
Eliminating Cycles in Weak Tables

Alexandra Barros
(Pontifical Catholic University of Rio de Janeiro

alexandra.barros@gmail.com)

Roberto Ierusalimschy
(Pontifical Catholic University of Rio de Janeiro

roberto@inf.puc-rio.br)

Abstract: Weak References constitute an elegant mechanism for an application to
interact with its garbage collector. In most of its typical uses, weak references are
used through weak tables (e.g., Java’s WeakHashMap). However, most implementations
of weak tables have a severe limitation: Cyclic references between keys and values in
weak tables prevent the elements inside a cycle from being collected, even if they are
no longer reachable from outside. This ends up bringing difficulties to the use of weak
tables in some kinds of applications.

In this work, we present our approach for overcoming this problem in the context of the
Lua programming language. Our approach consists of an adaptation of the ephemerons
mechanism to tables. We modified the garbage collector of the Lua virtual machine in
order to offer support to this mechanism. With this adapted garbage collector we could
verify the efficiency and effectiveness of the implementation in solving the problem of
cycles on weak tables in Lua.
Key Words: Garbage collection, weak tables, weak references
Category: D.3.3

1 Introduction

Programming languages with automatic memory management usually offer an
interface between the client program and the garbage collector. This interface
consists of mechanisms that allow the client program to interact with the garbage
collector and is typically represented by finalizers [Atkins and Nackman 1988,
Boehm 2003, Dybvig et al. 1993, Hayes 1992] and weak references [Leal 2005].

A finalizer is a special method executed automatically by the garbage collec-
tor before recycling the memory occupied by an object. Such methods are used
in many activities, including managing of object caches and releasing resources
provided by servers and other programs. Finalizers have an asynchronous nature.
Bloch [Bloch 2001] says that finalizers are unpredictable, frequently dangerous
and unnecessary, and have a negative impact on the programs performance. How-
ever, Boehm [Boehm 2003] argues that the use of finalizers is essential in some
cases and its asynchronism does not necessarily leads to unsound programs.

A weak reference is a reference that doesn’t protect an object from being col-
lected by the garbage collector. Many programming languages with garbage col-



lection, at least since the 80s, offer some support to weak references [PARC 1985,
Rees et al. 1984]. Amongst other applications, weak references can be used as a
finalization mechanism, avoiding many problems associated with traditional fi-
nalizers. Depending on the programing language and on the way the garbage
collection management is done, the support to finalizers may even become un-
necessary.

The increasing importance of weak references motivated our search for a
solution for one critical problem: cycles in weak tables. A typical example of
this problem occurs with property tables. Frequently, we want to add properties
to an object dynamically and independently from its class attributes. A very
common approach is to use a property table. In a property table, a reference
to an object is inserted as the search key, and the value associated to this key
specifies extra properties. However, if all references in the property table were
ordinary, the simple fact of inserting a new key/value pair would prevent the
collection of the object referred by the key. The best way to solve this problem
is with weak tables, which is a data structure implemented via weak references. A
weak table comprises weak pairs where the first element, the key, is maintained
by a weak reference and the second element, the value, is maintained by an
ordinary reference. This way, adding a property to an object does not prevent
its collection.

However, the problem with cycles in weak tables still occurs in most pro-
gramming languages: the existence of cyclic references between keys and values
prevents the elements in the cycle from being collected, even if the client pro-
gram does not have other references to them. A frequent scenario for these
cycles consists of a value that refers to its own key. For example, a property ta-
ble (implemented using a weak table) may associate functions to their respective
modules, so that it can say to which module a given function belongs to. As each
module refers back to all its functions, no key or value in this property table will
ever be collected. This ends up causing a relevant waste of memory and imposes
difficulties in the use of weak tables. This problem can be found, for example,
in programming languages like Java[SUN 2006] and Lua [Ierusalimschy 2006].
Through Lua’s discussion list we could observe frequent complaints related to
this problem.

A solution to this problem can be found in a mechanism called emphemerons,
presented by Hayes [Hayes 1997]. Jones [Jones et al. 1999] independently devel-
oped a similar solution for the Haskell [Glasgow 2007] programming language,
containing the same core idea as the ephemerons mechanism.

Based on the success obtained in Haskell, we designed and implemented an
adaptation of this mechanism for Lua. As a starting point, we studied care-
fully the algorithm described in the work of Hayes [Hayes 1997]. As we studied
this mechanism we were curious about why it is not implemented in most pro-



gramming languages and what is the impact of implementing it. Afterwards, we
developed an adaptation for the Lua garbage collector in order to measure this
impact. Our aim is to show that the problem of cycles in weak tables can be
easily solved for Lua by the incorporation of ephemerons. And by doing so, we
are able to improve the weak reference mechanism.

2 Weak Tables

Weak tables are data structures that consists of weak pairs. In a weak pair, the
first element (the key) is kept by a weak reference while the second element (the
value) is kept by and ordinary reference. In the Java programming language, a
weak table is implemented by the class WeakHashMap, using weak references. In
Lua, a weak table is a primitive mechanism (which can be used to implement
regular weak references when needed). However, in Lua, we can construct not
just weak tables containing weak pairs but also weak tables with strong keys
and weak values or both weak keys and values.

In Lua, each table has a metatable that controls its behavior. Each field in
the metatable controls a specific aspect of the table. The field mode is a string
that controls the weakness of the table. If this string contains the character ‘k’,
the keys are weak; if it contains the character ‘v’, the values are weak; and if that
string contains both ‘k’ and ‘v’, both keys and values are weak. Code 1 shows
how to create a weak table consisting of weak pairs in Lua.

Code 1 Creating a weak table in Lua.

a = {} -- a regular table
b = {} -- its metatable
setmetatable(a, b)
b.__mode = "k" -- makes ’a’ weak

Most of weak references’ typical uses involve weak tables. From weak refer-
ences’ (and weak tables’) most relevant applications, we highlight the following:

– Collection of cyclic data structures - Pure reference-counting garbage
collectors are unable to reclaim cyclic data structures. According to Brown-
bridge [Brownbridge 1985], this deficiency was the initial motivation for the
development of weak references. It can be easily overcome by replacing or-
dinary references with weak ones in a way that every cycle has at least one
weak reference. With the advent of tracing garbage collectors this use is
becoming obsolete.



– Cache - Applications that make frequent use of large data structures may
improve their performance significantly by keeping these structures resident
in memory. However, this can lead to fast memory exhaustion. Weak tables
provide a simple solution to implement automatically managed caches that
preserve data only as long as memory is not scarce.

According to the literature [Ierusalimschy 2006, Jones et al. 1999], a com-
mon use of caches are memoized functions. The computational effort neces-
sary to process a complex function can be significantly reduced by saving
its results. When the function is reinvoked with the same argument, it just
returns the saved value. In a long running application the storage used by
memoized functions can grow to prohibitive levels. The use of weak tables
in this case can transparently preserve the most recently (and probably the
most frequently) accessed values without compromising memory availability.

– Weak sets - Weak sets can be understood as a set of objects whose perti-
nence to this set does not lead to a reference to the object. Weak sets can be
used as an implementation solution whenever objects must be processed as
a group, but without interfering with their life cycles. A common example is
the Observer design pattern, which defines a one-to-many dependency be-
tween objects so that when one object changes state, all its dependents are
notified and updated automatically [Gamma et al. 1995]. This notification is
done by the observed object that needs to know its observers. In a loosely
coupled application, these references must not prevent the observers collec-
tion. The use of a weak table to keep the set of observers does not protect
them from being collected.

– Finalization - Weak references extended with a notification mechanism can
be employed to inform a client program that an object was collected, eventu-
ally executing routines associated with such events. This is called container-
based finalization and contrasts with class instance finalizers, which imple-
ment object-oriented finalization [Hayes 1997, Jones et al. 1999].

– Property tables - Weak tables can be used to add arbitrary properties
to an object, i.e., they can represent property tables. The benefit of using
weak tables to represent a property table relies on the fact that, in most
cases, adding a property to an object should not modify the time of its
collection. For example, consider the table in Figure 1. In this table, each
key has a weak reference to an object, and each respective value has an
ordinary reference to the extra properties of this object. If references from
keys to objects were ordinary, the simple fact of inserting a new key/value
pair in the table would prevent the collection of the object referenced by the
key. When the references from keys to objects are weak, the objects can be
collected as soon as they are no longer used by the client program.



Figure 1: A property table

Ideally, a key/value pair in a weak table must be kept only as long as its key
is reachable, directly or indirectly, from some place outside the table. (A key is
directly reachable if it is referred by some outside object. It is indirectly reachable
if it is referred by some value whose key is directly or indirectly reachable.)
However, most programming languages’ implementations do not present this
behavior. A problem occurs when the value part of some entry has a direct or
indirect reference to a key, forming a cycle inside its table or a cycle between
elements of different weak tables. The table depicted in Figure 2 shows this
problem. Due to the self-reference of element 1 (value points to its key) and to
the cycle created by elements 2 and 3, the objects referenced by these elements
will never be collected. Even when there are no cycles, the collection of objects
can take more time than expected. Consider the elements 4 and 5, where the
value of element 4 has a reference to the key of element 5. Generally, the garbage
collector is able to remove element 5 only in a cycle subsequent to the one where
element 4 was removed. A weak table with a chaining of n elements will take at
least n cycles to be entirely collected. One may think that changing the values
from strong to weak will help, but this is not correct. Consider a property table
and an object that exists only as a value in this table. If the reference from the
value to the object is weak, this means that the object can be collected. However,
the corresponding key may be active and the search for the value (object) using
the key is still possible.

Cycles can also appear, for example, when a weak table is used as a cache that
handles memoized functions. Suppose we want to create constant functions: given
a value, create a function that always returns this value. An implementation for
this function, in Lua, could be:

function K (x)
return function () return x end

end

If we want to memoize this function (so that it’s not necessary to recreate
this function for an already treated value), we need a table mapping x (the key)



to K(x) (the value). Notice that the value is a function that contains a reference
to x. This way, neither the key nor the value will ever be collected.

Figure 2: Problems with weak pairs.

Programming languages like Java and Lua face the problem of cycles in weak
tables. In Java’s WeakHashMap API there is an implementation note stating that
“care should be taken to ensure that value objects do not strongly refer to their
own keys, either directly or indirectly, since that will prevent the keys from being
discarded” [SUN 2006].

3 Ephemerons

An interesting solution to the problem of cycles in weak tables, first presented by
Hayes [Hayes 1997], is the use of ephemerons instead of weak pairs. Ephemerons
are a refinement of weak pairs where neither the key nor the value can be classi-
fied as weak or strong. The connectivity of the key determines the connectivity
of the value, but the connectivity of the value does not affect the connectiv-
ity of the key. According to Hayes, when the garbage collection offers support
to ephemerons, it occurs in three phases instead of two (mark and sweep). We
consider next the first and second phases, as they are the most relevant for our
work. Details of the third phase can be found in the work of Hayes [Hayes 1997].

In the first phase, the graph of objects is traced, following the references
among them. Whenever an ephemeron is found, instead of tracing the fields of
the ephemeron, the collector inserts the ephemeron in a queue to be processed
later. The ephemerons in this queue may or may not contain reachable entries.

In the second phase, the collector scans the queue of ephemerons. When the
key of an ephemeron has already been reached the corresponding value is traced
- if the key is reachable then some part of the program may ask for the value. Any
ephemeron whose key has not been reached may or may not contain a reachable
value; these ephemerons are kept in the queue for future inspection. Now we
have two group of ephemerons, those who have reachable keys and those who



have not. The first group is traced in the same way any other non-ephemeron
object group would be. Because the key has been reached, and traced, only the
value need to be traced. However, the values can contain references to keys of
some ephemerons still in the queue, what will make these keys reachable. When
such a thing happens, the queue needs to be inspected again. Besides that, extra
ephemerons can be found. In this case, they are inserted into the queue.

This procedure continues until the queue has only ephemerons whose keys
has not yet been reached. When the queue converges to such a set, the collector
can recycle the memory occupied by these ephemerons. A pseudo-code for the
second phase’s algorithm is presented in Code 2.

Code 2 Second phase of the ephemeron’s collection algorithm
1: while TRUE do
2: for all e ∈ ephemeron-queue do
3: if key(e) is marked then
4: put(reachable-value, e)
5: else
6: put(unreachable-value, e)
7: end if
8: end for
9: ephemeron-queue ⇐ unreachable-value

10: if reachable-value is not empty then
11: for all e ∈ reachable-value do
12: trace(value(e))
13: end for
14: make-empty(reachable-value)
15: else
16: return
17: end if
18: end while

The Haskell programing language defines a semantics for weak references
based on key/value pairs that is similar to ephemerons. Our work shows that it
is also possible to easily incorporate ephemerons to the present implementation
of the Lua programing language. This is done by modifying a small part of the
garbage collection algorithm. The next section describes how we implemented
the ephemerons mechanism and measured its efficiency and effectiveness.



4 Eliminating Cycles

As we saw in Section 2, most weak references’ uses involve weak tables. However,
the problem of cycles imposes an obstacle in the use of weak tables, as it can
cause loss of memory or a delay in the memory’s recycling. Although not well
known in the programming languages community, the ephemerons mechanism is
a very reasonable solution for this problem. Therefore, we decided to adapt Lua’s
garbage collection algorithm to offer support to this mechanism, measuring the
impact of doing so.

Basically, an ephemeron consists of a key/value pair; these pairs are not nec-
essarily stored in a table. However, because we need ephemerons whenever facing
cycles in weak tables, it is reasonable to think about ephemerons tables instead
of individual key/value pairs. Ephemerons tables is a good way of implementing
ephemerons in Lua because a table is Lua’s main data structure and because Lua
offers support to weak references via weak tables. In our approach, a weak table
with weak keys and strong values is an ephemerons table. Instead of including
a new type of table, we simply changed the garbage collection algorithm. That
way, in the new implementation, to create an ephemerons table, you just need
to create a weak table with weak keys and strong value in the usual way. Section
shows an efficiency measurement between the old implementation of this kind of
weak table and the new implementation, where it means an ephemerons table.

Now let us see how it works. Code 3 shows a simple cycle being created inside
table et, an ephemerons table. In this cycle, the first entry’s value has a reference
to the second entry’s key. This cycle would never be collected if a weak table
with weak keys was used. After creating the cycle, there is a explicitly call for
the garbage collection. Because we are using an ephemerons table, the cycle will
be collected and, at the end of the execution, the value of the variable count
will be zero.

4.1 Implementation

Before discussing the implementation, we will take some time to describe the
Lua garbage collector.

The Lua garbage collector implements the tricolor marking incremental algo-
rithm [Dijkstra et al. 1978]. This algorithm interleaves the tracing phase, when
(non)garbage is detected, with the programs execution 1. In the tricolor mark-
ing algorithm, the collector can be described as a process that traces the objects
assigning colors to them. In the beginning, all objects are colored white. As the
collector traces the graph of references, it assigns black to each object traced.
1 For more information on garbage collection algorithms and techniques refer to the

work of Wilson [Wilson 1992].



Code 3 Example of how an ephemerons table works.
et = {}
mt = {}
setmetatable(et, mt)
-- sets the table to be an ephemerons table,
-- in the new implementation.
mt.__mode = "k"

a = {}
b = {}
et[a] = b
et[b] = a
a = nil
b = nil
collectgarbage()
count = 0
for k,v in pairs(et) do
count = count + 1
end
print(count) -- 0

By the end of the collection, the objects accessible to the program must be col-
ored black, and all white objects are removed. However, because the program’s
and the garbage collector’s executions are interleaved, we also need to consider
the intermediate phases. Furthermore, the program cannot be allowed to change
the graph of references in a way that the collector will fail to find all reachable
objects. To prevent this, the tricolor marking algorithm uses a third color, grey,
to represent reached objects whose descendants may not have been traced yet.
This way, whenever an object is found during tracing, it is colored grey. When
all descendants are traced the object is colored black. Intuitively, the tracing
proceeds in a wavefront of grey objects which separates white (unreached) ob-
jects from black ones, with an invariant that a black object never refers a white
one. However, the program can still need to create a pointer from a black to a
white object, which violates the invariant. To prevent this, the collector uses a
write barrier : whenever the program attempts to write a reference to a white
object into a black object, either the origin changes (from black) to gray or the
destination changes (from white) to gray.

The Lua garbage collection is divided in four phases. In the first phase,
the collector traces the graph of references coloring the objects. This phase is
interleaved with the program’s execution. The second phase is called the atomic



phase, when several operations are executed in a single step - some garbage
collector’s operations cannot be interleaved with the program’s execution (e.g.,
the clearing of weak tables). In the third phase, also incremental, the collector
frees the memory occupied by white objects. Finally, in the fourth phase, the
finalizers are called interleaved with the program’s execution. To simplify the
understanding of the garbage collector’s behavior, we will consider two phases
in our discussion: an atomic phase, consisting of the former second phase, and a
non-atomic phase, consisting of the first, third and fourth phases.

In the ephemerons’ collection algorithm, the garbage collector first traces the
graph of objects. When it finds an ephemeron, instead of immediately tracing the
ephemeron’s fields, the garbage collector inserts this ephemeron in a queue to be
processed later and carries on the tracing phase. In our case, we needed a data
structure to represent a queue of ephemerons table. The original implementation
of the Lua garbage collector has one single data structure to store all three kinds
of weak tables, the list weak. In our implementation of the garbage collector, this
list was divided into three separate lists, one for each kind of weak table. The list
that stores weak tables with only weak keys is called ephemeron, as all tables
of this kind signify an ephemerons table. This way, during the tracing phase,
whenever the garbage collector finds a ephemerons table it inserts this table into
the list ephemeron.

We added new actions to the garbage collector’s phases in order to implement
the ephemerons mechanism. First, as described earlier, whenever an ephemerons
table is found it is enlisted in ephemeron. The entries from the ephemerons tables
are not traced, neither the keys nor the values. (Remember that each key/value
pair represents one ephemeron in the original mechanism.) This is all that was
added to the first phase.

Afterwards, the collector enters the atomic phase, when several operations
are executed in a single step. We implemented two new functions for this phase:
traverseephemeron, that traces the list ephemeron, and convergeephemerons,
that calls the first function in order to converge the list ephemeron. A pseudo-
code for these functions can be found in Code 4. The function traverseepheme-
ron traces all the entries from an ephemerons table. If some entry’s key is marked,
meaning that it was reached, the corresponding value is marked. The function
traverseephemeron returns a boolean value, defined by the variable b in Code 4.
This boolean is true if any value from the ephemerons table has been marked,
and false otherwise.

The function convergeephemerons calls traverseephemeron. If this func-
tion returns true, i.e., if some value has been marked, the former calls a function
from the collector’s original implementation, propagateall. This function was
not modified. Its responsibility is to trace the program’s graph of references
and, according to the tricolor marking algorithm, to expand the barrier of grey



objects. Note that, in the previous execution of traverseephemeron, values in
an ephemerons table were marked. Therefore, propagateall will mark objects
referenced directly or indirectly by these values. Because these new marked ob-
jects may refer to keys in ephemerons tables, the function convergeephemerons
calls again traverseephemeron. When no value is marked, traverseephemeron
returns false. If after tracing all ephemerons tables no value was marked, then
convergeephemerons terminates its execution. The functions convergeepheme-
rons and traverseephemeronadapt the second phase of the original ephemerons
mechanism to the Lua garbage collector.

Code 4 Pseudo-code for convergeephemerons and traversephemeron

function convergeephemerons(ephemeron)
1: while TRUE do
2: changed ⇐ FALSE
3: for all e ∈ ephemeron do
4: if traverseephemeron(e) then
5: changed ⇐ TRUE
6: propagateall(...)
7: end if
8: end for
9: if not changed then

10: break
11: end if
12: end while

function traverseephemeron(e)
1: b ⇐ FALSE
2: for all pair ∈ hash(e) do
3: if key(pair) is marked then
4: mark the value
5: b ⇐ TRUE
6: end if
7: end for
8: return b

After the execution of convergeephemerons, and still in the atomic phase,
the collector calls the function cleartable — as propagateall, this function
also belongs to the collector’s original implementation. The function cleartable
removes unreachable entries from weak tables, including ephemerons tables which
are weak tables with weak keys and strong values. Finally, the collector proceeds



to its last phase, when it deallocates memory and executes the finalizers. This
phase was not modified.

5 Efficiency Analysis

In this section we analyze the collection of ephemerons tables and the collection
of weak tables with only weak keys, as it was implemented in the original garbage
collector.

Consider a program A that creates Ke ephemerons tables, and a program
B that creates Kf weak tables. Program A uses the adapted garbage collector,
where weak tables with weak keys and strong values signify ephemerons tables,
and program B uses the original garbage collector. Suppose every ephemerons
table in A has eh entries in its hash part and ea entries in its array part 2. Also
suppose that every weak table in B has fh entries in its hash part and fa entries
in its array part. And consider en = ea + eh and fn = fa + fh.

When dealing with ephemerons tables or weak tables, some garbage collection
functions are crucial to the collection’s performance. In the adapted garbage
collector, these function are:

– traversetable: traces a table marking its keys and values;

– traverseephemeron: trace an ephemerons tables marking the values whose
respective keys were previously reached;

– cleartable: removes the entries from ephemerons tables and weak tables
that were not reached during the tracing phase.

From these functions, only traversetable is executed in the non-atomic
phase. This function is executed once for each ordinary, weak tables with only
weak values, or ephemerons table. When the table is a ephemerons table, traver-
setable pass the control to traverseephemeron. This last function has two
loops, one to iterate over the array part and another to iterate over the hash
part of the table. Because all numeric keys are strong, all the values in the array
part are marked. In the hash part, whenever a key is marked, the value is marked,
but the value is not traced. The cost of traversetable for program A is O(en).
The difference between the adapted and the original garbage collector is that in
the later there is no traverseephemeron function and traversetable traces all
tables. This way, the cost of traversetable for program B is O(fn).

After tracing weak tables and ephemerons tables, the atomic phase of the
new garbage collector executes convergeephemerons, which continuously call
traverseephemeron until no value is marked. Now we need to consider the best
2 Each table in Lua has two parts: an array part indexed by natural numbers, and a

hash part indexed by other objects.



and worst case of convergeephemerons. In the best case, there are no values
pointing directly or indirectly to keys in an ephemerons table. In that case, there
are up to two iterations over the list ephemeron: one to mark the values whose
keys have been reached and a second iteration in case some value was marked
in the first one. The cost of convergeephemerons in the best case (for program
A) is O(Ke × en).

The worst case happens when there is a key-value chain. The first example
of this kind of chaining is depicted in Figure 3. Suppose the client program has
a strong reference to the first value from the first ephemerons table. Note that a
value from each ephemerons table points to the key of the next table, forming a
chain. In this case, the loop in convergeephemerons is executed Ke + 1 times:
one time to mark each value and one last time that modifies nothing. In this
example of worst case the cost of convergeephemerons is O(K2

e + (Ke × en)).

Figure 3: Chaining between tables.

Another example of worst case is depicted in Figure 4, where the keys and
values from the same table are chained. The loop in convergeephemerons will
be executed (2× eh)+1 times: one time to mark each value and a last time that
modifies nothing. This way, the cost of convergeephemerons is O(e2

n+(Ke×en)).
The function cleartable has the same behavior in both implementations.

This function’s cost is O(Ke×(en)) for program A and O(Kf ×(fn)) for program



Figure 4: Chaining between keys and values.

B. As a result, the collection’s cost for ephemerons tables in program A is O(Ke×
(en)) in the best case and O(Kf × (fn)) in program B. Consider programs A
and B identical, with the exception that A uses the adapted garbage collector.
In this case, the collection’s cost for each program is the same.

However, in both example of worst case, the collection’s cost for program A is
quadratic. To be more precise, for the case in Figure 3, the cost is O(Ke × (en)),
and for the case in Figure 4 the cost is O(eh × (en)). The occurrence of chaining
between tables or keys and values are rare, but when it happens can affect the
efficiency significantly. Because program B uses the original garbage collector,
it remains linear. However, notice that cycles in weak tables are not collected in
B, possibly causing memory loss (that can be much worse than efficiency loss).

5.1 Efficiency Measurements

We executed two tests in order to measure the efficiency of the extended garbage
collector. The first test compares the collection of ephemerons tables without cy-
cles (or chaining) and ephemerons tables with chaining, as shown in Figure 3.
We started with different amounts of ephemerons tables without cycles, ranging
from 100 to 1000 tables. Each table had 500 entries. After executing the test for
ephemerons tables without cycles, we created the same amounts of ephemerons
tables with chaining and tested the collection of them. Therefore, we could com-
pare the best and worst case’s execution time. The result is depicted in Figure 5.
As expected, the curve representing the ephemerons tables with chaining is sim-
ilar to a quadratic function’s curve. The garbage collector’s efficiency is highly
affected in the worst case. However, because we are using ephemerons tables and
not weak tables, all cycles are collected.

The purpose of the second test is to compare the efficiency of the adapted
garbage collector with the efficiency of the original one. This time, the weak
tables with only weak keys, considered as ephemerons tables in the adapted
garbage collector, have no cyles. This test was executed for the same amounts
of tables used in the first test, at first just with weak tables (original implemen-
tation) and then just with ephemerons tables (adapted implementation). The



0 100 200 300 400 500 600 700 800 900 1000

2

4

6

8

10

12

14

16

18

20

22

24

26
seconds

Amount of tables

0,05
2,47

21,43

26,37

0,3

17,03

4,37

1,11

6,75

9,68

13,12

ephemerons tables
without cycles, best case

0,11 0,16 0,360,310,260,21 0,540,470,42

ephemerons tables
with cycles, worst case

Figure 5: Collection of ephemerons tables: worst case x best case

result is depicted in Figure 6. Notice that there is almost no difference between
the time for collecting ephemerons table without cycles and the time for col-
lecting weak tables. We believe that the better result for collecting ephemerons
tables is due to some noise in the test’s execution, and not to a greater efficiency
in the ephemerons tables’ collection. We can conclude that, in the lack of cycles,
our implementation of the ephemerons mechanism is as efficient as the weak
tables’ implementation.
6 Conclusion

Weak tables constitute a good way of implementing weak references. In fact,
most weak references’ uses, such as property tables, weak sets, and caches, in-
volve weak tables. However, the problem of cycles in weak tables yet persists in
most programming languages. This can cause loss of memory or a delay in mem-
ory recycling. Although not well known among programmers, the ephemerons
mechanism is a very reasonable solution for this problem.

Because ephemerons are necessary only in the context of weak tables, we
think it is more reasonable to think about ephemerons tables instead of inde-
pendent key/value pairs. We could easily implement an adaptation of the original
ephemerons mechanism, using ephemerons tables, in the Lua garbage collector.
In the absence of cycles, our implementation is as efficient as the weak tables’
implementation. And when cycles do exist, an ephemerons table is able to collect
them. To conclude, we think that this mechanism can be easily implemented in
any programing language, as it was done with Lua.



0 100 200 300 400 500 600 700 800 900 1000

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

Amount of tables

0,05

0,17

0,52

0,57

0,05

0,47

0,23

0,11

0,29

0,34

0,40

weak tables
ephemerons 

0,11

0,16

0,36

0,31

0,26

0,21

0,47

0,42

seconds

0,54

Figure 6: Collection of weak tables x collection of ephemerons tables

7 Acknowledgments

We would like to thank the reviewers for their valuable suggestions.

References

[Atkins and Nackman 1988] Atkins, M. C., Nackman, L. R.: “The Active Deallocation
of Objects in Object-Oriented System”; Software: Practice and Experience, 18, 11
(1988), 1073-1089.

[Boehm 2003] Boehm, H.: “Destructors, Finalizers, and Synchronization”; Proc. of
the 30th ACM SIGPLAN-SIGACT symposium on Principles of Programming Lan-
guages (2003), 262-272.

[Dybvig et al. 1993] Dybvig, R. K., Bruggeman, C., Eby, D.: “Guardians in a
Generation-based Garbage Collector”; Proc. of the ACM SIGPLAN ’93 Conference
on Programming Language Design and Implementation (1994), 207–216.

[Hayes 1992] Hayes, B.: “Finalization in the Collector Interface”; Proc. of the ’92 In-
ternational Workshop on Memory Management, London (1992), 277–298.

[Leal 2005] Legal, M. A.: “Finalizadores e Referências Fracas: Interagindo com o Co-
letor de Lixo”; PhD thesis, Informatics Department, Pontifical Catholic University
of Rio de Janeiro (2005).

[Bloch 2001] Bloch, J.: “Effective Java Programming Language Guide”; Prentice Hall,
first edition (June 2001).

[PARC 1985] Xerox Palo Alto Research Center (PARC): “InterLISP Reference Man-
ual”; Palo Alto, CA (October 1985).

[Rees et al. 1984] Rees, J. A., Adms, N. I., Meehan, J. R.: “The T Manual”; Yale
University, Computer Science Department, fourth edition (January 1984).

[SUN 2006] Sun Microsystems: “JavaTM Plataform Standard Edition 6.0: API Speci-
fication”; (2006).



[Ierusalimschy 2006] Ierusalimschy, R.: “Programming in Lua”; Lua.org, second edi-
tion (2006).

[Hayes 1997] Hayes, B.: “Ephemerons: a New Finalization Mechanism”; In Proc. of
the 12th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, New York, NY (1997), 176–183.

[Jones et al. 1999] Jones, S. P., Marlow, S., Elliott, C.: “Stretching the Storage Man-
ager: Weak Pointers and Stable Names in haskell”; Lect. Notes Comp. Sci. 1868,
Springer (1999), 37-58.

[Glasgow 2007] The Glasgow Haskell Compiler user’s guide, version 6.2; http://www.
haskell.org/ghc, last viewed in April 2nd, 2007.

[Brownbridge 1985] Brownbridge, D. R.: “Cyclic Reference Counting for Combinator
Machines”; Proc. of the ACM Conference on Functional Programming Languages
and Computer Architecture, New York, NY (1985), 273–288.

[Gamma et al. 1995] Gamma, E., Helm, R., Johnson, R., Vlissides, J.:“Design Pat-
terns: Elements of Reusable Objetct-Oriented Software”; Addison Wesley (1995).

[Dijkstra et al. 1978] Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, C. S.,
Steffens, E. F. M.: “On-the-fly Garbage Collection: An Exercise in Cooperation”;
Communications of the ACM, 21, 11 (November 1978, 966-975.

[Wilson 1992] Wilson, P. R.: “Uniprocessor Garbage Collection Techniques”; Proc.
of the 1992 International Workshop on Memory Management, Saint-Malo, France
(1992), 1-42.


