial ideas behind Pallene. We would also like to thank Sérgio
Medeiros for assisting us with the developement of Pallene’s scan-
ner and parser.

Pallene was born as a fork of the Titan [17] programming lan-
guage, with a focus on researching the performance aspects of
dynamic programming language implementation. Gabriel Ligneul
heavily contributed to current implementation of the Pallene com-
piler.

REFERENCES
[1] Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni, Andrew Paroski,

Brett Simmers, Edwin Smith, and Owen Yamauchi. 2014. The Hiphop Virtual
Machine. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications (OOPSLA ’14). 777–790.
DOI:http://dx.doi.org/10.1145/2660193.2660199

[2] Petka Antonov and others. 2013. V8 Optimization Killers. (2013). https://
github.com/petkaantonov/bluebird/wiki/Optimization-killers Retrieved in 2017-
01-08. Full author list available at https://github.com/petkaantonov/bluebird/

wiki/Optimization-killers/_history.
[3] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and Lau-

rence Tratt. 2017. Virtual MachineWarmup Blows Hot and Cold. In Proceedings of
the 32nd Annual Conference on Object-oriented Programming Systems, Languages,
and Applications (OOPSLA ’17). DOI:http://dx.doi.org/10.1145/3133876

[4] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith. 2011.
Cython: The Best of Both Worlds. Computing in Science Engineering 13, 2 (March
2011), 31–39. DOI:http://dx.doi.org/10.1109/MCSE.2010.118

[5] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. 2009.
Tracing the Meta-level: PyPy’s Tracing JIT Compiler. In Proceedings of the 4th
Workshop on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems (ICOOOLPS ’09). ACM, 18–25. DOI:http:
//dx.doi.org/10.1145/1565824.1565827

[6] L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient Implementation of the
Smalltalk-80 System. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL ’84). ACM, New York, NY, USA,
297–302. DOI:http://dx.doi.org/10.1145/800017.800542

[7] Andreas Gal, Christian W. Probst, and Michael Franz. 2006. HotpathVM: An
Effective JIT Compiler for Resource-constrained Devices. In Proceedings of the
2nd International Conference on Virtual Execution Environments (VEE ’06). New
York, NY, USA, 144–153. DOI:http://dx.doi.org/10.1145/1134760.1134780

[8] Paul Graham. 1996. ANSI Common LISP. Apt, Alan R. http://www.paulgraham.
com/acl.html

[9] Hugo Musso Gualandi. 2015. Typing Dynamic Languages – a Review. M.S. thesis,
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio).

[10] Javier Guerra. 2017. LuaJIT Hacking: Getting next() out of the NYI
list. CloudFare Blog. (Feb. 2017). https://blog.cloudflare.com/
luajit-hacking-getting-next-out-of-the-nyi-list/.

[11] Javier Guerra Giraldez. 2016. LOOM - A LuaJIT performance visualizer. (2016).
https://github.com/cloudflare/loom

[12] Javier Guerra Giraldez. 2017. The Rocky Road to MCode. Talk at Lua Moscow
conference, 2017. (2017). https://www.youtube.com/watch?v=sz2CuDpltmM

[13] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. 2007.
The Evolution of Lua. In Proceedings of the Third ACM SIGPLAN Conference
on History of Programming Languages (HOPL III). ACM, New York, NY, USA,
2–1–2–26. DOI:http://dx.doi.org/10.1145/1238844.1238846

[14] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar Celes. 2011.
Passing a Language Through the Eye of a Needle. Commun. ACM 54, 7 (July
2011), 38–43. DOI:http://dx.doi.org/10.1145/1965724.1965739

[15] Baker J., Cunei A., Kalibera T., Pizlo F., and Vitek J. 2009. Accurate garbage col-
lection in uncooperative environments revisited. Concurrency and Computation:
Practice and Experience 21, 12 (2009), 1572–1606. DOI:http://dx.doi.org/10.1002/
cpe.1391

[16] André Murbach Maidl, Fabio Mascarenhas, and Roberto Ierusalimschy. 2015. A
Formalization of Typed Lua. In Proceedings of the 11th Symposium on Dynamic
Languages (DLS 2015). ACM, New York, NY, USA, 13–25. DOI:http://dx.doi.org/
10.1145/2816707.2816709

[17] André Murbach Maidl, Fábio Mascarenhas, Gabriel Ligneul, Hisham Muham-
mad, and Hugo Musso Gualandi. 2018. Source code repository for the Titan
programming language. (2018). https://github.com/titan-lang/titan

[18] Bret Mogilefsky. 1999. Lua in Grim Fandango. Grim Fandango Network. (May
1999). https://www.grimfandango.net/features/articles/lua-in-grim-fandango.

[19] John K. Ousterhout. 1998. Scripting: Higher-Level Programming for the 21st
Century. Computer 31, 3 (March 1998), 23–30. DOI:http://dx.doi.org/10.1109/2.
660187

[20] Mike Pall. 2005. LuaJIT, a Just-In-Time Compiler for Lua. (2005). http://luajit.
org/luajit.html http://luajit.org/luajit.html.

[21] Mike Pall. 2012. LUAJIT performance tips. lua-l mailing list. (nov 2012). http:
//wiki.luajit.org/Numerical-Computing-Performance-Guide http://wiki.luajit.
org/Numerical-Computing-Performance-Guide.

[22] Mike Pall and others. 2014. Not Yet Implemented operations in LuaJIT. LuaJIT
documentation Wiki. (2014). http://wiki.luajit.org/NYI Retrieved 2017-01-08. Full
author list available at http://wiki.luajit.org/history/NYI.

[23] Armin Rigo, Michael Hudson, and Samuele Pedroni. 2005. Compiling Dy-
namic Language Implementations. Tech. rep., Heinrich-Heine-Universität Düssel-
dorf. https://bitbucket.org/pypy/extradoc/raw/tip/eu-report/D05.1_Publish_on_
translating_a_very-high-level_description.pdf

[24] JeremyG. Siek, MichaelM. Vitousek, Matteo Cimini, and John Tang Boyland. 2015.
Refined Criteria for Gradual Typing. In 1st Summit on Advances in Programming
Languages (SNAPL ’2015). Asilomar, California, USA, 274–293. DOI:http://dx.doi.
org/10.4230/LIPIcs.SNAPL.2015.274

[25] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and
Matthias Felleisen. 2016. Is Sound Gradual Typing Dead?. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16). 456–468. DOI:http://dx.doi.org/10.1145/2837614.2837630

[26] The Chromium Project. 2008. The Chrome V8 Engine. (2008). https://developers.
google.com/v8/ Retrieved 2017-01-08.

[27] Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Migration:

http://dx.doi.org/10.1145/2660193.2660199
https://github.com/petkaantonov/bluebird/wiki/Optimization-killers
https://github.com/petkaantonov/bluebird/wiki/Optimization-killers
https://github.com/petkaantonov/bluebird/wiki/Optimization-killers/_history
https://github.com/petkaantonov/bluebird/wiki/Optimization-killers/_history
http://dx.doi.org/10.1145/3133876
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1145/1565824.1565827
http://dx.doi.org/10.1145/1565824.1565827
http://dx.doi.org/10.1145/800017.800542
http://dx.doi.org/10.1145/1134760.1134780
http://www.paulgraham.com/acl.html
http://www.paulgraham.com/acl.html
https://blog.cloudflare.com/luajit-hacking-getting-next-out-of-the-nyi-list/
https://blog.cloudflare.com/luajit-hacking-getting-next-out-of-the-nyi-list/
https://github.com/cloudflare/loom
https://www.youtube.com/watch?v=sz2CuDpltmM
http://dx.doi.org/10.1145/1238844.1238846
http://dx.doi.org/10.1145/1965724.1965739
http://dx.doi.org/10.1002/cpe.1391
http://dx.doi.org/10.1002/cpe.1391
http://dx.doi.org/10.1145/2816707.2816709
http://dx.doi.org/10.1145/2816707.2816709
https://github.com/titan-lang/titan
https://www.grimfandango.net/features/articles/lua-in-grim-fandango
http://dx.doi.org/10.1109/2.660187
http://dx.doi.org/10.1109/2.660187
http://luajit.org/luajit.html
http://luajit.org/luajit.html
http://luajit.org/luajit.html
http://wiki.luajit.org/Numerical-Computing-Performance-Guide
http://wiki.luajit.org/Numerical-Computing-Performance-Guide
http://wiki.luajit.org/Numerical-Computing-Performance-Guide
http://wiki.luajit.org/Numerical-Computing-Performance-Guide
http://wiki.luajit.org/NYI
http://wiki.luajit.org/history/NYI
https://bitbucket.org/pypy/extradoc/raw/tip/eu-report/D05.1_Publish_on_translating_a_very-high-level_description.pdf
https://bitbucket.org/pypy/extradoc/raw/tip/eu-report/D05.1_Publish_on_translating_a_very-high-level_description.pdf
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.274
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.274
http://dx.doi.org/10.1145/2837614.2837630
https://developers.google.com/v8/
https://developers.google.com/v8/


SBLP, September 2018, São Carlos, São Paulo, Brazil Hugo Musso Gualandi and Roberto Ierusalimschy

From Scripts to Programs. In Companion to the 21st ACM SIGPLAN Symposium
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA
’06). ACM, New York, NY, USA, 964–974. DOI:http://dx.doi.org/10.1145/1176617.
1176755

[28] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014.
Design and Evaluation of Gradual Typing for Python. In Proceedings of the 10th
ACM Symposium on Dynamic Languages (DLS ’14). ACM, New York, NY, USA,
45–56. DOI:http://dx.doi.org/10.1145/2661088.2661101

[29] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule ThemAll. In Proceedings of the 2013 ACM International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming & Software
(Onward! 2013). 187–204. DOI:http://dx.doi.org/10.1145/2509578.2509581

http://dx.doi.org/10.1145/1176617.1176755
http://dx.doi.org/10.1145/1176617.1176755
http://dx.doi.org/10.1145/2661088.2661101
http://dx.doi.org/10.1145/2509578.2509581

	Abstract
	1 Introduction
	2 Optimizing Scripting Languages
	2.1 Scripting
	2.2 JIT Compilers
	2.3 Optional Types

	3 The Pallene Programming Language
	4 Implementing Pallene
	5 Performance Evaluation
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

