
A Parsing Machine for PEGs

Sérgio Medeiros
∗

smedeiros@inf.puc-rio.br
Roberto Ierusalimschy
roberto@inf.puc-rio.br

Department of Computer Science
PUC-Rio, Rio de Janeiro, Brazil

ABSTRACT
Parsing Expression Grammar (PEG) is a recognition-based
foundation for describing syntax that renewed interest in
top-down parsing approaches. Generally, the implementa-
tion of PEGs is based on a recursive-descent parser, or uses
a memoization algorithm.

We present a new approach for implementing PEGs, based
on a virtual parsing machine, which is more suitable for
pattern matching. Each PEG has a corresponding program
that is executed by the parsing machine, and new programs
are dynamically created and composed. The virtual machine
is embedded in a scripting language and used by a pattern-
matching tool.

We give an operational semantics of PEGs used for pat-
tern matching, then describe our parsing machine and its
semantics. We show how to transform PEGs to parsing ma-
chine programs, and give a correctness proof of our trans-
formation.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features; D.3.1 [Programming Languages]: Formal
Definitions and Theory

General Terms
Operational semantics, scripting languages

Keywords
parsing machine, Parsing Expression Grammars, pattern
matching

1. INTRODUCTION
The Parsing Expression Grammar (PEG) formalism for

language recognition [2] has renewed interest in top-down

∗Supported by CNPq

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

parsing approaches. The PEG formalism gives a convenient
syntax for describing top-down parsers for unambiguous lan-
guages. The parsers it describes can parse strings in linear
time, despite backtracking, by using a memoizing algorithm
called Packrat [1]. Although Packrat has guaranteed worst-
case linear time complexity, it also has linear space com-
plexity, with a rather large constant. This makes Packrat
impractical for parsing large amounts of data.

LPEG [7, 11] is a pattern-matching tool for Lua, a dy-
namically typed scripting language [6, 8]. LPEG uses PEGs
to describe patterns instead of the more popular Perl-like
”regular expressions” (regexes). Regexes are a more ad-hoc
way of describing patterns; writing a complex regex is more
a trial and error than a systematic process, and their per-
formance is very unpredictable. PEGs offer a way of writing
patterns that is simple for small patterns, while providing
better organization for the more complex patterns.

As pattern-matching tools usually have to deal with much
larger inputs than parsing tools, this precluded the use of a
Packrat-like algorithm for LPEG. Therefore, LPEG adopts a
new approach, using a virtual parsing machine, where each
pattern translates to a program for this machine. These
programs are built at runtime, and can also be dynamically
composed into bigger programs (that represent bigger pat-
terns). This piecemeal construction of programs fits both
the dynamic nature of Lua programming, and the compos-
ability of the PEG formalism.

As each PEG pattern is compiled in a sequence of instruc-
tions of our parsing machine during runtime, this makes the
model of LPEG much more appropriated to be used by a
dynamic language when compared to a more traditional ap-
proch, which uses static compilation and linking of programs
generated from PEG grammars.

The parsing machine is also fast, with the performance
of LPEG being similar to the performance of other parser
and pattern-matching tools. Moreover, the machine has a
very simple model, which makes its implementation easy,
and seems a very good candidate for a Just-In-Time (JIT)
compiler.

In a forthcoming paper [7], one of the authors presents
the LPEG tool more in depth, giving several examples of its
use. That paper also gives an operational semantics of the
parsing machine instructions, plus an informal description of
how the machine executes a program and some benchmarks
comparing LPEG with POSIX regex and PCRE.

The main contribution of the this paper resides on the full
formal specification of the parsing machine, and on the proof
of correctness of the transformation between PEG patterns

ε ∈ Pattern
‘.’ ∈ Pattern
‘c’ ∈ Pattern

If p ∈ Pattern then p?, p∗, p+, &p, and !p ∈ Pattern
If p1 and p2 ∈ Pattern then p1p2 and p1/p2 ∈ Pattern

Table 1: Definition of PEG patterns

and programs of our machine.
The present paper also discuss some optimizations appli-

cable to our machine which reduce the amount of backtrack-
ing without using memoization, and gives the associated
transformation. As our machine is explicitly designed for
PEGs, its design relies on the fact that PEGs only use lim-
ited backtracking.

The rest of this paper is organized as follows: Section 2
reviews some PEG concepts and describes the virtual ma-
chine and its operational semantics; Section 3 proves the
transformation between simple PEGs (those consisting of
a single production) and their corresponding programs is
correct; Section 4 augments the virtual machine to enable
some optimizations, and proves the correctness of these op-
timizations; Section 5 extends the previous proofs to cover
PEGs in general; Section 6 discusses some related work and
presents a benchmark comparing LPEG with other tools;
finally, Section 7 summarizes our results.

2. A PARSING MACHINE FOR PEGS
Parsing Expression Grammar (PEGs) is a recognition-

based formal foundation for language syntax [2]. Although
PEGs are similar to Context Free Grammars (CFGs), a
key difference is that, while a CFG generates a language,
a PEG describes a parser. PEGs have limited backtracking
through an ordered choice operator, and unlimited looka-
head through syntactic predicates.

The original PEG paper uses a grammar-like formal def-
inition of PEGs. We are going to start with a simpler, less
powerful definition, which is equivalent to the right-hand
side of a PEG production (minus any non-terminals). We
call these simple expressions patterns. Later in the paper
we extend patterns to reintroduce grammars, but in a way
that preserves their composability. Table 1 has the abstract
syntax of patterns.

We have that ε represents the empty string, which is a
pattern that never fails.

The pattern ‘.’ matches any character, while the pattern
‘c’ matches a given character c. The pattern p? represents an
optional match and it always succeeds. The repetition pat-
tern p∗ always succeeds too. It matches the pattern p zero
or more times. The other repetition pattern, p+, matches p
one or more times and can fail.

The symbols ! and & are predicate operators, and do not
consume any input. The pattern !p succeeds if the matching
of pattern p fails, and succeeds otherwise. The pattern &p is
the opposite, it succeeds when pattern p succeeds, and fails
when p fails.

The concatenation of two patterns p1 and p2 is indicated
simply by the juxtaposition of both patterns. For example,
p1p2 indicates the concatenation of p1 and p2.

The / is the ordered choice operator and allows a limited
form of backtracking. A pattern like p1/p2, first tries to
match the pattern p1, and if this match succeeds the whole

pattern succeeds. Otherwise, we try pattern p2, and if it
succeeds the whole pattern succeeds too, otherwise the whole
pattern fails.

Figure 1 has an operational semantics for patterns, where
match : Pattern× Σ∗ ×N → N ∪ {nil} is the semantics of
a pattern, given a subject and a position (position 1 is the
beginning of the subject). If a match succeeds, the result is
the position in the subject after the match, otherwise, if the
match fails, the result is nil.

The looping rule (for repetition) of the semantics pre-
cludes us from doing a straightforward structural induction
on patterns. We have to do induction on a measure of pat-
tern complexity that we will state as | p | + | s | − i, that is,
the size of the pattern plus the length of the subject, minus
the current position. For all semantic rules but the loop-
ing rule, it is trivial to see that the antecedent has a smaller
measure than the consequent, as the pattern itself is smaller,
and the position doesn’t decrease. For the looping rule, the
induction will hold only when the position advances by at
least one; in other words, induction is only possible when
j > 0. Informally, repetition on a pattern that succeeds but
does not advance leads to an infinite loop.

Usually, each PEG pattern can be associated with a recursive-
descent parser, but we will take a different approach. In-
stead, each PEG pattern translates to a program, which
executes on a virtual parsing machine.

Our parsing machine for PEGs has more in common with
virtual machines for imperative programming languages than
with abstract machines in language theory. It executes pro-
grams made up of atomic instructions that change machine’s
state. The machine has a program counter that addresses
the next instruction to be executed, a register that holds
the current position in the subject, and a stack that the ma-
chine uses for pushing both return addresses and backtrack
entries. A return address is just a new value for the program
counter, while a backtrack entry holds both an address and
a position in the subject. The machine has the following
basic instructions:
Char x: tries to match the character x against the current

subject position, advancing one position if successful.
Any: advances one position if the end of the subject was

not reached; it fails otherwise.
Choice l: pushes a backtrack entry on the stack, where l

is the offset of the alternative instruction.
Jump l: relative jump to the instruction at offset l.
Call l: pushes the address of the next instruction in the

stack, and jumps to the instruction at offset l.
Return: pops an address from the stack and jumps to it.
Commit l: commits to a choice, popping the top entry from

the stack, throwing it away, and jumping to the instruction
at offset l.
Fail: forces a failure. When any failure occurs, the ma-

chine pops the stack until it finds a backtrack entry, then
uses that entry plus the stack as the new machine state.

Figure 2 presents the operational semantics of the parsing
machine as a relation among machine states. The program
P that the machine is executing, and the subject S, are
implicit. The state is either a triple N × N × Stack, with
the next instruction to execute (pc), the current position in
the subject (i), and a stack (e), or Fail〈e〉, a failure state
with stack e. Stacks are lists of N ∪N ×N , where a stack
position of form N represents a return address, while a stack
position of form N ×N represents a backtrack entry.

Matching a character
s[i] = ‘c’

match ‘c’ s i = i+1
(ch.1)

s[i] 6= ‘c’

match ‘c’ s i = nil
(ch.2)

Matching any character
i ≤ |s|

match . s i = i+1
(any.1)

i > |s|
match . s i = nil

(any.2)

Not Predicate
match p s i = nil

match !p s i = i
(not.1)

match p s i = i+j

match !p s i = nil
(not.2)

And Predicate
match p s i = i+j

match &p s i = i
(and.1)

match p s i = nil

match &p s i = nil
(and.2)

Concatenation
match p1 s i = i+j match p2 s i + j = i+j+k

match p1p2 s i = i+j+k
(con.1)

match p1 s i = i+j match p2 s i + j = nil

match p1p2 s i = nil
(con.2)

match p1 s i = nil

match p1p2 s i = nil
(con.3)

Ordered Choice
match p1 s i = nil match p2 s i = nil

match p1/p2 s i = nil
(ord.1)

match p1 s i = i+j

match p1/p2 s i = i+j
(ord.2)

match p1 s i = nil match p2 s i = i+k

match p1/p2 s i = i+k
(ord.3)

Repetition
match p s i = i+j match p ∗ s i + j = i+j+k

match p ∗ s i = i+j+k
(rep.1)

match p s i = nil

match p ∗ s i = i
(rep.2)

Figure 1: Operational Semantics of Patterns

The relation
Instruction−−−−−−−→ relates two states when the in-

struction addressed by pc in the antecedent state matches
the label, and the guard (if present) is valid. The transitive
closure of this relation is an execution of the machine.

3. TRANSFORMING PATTERNS TO PRO-
GRAMS

As was mentioned earlier, each PEG pattern translates
to a program that executes in a parsing machine. The pro-
cess of translating a pattern into a program is bottom up,
and done at runtime. The simplest patterns are translated
to simple programs, and then programs are combined ac-
cording to rules specific for each PEG operation. Programs
are opaque entities for the translation process, the pattern
that originated them is not important, as long as the pro-
grams are valid. In our implementation the process is fully
incremental, and combining programs is a simple matter of
concatenating their texts.

To represent this compilation process, we will use a trans-
formation function Π, from Pattern to Program. Given a
pattern p, we have that Π(p) represents the program asso-
ciated with pattern p. We will also use the notation |Π(p)|,
which means the number of instructions of the program
Π(p).

The next step is to prove the correctness of the trans-
formation that converts a PEG pattern to a corresponding
program for the virtual parsing machine.

All transformations use concatenation to build bigger pro-
grams from smaller ones. Formally, given programs P1 and
P2, such that:

〈pc1, i, e〉 P1−−→ 〈pc1 + |P1|, i + j, e〉

〈pc2, i + j, e〉 P2−−→ 〈pc2 + |P2|, i + j + k, e〉

The concatenation P1P2 has the following property:

〈pc, i, e〉 P1P2−−−→ 〈pc + |P1|+ |P2|, i + j + k, e〉

This property holds when all the jumps of a program are
for instructions of the program, or for the first instruction
of the next program.

Considering 〈pc, i, e〉 as the machine’s initial state, where
pc points to the first instruction of Π(p), we have that a
pattern p is equivalent to a program Π(p), if when p succeeds,
then the following relation is true:

If match p s i = i + j then

〈pc, i, e〉 Π(p)−−−→ 〈pc + |Π(p)|, i + j, e〉

We have also that, if p fails, then the following relation
should hold:

If match p s i = nil then

〈pc, i, e〉 Π(p)−−−→ Fail〈e〉

It can be noticed that in both cases the stack remains the
same after the execution of the program Π(p).

We start proving that the transformation Π is correct for
simple patterns, and after we prove the transformation is
also correct for more complex patterns.

Let’s then take a look on a PEG pattern that matches
a certain c character. The transformation here is Π(‘c’) ≡
Char c, such that we can express the pattern ‘c’ directly by
a Char instruction.

Considering first the case when the match function suc-
ceeds, what we want to prove is:

If match ‘c’ s i = i + j then

〈pc, i, e〉 Char−−−→ 〈pc + 1, i + 1, e〉

In this case, as we want to match just one character, we
have that j must be 1. Looking Figure 1, we can see the
rule (ch.1) is the only one involving the successful matching
of a character. By this rule, we know that s[i] = ‘c’.

It is trivial to see that the semantics of the Char instruc-
tion guarantees that our program will advance the current
subject position by 1, and will not change the stack, when
the matching of ‘c’ succeeds.

Considering now the case where the matching fails, we
need to prove that:

If match p s i = nil then

〈pc, i, e〉 Char−−−→ Fail〈e〉

The semantic rule (ch.2) is the only rule related to the un-
successful matching of a character. By this rule, we know
that s[i] 6= ‘c’.

Again, we can rely on the semantics of the Char instruc-
tion, which will lead the parsing machine to a state indicat-
ing that a fail occurred, when the pattern does not match.
This completes the proof.

The case of the Any instruction is very similar to the case
of the Char instruction, because there is also a direct trans-
formation from a pattern p that matches any character, to a
program that consists only of an Any. The correctness of this
transformation can be proved with the help of the semantic
rules (any.1) and (any.2).

The next proof is about the concatenation of two PEG
patterns, p1 and p2. We state the following transformation
related to the concatenation of two patterns:

Π(p1 p2) ≡ Π(p1) Π(p2)

In other words, when transforming p1p2 to a program, we
will first execute the program Π(p1), and then program
Π(p2). Considering the case where match succeeds, what
we are going to prove is:

If match p1p2 s i = i + j + k then

〈pc, i, e〉 Π(p1p2)−−−−−→ 〈pc + |Π(p1)|+ |Π(p2)|, i + j + k, e〉

The rule (con.1) is the one related to the successful concate-
nation of two patterns. By this rule, we know that p1 and
p2 matched, with the matching of p1 advancing j positions
of the input string, and the matching of p2 advancing more
k positions.

Let 〈pc, i, e〉 be the initial virtual machine state. The
corresponding program Π(p1p2) of our PEG machine will
execute the following sequence of transitions, where in both
transitions we use the induction hypothesis:

Π(p1)−−−−→ 〈pc + |Π(p1)|, i + j, e〉
Π(p2)−−−−→ 〈pc + |Π(p1)|+ |Π(p2)|, i + j + k, e〉

This proves the first case.
The other case is when p1p2 fails. What we have to prove

〈pc, i, e〉 Char x−−−−−→ 〈pc + 1, i + 1, e〉 S[i] = x

〈pc, i, e〉 Char x−−−−−→ Fail〈e〉 S[i] 6= x

〈pc, i, e〉
Any
−−−→ 〈pc + 1, i + 1, e〉 i + 1 ≤ |S|

〈pc, i, e〉
Any
−−−→ Fail〈e〉 i + 1 > |S|

〈pc, i, e〉 Choice l−−−−−−−→ 〈pc + 1, i, (pc + l, i) : e〉

〈pc, i, e〉
Jump l
−−−−−→ 〈pc + l, i, e〉

〈pc, i, e〉 Call l−−−−−→ 〈pc + l, i, (pc + 1) : e〉
〈pc0, i, pc1 : e〉 Return−−−−−−→ 〈pc1, i, e〉

〈pc, i, h : e〉 Commit l−−−−−−−→ 〈pc + l, i, e〉
〈pc, i, e〉 Fail−−−−→ Fail〈e〉

Fail〈pc : e〉 any−−−→ Fail〈e〉
Fail〈(pc, i1) : e〉 any−−−→ 〈pc, i1, e〉

Figure 2: Operational Semantics of the Parsing Machine

is:

If match p1p2 s i = nil then

〈pc, i, e〉 Π(p1p2)−−−−−→ Fail〈e〉

From Figure 1, we can see there are two rules related to
the concatenation which result in a fail. Let’s first consider
the rule (con.3). In this case, the pattern p1 fails, and the
machine will do the following transition:

〈pc, i, e〉 Π(p1)−−−−→ Fail〈e〉

With Π(p2) not being executed.
Let’s now consider the rule (con.2), in which p1 succeeds,

advancing j positions of the input, but the pattern p2 fails.
This is represented by the following sequence of transitions:

Π(p1)−−−−→ 〈pc + |Π(p1)|, i + j, e〉
Π(p2)−−−−→ Fail〈e〉

What proves the transformation for the pattern p1 p2 is cor-
rect.

Let’s now see the case of the ordered choice operator.
Given the PEG pattern p1/p2, we have the following trans-
formation:

Π(p1/p2) ≡ Choice |Π(p1)|+ 2

Π(p1)

Commit |Π(p2)|+ 1

Π(p2)

The transformation says that Π(p1/p2) is equivalent to a
program where the first instruction is a Choice, followed by
the program Π(p1), then by a Commit instruction, and finally
by program Π(p2).

Considering the case when p1/p2 succeeds, what we are
going to prove is:

If match p1/p2 s i = i + j then

〈pc, i, e〉 Π(p1/p2)−−−−−−→ 〈pc + |Π(p1)|+ |Π(p2)|+ 2, i + j, e〉

There are two rules related to the success of an ordered
choice. Let’s first consider the rule (ord.2). We know that
p1 matched, advancing j positions of the input subject.

The corresponding sequence of transitions, assuming 〈pc, i, e〉
as the initial state, where pc points to the first instruction
of Π(p1/p2), is shown below:

Choice−−−−→〈pc + 1, i, (pc + |Π(p1)|+ 2, i) : e〉
Π(p1)−−−−→〈pc + |Π(p1)|+ 1, i + j, (pc + |Π(p1)|+ 2, i) : e〉

Commit−−−−−→〈pc + |Π(p1)|+ |Π(p2)|+ 2, i + j, e〉

The first thing the program does is to save the current state
of the machine, because if p1 fails, we have to backtrack. As
p1 succeeds, we just discard the backtrack entry and jump
to the end of the program, using the Commit instruction.

We can notice that after the complete execution of the
program, the stack remains the same, with the backtrack
entry being discarded:

Analyzing now the rule (ord.3), we have that p1 fails, and
p2 succeeds, matching k characters, such that j = k in this
case.

The associated sequence of transitions is:

Choice−−−−→〈pc + 1, i, (pc + |Π(p1)|+ 2, i) : e〉
Π(p1)−−−−→Fail〈(pc + |Π(p1)|+ 2, i) : e〉

Fail−−−→〈pc + |Π(p1)|+ 2, i, e〉
Π(p2)−−−−→〈pc + |Π(p1)|+ |Π(p2)|+ 2, i + k, e〉

The program first pushes a backtrack entry, and tries to
match p1. As p1 fails, the machine backtracks, and then
matches p2, what advances k positions of the input string,
as expected.

Considering now the case where the match function fails,
what we have to prove is:

If match p1/p2 s i = nil then

〈pc, i, e〉 Π(p1/p2)−−−−−−→ Fail〈e〉

The rule (ord.1) is the only one related to this case. By this

rule, we know that neither p1 nor p2 match.
The sequence of transitions associated with this case is

shown below:

Choice−−−−→ 〈pc + 1, i, (pc + |Π(p1)|+ 2, i) : e〉
Π(p1)−−−−→ Fail〈(pc + |Π(p1)|+ 2, i) : e〉

Fail−−−→ 〈pc + |Π(p1)|+ 2, i, e〉

〈pc + |Π(p1)|+ 2, i, e〉 Π(p2)−−−−→ Fail〈e〉

This sequence is similar to the previous one, but now as p2

fails, the machine goes to a fail state. This completes the
proof of the ordered choice.

We will now consider the transformation of the not pred-
icate. Let p be a pattern, we have that:

Π(!p) ≡ Choice |Π(p)|+ 3

Π(p)

Commit 1

Fail

Considering the case where the pattern !p fails, we have that:

If match !p s i = nil then

〈pc, i, e〉 Π(!p)−−−→ Fail〈e〉

The semantic rule that corresponds to this case is (not.2).
By this rule, we know the matching of p succeeds, although
the pattern !p fails. Therefore, we have the following se-
quence of transitions:

Choice−−−−→ 〈pc + 1, i, (pc + |Π(p)|+ 3, i) : e〉
Π(p)−−−→ 〈pc + |Π(p)|+ 1, i + j, (pc + |Π(p)|+ 3, i) : e〉

Commit−−−−−→ 〈pc + |Π(p)|+ 2, i + j, e〉
Fail−−−→ Fail〈e〉

The program first saves the current machine state, and next
tries to match p. As p succeeds, the following Commit dis-
cards the backtrack entry, and the Fail instruction is then
executed.

The other case, when pattern !p succeeds, corresponds to
the semantic rule (not.1). In this case, we have that j = 0.
By (not.1), we know the matching of p fails, and the machine
restores the entry pushed by the initial Choice instruction,
what leads to the final state 〈pc + |Π(p)|+ 3, i, e〉.

With the transformation of the not predicate proved cor-
rect, given a pattern p, we can trivially define the and pred-
icate as !!p. In the same way, as the concatenation and
the ordered choice transformations of patterns were already
proved correct too, we can define the predicate p? as &pp / !p.

The next step corresponds to the transformation of the
repetition pattern. Let p be a PEG pattern, such that the
construction p∗ means zero or more repetitions of p. In this
case, we have the following transformation from pattern to
the virtual machine instructions:

Π(p∗) ≡ Choice |Π(p)|+ 2

Π(p)

Commit − (|Π(p)|+ 1)

What we are going to prove first is:

If match p ∗ s i = i then

〈pc, i, e〉 Π(p∗)−−−−→ 〈pc + |Π(p∗)|, i, e〉

This case is related to the semantic rule (rep.2), where p∗
does not match an input s from position i. We have the
following sequence of transitions:

Choice−−−−→ 〈pc + 1, i, (pc + |Π(p)|+ 2, i) : e〉
Π(p)−−−→ Fail〈(pc + |Π(p)|+ 2, i) : e〉
Fail−−−→ 〈pc + |Π(p)|+ 2, i, e〉

We can see that the current subject position did not change
with the execution of Π(p∗).

The other case we have to prove is:

If match p ∗ s i = i+j+k then

〈pc, i, e〉 Π(p∗)−−−−→ 〈pc + |Π(p∗)|, i + j + k, e〉

This case is related to the semantic rule (rep.1), and we have
that ∗p matches an input s from position i. The sequence
of transitions is presented below:

Choice−−−−→ 〈pc + 1, i, (pc + |Π(p)|+ 2, i) : e〉
Π(p)−−−→ 〈pc + 1 + |Π(p)|, i + j, (pc + |Π(p)|+ 2, i) : e〉

Commit−−−−−→ 〈pc, i + j, e〉
Π(p∗)−−−−→ 〈pc + |Π(p∗)|, i + j + k, e〉

As we can see, p succeeds the first time, matching j charac-
ters, where we are considering j > 0. After this matching,
we have a less complex pattern, considering our measure
of pattern complexity as | p | + | s | − i. Then the ma-
chine executes Commit, coming back to the beginning of the
program, and we use induction on the pattern complexity,
reaching the final state 〈pc + |Pi(p∗)|, i + j + k, e〉.

Since we have proved that the transformation from a pat-
tern p∗ to a program in our PEG machine was correct, and
as we have also made the corresponding proof for the con-
catenation of patterns, we can simply define the pattern p+
as p p∗.

4. OPTIMIZATIONS
As we have just proved, the set of instructions that we

have been using is enough to define a virtual parsing machine
for PEGs. But it would be convenient to define some extra
instructions, so we can have more efficient implementations
of the patterns. In short, we will define new instructions to
get faster programs.

Figure 3 presents the semantics of the new set of instruc-
tions. To illustrate the use of these extra instructions, we
will now redefine some of the patterns using the new set of
instructions.

Let’s start redefining the not predicate. In the new defini-
tion, we use the instruction FailTwice, which discards the
top entry of the stack (in the case of the not predicate, it
discards the entry pushed by the previous Choice instruc-
tion), and then fails, like the Fail instruction. The new

〈pc0, i0, (pc1, i1) : e〉 PartialCommit l−−−−−−−−−−−−−→ 〈pc0 + l, i0, (pc1, i0) : e〉
〈pc, i, h : e〉 FailTwice−−−−−−−−−→ Fail〈e〉

〈pc0, i0, (pc1, i1) : e〉 BackCommit l−−−−−−−−−−→ 〈pc0 + l, i1, e〉

Figure 3: Operational Semantics of Extra Instructions

transformation is:

Π(!p) ≡ Choice |Π(p)|+ 2

Π(p)

FailTwice

With the new transformation, the sequence of transitions
when !p fails, where the corresponding semantic rule is (not.2),
becomes:

Choice−−−−→ 〈pc + 1, i, (pc + |Π(p)|+ 2, i) : e〉
Π(p)−−−→ 〈pc + |Π(p)|+ 1, i + j, (pc + |Π(p)|+ 2, i) : e〉

FailTwice−−−−−−−→ Fail〈e〉

Using FailTwice, we can see the number of transitions was
smaller in this case. Comparing with the previous sequence
of transitions of the not predicate, we can see that this trans-
formation is also correct.

Another pattern that uses the extra instructions is the
repetition pattern p∗. One problem of the previous defini-
tion of p∗ is that we are always pushing a new backtrack
entry and discarding it when the pattern p matches.

We can notice from the previous definition of p∗, that
when we push a new backtrack entry, the only thing that
changes is the current subject position, thus, instead of dis-
carding the backtrack entry, we could have just updated it.
This is exactly what the PartialCommit instruction does.
By using it, we have the following transformation:

Π(p∗) ≡ Choice |Π(p)|+ 2

Π(p)

PartialCommit − |Π(p)|

As an example, we show below the new sequence of transi-
tions for the repetition pattern when p∗ matches an input
s from position i, which corresponds to the semantic rule
(rep.1):

Choice−−−−→ 〈pc + 1, i, (pc + |Π(p)|+ 2, i) : e〉
Π(p)−−−→ 〈pc + 1 + |Π(p)|, i + j,

(pc + |Π(p)|+ 2, i) : e〉
PartialCommit−−−−−−−−−−→ 〈pc + 1, i + j, (pc + |Π(p)|+ 2, i + j) : e〉

Π(p∗)−−−−→ 〈pc + |Π(p∗)|, i + j + k, e〉

Notice that the Choice instruction executes just one time,
as the PartialCommit instruction leads the machine back to
the beginning of Π(p). The machine does less transitions,
and avoids the use of an expensive Choice instruction at
each repetition step.

The BackCommit instruction is a variant of the Commit

instruction. As the Commit instruction, the BackCommit in-
struction restores a backtrack entry, but it does not jump
to the position pc1 (as indicated in Figure 3). Instead of

this, the BackCommit instruction receives a label l and the
machine goes to the position pc0 +l. This instruction is used
in a more efficient implementation of the and predicate.

The current implementation of the parsing machine has
also some specific instructions for character sets. There is a
Charset instruction, which matches a character if it belongs
to a set of characters. Another instruction related to char-
acter sets is Span, which is used to implement the repetition
of a pattern that represents a character set.

These two instructions improve the performance of the
machine when dealing with character sets, and can be eas-
ily translated to an equivalent program that uses the Char

instruction.

4.1 Head-fail instructions
Although we have already extended the set of instructions

of the virtual machine, and improved the definition of the
patterns accordingly, we still can go further. Our PEG ma-
chine is designed for pattern-matching, so it should be fast
when dealing with lexical structures, which sometimes is a
bottleneck of PEGs implementations [13].

Because of this, there is a third group of instructions: the
head-fail optimization instructions, which are presented in
Figure 4. This group of instructions were created to address
the problem of head fails. If a pattern fails when doing its
first check, we say it was a head fail. As an example, if
we search for the word “edge” in an English language text,
almost 90% of all fails may be head fails, given the typical
frequency of around 11% for the letter ‘e’. The head-fail
instructions avoid the backtracking associated with a head
fail.

The TestChar instruction, for example, checks if a given
character is equal to the current subject position. In case it
is, the machine matches the character and then executes the
next instruction. In case it is not, the TestChar jumps to the
offset. The advantage of using the TestChar instruction is
that we can save the cost of a backtracking when a head-fail
occurs.

As a consequence of the introduction of the head-fail op-
timization instructions, we need to modify the Choice in-
struction, adding an offset to it. Now, when this instruction
saves the current machine state, it saves the current subject
position minus a given offset. Thus, the new operational
semantics of the Choice instruction is:

〈pc, i, e〉 Choice l o−−−−−−−−→ 〈pc + 1, i, (pc + l, i− o) : e〉

All the previous uses of Choice have an offset of zero.
Making use of the TestChar instruction, we can then op-

timize the ordered choice, as well as other patterns. Given
patterns p1 and p2, let’s consider an ordered choice of the
form ‘c’p1/p2, i.e., we first try to match a character ‘c’, and
if we succeed then we try p1, otherwise we try pattern p2.

Instead of generating a trivial ordered choice code, we can

〈pc, i, e〉 TestChar x l−−−−−−−−−−→ 〈pc + 1, i + 1, e〉 S[i] = x

〈pc, i, e〉 TestChar x l−−−−−−−−−−→ 〈pc + l, i, e〉 S[i] 6= x

〈pc, i, e〉
TestAny n l
−−−−−−−−−→ 〈pc + 1, i + n, e〉 i + n ≤ |S|

〈pc, i, e〉
TestAny n l
−−−−−−−−−→ 〈pc + l, i, e〉 i + n > |S|

Figure 4: Operational Semantics of Head-fail Instructions

generate the following optimized code:

Π(‘c’p1/p2) ≡ TestChar c |Π(p1)|+ 3

Choice |Π(p1)|+ 2 1

Π(p1)

Commit |Π(p2)|+ 1

Π(p2)

The sequence of transitions below illustrates the case when
‘c’ fails, considering that p2 matches:

TestChar−−−−−−→〈pc + |Π(p1)|+ 3, i, e〉
Π(p2)−−−−→〈pc + |Π(p1)|+ |Π(p2)|+ 3, i + k, e〉

As the matching of the character ‘c’ fails, the machine jumps
directly to the beginning of Π(p2), without the need to exe-
cute the Choice instruction only to backtrack later.

We can do similar optimizations for other patterns, such
as the not predicate.

Taking again the ordered choice as example, let’s suppose
that we have an ordered choice of the form ‘c1’p1/‘c2’p2,
where c1 and c2 are different characters. In this case, we
have that if c1 matches, we know that c2 will not match,
and we do not need to push a backtrack entry at all. The
corresponding sequence of instructions:

Π(‘c1’p1/‘c2’p2) ≡ TestChar c1 |Π(p1)|+ 2

Π(p1)

Jump |Π(p2)|+ 2

Π(‘c2’)

Π(p2)

The following sequence of transitions shows the case when
‘c1’ and p1 match:

TestChar−−−−−−→〈pc + 1, i + 1, e〉
Π(p1)−−−−→〈pc + |Π(p1)|+ 1, i + j + 1, e〉
Jump−−−−→〈pc + |Π(p1)|+ |Π(p2)|+ |Π(‘c2’)|+ 2, i + j + 1, e〉

First the TestChar instruction is executed, and then the
machine executes Π(p1). After this, as there is no backtrack
entry to discard, the machine simply jumps to end of the
program.

5. GRAMMARS
In the previous sections we were considering only simple

patterns in our formalization. Using only the abstract syn-
tax in Table 1 we can’t build patterns that reference them-
selves; the only way to use another pattern is to include it.
We will now correct this by extending our previous definition
of patterns with grammars.

We first introduce a countably infinite set of variables, or
non-terminals, called V . We will refer to members of this
set with the notation Ak, and extend our set of patterns to
include all variables. We now define a grammar as a par-
tial function from the set of variables to the set of patterns,
such that g(Ak) represents the pattern associated with non-
terminal Ak of grammar g. Finally, we now extend the do-
main of our match function to Grammar×Pattern×Σ∗×N .
Figure 5 shows the semantics of the extended match.

We also introduce another new kind of pattern, the closed
grammar, a pair Grammar× V . Informally, a closed gram-
mar matches a subject if the pattern referenced by the vari-
able matches the subject, with all variables resolved in the
grammar. Thus, if Ak is a non-terminal of grammar g, such
that all variables of pattern g(Ak) are resolved in g, then
(g, Ak) is a closed grammar. Closed grammars build pat-
terns from grammars, and allows different grammars to be
composed using the standard PEG operators. Figure 5 also
has the semantics of match for closed grammars.

Now we will present how to translate these concepts to our
parsing machine, and prove the correctness of our transla-
tion. Our transformation Π will now operate on the domain
Grammar×N × Pattern, where Π(g, i, p) is the translation
of pattern p in the context of grammar g and with position i
relative to the beginning of the closed grammar which con-
tains it (if the pattern is not part of a closed grammar then
the value can be arbitrary). We will show shortly how both
g and i are used to resolve variable references, represent-
ing the “linking” step of the transformation from patterns to
programs.

Extending the transformations given in the previous sec-
tions is straightforward, and a matter of passing g to sub-
programs and keeping i correctly updated so as to keep its
intended meaning. Appendix A gives the extended trans-
formation. This extension is conservative, so the previous
proofs will remain valid once we prove the correctness of
the transformation for the patterns we introduced in this
section.

To give the results of Π for variables and closed grammars,
we first define a transformation Π′ from Grammar × N to
Program. This is the invariant part of the transformation
of all closed grammars (g, An) based on the grammar g. We

Matching a character
s[i] = ‘c’

match g ‘c’ s i = i+1
(ch.1)

s[i] 6= ‘c’

match g ‘c’ s i = nil
(ch.2)

Matching any character
i ≤ |s|

match g . s i = i+1
(any.1)

i > |s|
match g . s i = nil

(any.2)

Not Predicate
match g p s i = nil

match g !p s i = i
(not.1)

match g p s i = i+j

match g !p s i = nil
(not.2)

And Predicate
match g p s i = i+j

match g &p s i = i
(and.1)

match g p s i = nil

match g &p s i = nil
(and.2)

Concatenation
match g p1 s i = i+j match g p2 s i + j = i+j+k

match g p1p2 s i = i+j+k
(con.1)

match g p1 s i = i+j match g p2 s i + j = nil

match g p1p2 s i = nil
(con.2)

match g p1 s i = nil

match g p1p2 s i = nil
(con.3)

Ordered Choice
match g p1 s i = nil match g p2 s i = nil

match g p1/p2 s i = nil
(ord.1)

match g p1 s i = i+j

match g p1/p2 s i = i+j
(ord.2)

match g p1 s i = nil match g p2 s i = i+k

match g p1/p2 s i = i+k
(ord.3)

Repetition
match g p s i = i+j match g p ∗ s i + j = i+j+k

match g p ∗ s i = i+j+k
(rep.1)

match g p s i = nil

match g p ∗ s i = i
(rep.2)

Variables
match g g(Ak) s i = i+j

match g Ak s i = i+j
(var.1)

match g g(Ak) s i = nil

match g Ak s i = nil
(var.2)

Closed Grammars
match g g(Ak) s i = i+j

match g′ (g, Ak) s i = i+j
(cg.1)

match g g(Ak) s i = nil

match g′ (g, Ak) s i = nil
(cg.2)

Figure 5: Operational Semantics of PEG Patterns with Grammars

define Π′(g, i) to be

Π(g, i, g(A1))

Return

...

Π(g, i +

k−1X
j=1

| Π(g, x, Aj) | +1, g(Ak))

Return

...

Π(g, i +

n−1X
j=1

| Π(g, x, Aj) | +1, g(An))

Return

where A1, . . . , Ak, . . . , An are all variables where g has an
image, ordered according to any arbitrary (but consistent)
ordering. The x as the position for the sizes of subprograms
means that the size of a program is independent on the po-
sition.

Given Π′ we can define a function o : Grammar×V → N
as

Pk−1
j=1 (| Π(g, x, Aj) | +1) (where the 1 represents the Re-

turn instruction), which takes a grammar g and a variable
Ak defined in g, and gives the position of the program de-
rived from Ak in Π′(g, i), relative to i.

With Π′ and o, it is easy to extend Π to variables and
closed grammars:

Π(g, i, Ak) ≡ Call o(g, Ak)− i

Π(g′, i, (g, Ak)) ≡ Call o(g, Ak)

Jump | Π′(g, x) | +1

Π′(g, 2)

The 2 in Π′(g, 2) keeps the invariant that all positions are
relative to the first instruction of the closed grammar.

Now we will prove the correctness of our transformations,
beginning with closed grammars. We first have to prove
that:

If match g′ (g, Ak) s i = i+j then

〈pc, i, e〉 Π(g′,l,(g,Ak))−−−−−−−−−→ 〈pc+ | Π(g′, l, (g, Ak)) |, i + j, e〉

This case is covered by the semantic rule (cg.1), and we have
the following sequence of transitions:

Call−−−→ 〈pc + o(g, Ak), i, (pc + 1) : e〉
Π(g,o(g,Ak),Ak)−−−−−−−−−−−→ 〈pc + o(g, Ak)+ | Π(g, o(g, Ak), Ak) |, i + j,

(pc + 1) : e〉
Return−−−−−→ 〈pc + 1, i + j, e〉

Jump−−−−→ 〈pc+ | Π′(g, x) | +2, i + j, e〉

The second transition follows from the way we constructed
the o function, with pc + o(g, Ak) addressing the first in-
struction of Π(g, o(g, Ak), Ak). Now we use our induction
hypothesis, via the semantic rule (cg.1). The last transition
uses the identity | Π′(g, x) | +2 =| Π(g′, l, (g, Ak)) |. The
proof for the failure case is analogous, via rule (cg.2).

For variables, we are only interested in the use of variables
that are embedded in a closed grammar; other uses are left
unspecified. This is not a problem in practice, as the seman-
tics of match have that match g Ak s i = match g (g, Ak) s i.
We have to prove that:

If match g Ak s i = i+j then

〈pc, i, e〉 Π(g,l,Ak)−−−−−−→ 〈pc+ |Π(g, l, Ak) |, i + j, e〉

This case is covered by the semantic rule (var.1), and the
derivation for it is straightforward:

Call−−−→ 〈pc + o(g, Ak)− l, i, (pc + 1) : e〉
Π(g,o(g,Ak),Ak)−−−−−−−−−−−→ 〈pc + o(g, Ak)− l+ | Π(g, o(g, Ak), Ak) |,

i + j, (pc + 1) : e〉
Return−−−−−→ 〈pc + 1, i + j, e〉

Again, given how o is defined, o(g, Ak)− l is the offset from
the current position to the first instruction of Π(g, o(g, Ak), Ak).
From there the proof follows by induction, via the semantic
rule (var.1). The failure case is analogous, via rule (var.2).

6. RELATED WORK
The main influence of our parsing machine was Knuth’s

parsing machine [9]. But unlike Knuth’s machine, where
calls to non-terminals and backtrack entries are the same
thing, our machine has a clear distinction between backtrack
entries and calls. This distinction is essential to be able to
compile patterns without rewriting them first.

One formal basis for pattern matching is regular expres-
sions [14]. Pure regular expressions, however, have several
limitations that make the description of some patterns dif-
ficult. Because of this, most pattern-matching tools make
ad-hoc extensions to the original regular expressions (the ex-
tended regular expressions are popularly called regexes) los-
ing their formal basis. As we did not want such a mixture of
formal and ad-hoc features, we decided to use a PEG-based
approach instead of regexes.

If we compare our PEG machine with other PEG-based
approaches, a key difference is that most of them are more
focused on parsing instead of pattern-matching. One well
known approach is Packrat [1], which uses a memoization
algorithm. Packrat is used in several parsing applications,
such as Rats! [4], a parser generator based on PEGs. As
we mentioned earlier, the linear space cost of Packrat makes
it unsuitable for a pattern-matching application, where we
have to deal with larger inputs than in parsing applications.

Another use of PEGs for parsing is described by [13],
which implements a Java parser directly from the PEG def-
initions of the Java syntax. The author of [13] also points
that during the implementation of the parser, he noticed
much of the backtracking and repetitions were done when
dealing with lexical structures, which suggests that some op-
timizations should be done to improve the performance of
the parser (Rats!, for example, does not use PEG to define
identifiers, keywords, and operators [13]). Our machine ad-
dressed this problem by defining instructions like Partial-

Commit, which is used in repetitions, and the head-fail opti-
mization instructions, which avoid the backtracking when a
pattern fails in its first character.

A PEG-based approach that is more similar to ours, in the
sense that it also focus on pattern-matching, is OMeta [15].

Size of input LPEG Lex/Yacc leg
470k 27 20 27
2460k 107 100 147
4950k 217 207 297

Table 2: Time for Parsing Arithmetic Expressions

OMeta extends the definition of PEGs to deal with arbitrarily-
structured data instead of character strings. OMeta, how-
ever, does not define any new approach to parse the data,
but relies on a recursive-descent parser without memoiza-
tion.

Another related work is parser combinators [5], a popular
approach for building recursive-descent parsers in the world
of functional programming. By using parsing combinators
it is possible to define a parser through the combination
of several parsers, what is similar to our approach of com-
bining programs. But parser combinators use unrestricted
backtracking, with a large space and time cost, and imple-
mentations on strict languages is harder [5].

One drawback of parser combinators is that most imple-
mentations are not efficient in space or time [10]. Some ap-
proaches that address the performance issue depend mainly
on lazy evaluation [10], which implies the use of memoiza-
tion.

Our PEG machine, on the other hand, is easily imple-
mented in a low level language, with a good performance. To
show this point, we will compare the performance of LPEG
with two other tools. One of the tools is Lex/Yacc, and the
other one is leg [12], a PEG-based tool that generates a
recursive-descent parser. Both tools produce a C program,
which is statically compiled. LPEG, on the other hand, com-
piles its patterns dynamically, thus it is possible to modify
a pattern or create a new one during runtime.

When using Lex/Yacc, we took the traditional approach,
where Lex deals with the lexical part and Yacc with the
syntactic one.

To eliminate the overhead of reading the input files, all
tests read all the input before doing the parsing. To measure
the parsing time we used the clock function in C, and the
os.clock function in Lua. Each program was run three times
against each input, and the mean time was considered.

The first parser that we defined was a parser of arithmetic
expressions, whose PEG definition is shown below:

start <- (exp ’\n’)+

exp <- factor (factorOp factor)*

factor <- term (termOp term)*

term <- number space / ’(’ exp ’)’ space

factorOp <- [+-] space

termOp <- [*/] space

termOp <- [*/] space

number <- ’-’?[0-9]+

space <- [\t]*

Table 2 presents the parsing time (in milliseconds) of each
tool considering different input sizes. As we can see, the
performances of LPEG and Lex/Yacc were similar, and both
were faster than leg.

The second parser was a parser of a list, where each ele-
ment of the list was a number or another list, and the ele-
ments were separated by spaces. The PEG definition of the
parser is shown below:

Size of input LPEG Lex/Yacc leg
610k 20 20 27
3050k 93 113 150
6130k 187 227 303

Table 3: Time for Parsing Lists

Size of input LPEG Lex/Yacc leg
620k 33 23 40
2440k 130 110 147
3680k 187 173 227

Table 4: Time for Parsing a Simple Language

start <- (list ’\n’)+

list <- ’(’ space (term (space term)*)? ’)’ space

term <- list / number

number <- ’-’?[0-9]+

space <- [\t]*

The performance of the parsers is presented in Table 3. For
this simple definition of a list LPEG presented the best per-
formance.

The last parser was a parser of a simple language (similar
to Scheme), which is presented in [3]. We considered only
the syntax that appears on page 71, plus the if-then-else on
page 80. The grammar is presented below:

list <- (program ’\n’)+

program <- exp

exp <- number / if exp then exp else exp / id

/ primitive space ’(’ exp (’,’ space exp)* ’)’ space

primitive <- ’+’ / ’-’ / ’*’ / "add1" / "sub1"

number <- [0-9]+ space

space <- [\t]*

space1 <- [\t]+

letter <- [a-zA-Z_]

if <- "if" space1

then <- "then" space1

else <- "else" space1

reserved <- ("if" / "then" / "else" / "add1" / "sub1")

!(letter / number)

id <- !reserved letter (letter / [0-9])* space

The performance of each parser can be seen in Table 4.
In this case, Lex/Yacc had the best performance, followed
by LPEG and leg, respectively.

From the benchmarks, we can see that LPEG and Lex/Yacc
have a very similar performance. We consider LPEG as a
better choice to do simple tasks. LPEG is also a simpler
tool than Lex/Yacc, and should be easier to use it.

7. CONCLUSIONS
We presented a new approach for implementing PEGs,

by compiling them to programs for a virtual parsing ma-
chine. Our motivation was to use PEGs as a formal basis
for pattern-matching, which needed an implementation with
good space and time costs.

We gave the operational semantics of our parsing machine,
and a transformation from patterns to programs for the ma-
chine, along with the corresponding proof of correctness.

In our implementation, this transformation is a compi-
lation process that is done during runtime. The compiler

builds more complex programs from simpler ones, following
rules specific to each PEG operator.

The parsing machine’s performance is competitive with
the performance of popular parsing tools.

As the machine has a very simple execution model, some-
what similar to a real CPU, it seems a perfect candidate for
a Just-In-Time (JIT) compiler. A JIT compiler should in-
crease considerably the performance of our implementation.

Another future work is to extend the execution model of
our machine to handle infinite loops, and to make the use of
patterns with left recursion possible (without rewriting the
patterns).

One point that was not discussed here was the use of se-
mantic actions during the matching process. They don’t
affect the matching process but are very useful in practice.
The use of semantic actions is presented in [7]. We will
extend the formal model of the machine to include actions.

8. ACKNOWLEDGMENTS
We would like to thank Fabio Mascarenhas for many sug-

gestions and useful comments about early versions of this
paper.

9. REFERENCES
[1] B. Ford. Packrat parsing:: simple, powerful, lazy,

linear time, functional pearl. SIGPLAN Not.,
37(9):36–47, 2002.

[2] B. Ford. Parsing expression grammars: a
recognition-based syntactic foundation. In POPL ’04:
Proceedings of the 31st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 111–122, New York, NY, USA, 2004. ACM.

[3] D. P. Friedman, C. T. Haynes, and M. Wand.
Essentials of programming languages (2nd ed.).
Massachusetts Institute of Technology, Cambridge,
MA, USA, 2001.

[4] R. Grimm. Better extensibility through modular
syntax. In PLDI ’06: Proceedings of the 2006 ACM
SIGPLAN conference on Programming language
design and implementation, pages 38–51, New York,
NY, USA, 2006. ACM.

[5] G. Hutton and E. Meijer. Monadic Parsing in Haskell.
Journal of Functional Programming, 8(4):437–444,
July 1998.

[6] R. Ierusalimschy. Programming in Lua, Second
Edition. Lua.Org, 2006.

[7] R. Ierusalimschy. A Text Pattern-Matching Tool
based on Parsing Expression Grammars. Software -
Practice and Experience, 2008 (to appear).

[8] R. Ierusalimschy, L. H. de Figueiredo, and W. C.
Filho. Lua - an extensible extension language. Software
- Practice and Experience, 26(6):635–652, 1996.

[9] D. E. Knuth. Top-down syntax analysis. Acta Inf.,
1:79–110, 1971.

[10] D. J. P. Leijen and H. J. M. Meijer. Parsec: Direct
style monadic parser combinators for the real world.
Technical Report UU-CS-2001-35, Department of
Information and Computing Sciences, Utrecht
University, 2001.

[11] LPEG: Parsing Expression Grammars For Lua.
Available at http://www.inf.puc-rio.br/˜roberto/lpeg,
2008. Visited on April 2008.

[12] peg/leg - recursive-descent parser generators for C.
Available at http://piumarta.com/software/peg/,
2008. Visited on June 2008.

[13] R. R. Redziejowski. Parsing expression grammar as a
primitive recursive-descent parser with backtracking.
Fundamenta Informaticae, 3–4(79):513–524, 2007.

[14] K. Thompson. Programming techniques: Regular
expression search algorithm. Commun. ACM,
11(6):419–422, 1968.

[15] A. Warth and I. Piumarta. Ometa: an object-oriented
language for pattern matching. In DLS ’07:
Proceedings of the 2007 symposium on Dynamic
languages, pages 11–19, New York, NY, USA, 2007.
ACM.

APPENDIX
A. EXTENDED TRANSFORMATION FROM

PATTERNS TO PROGRAMS

Matching a Character

Π(g, i, ‘c’) ≡ Char c

Concatenation

Π(g, i, p1 p2) ≡ Π(g, i, p1) Π(g, i + |Π(g, x, p1)|, p2)

Ordered Choice

Π(g, i, p1/p2) ≡ Choice |Π(g, x, p1)|+ 2

Π(g, i + 1, p1)

Commit |Π(g, x, p2)|+ 1

Π(g, i + |Π(g, x, p1)|+ 1, p2)

Not Predicate

Π(g, i, !p) ≡ Choice |Π(g, x, p)|+ 2

Π(g, i + 1, p)

FailTwice

Repetition

Π(g, i, p∗) ≡ Choice |Π(g, x, p)|+ 2

Π(g, i + 1, p)

PartialCommit − |Π(g, x, p)|

Variables

Π(g, i, Ak) ≡ Call o(g, Ak)− i

Closed Grammars

Π(g′, i, (g, Ak)) ≡ Call o(g, Ak)

Jump | Π′(g, x) | +1

Π′(g, 2)

