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Abstract. Parsing Expression Grammars (PEGs) are a new formalism
to describe a top-down parser of a language. However, error handling
techniques that are often applied to top-down parsers are not directly
applicable to PEGs. This problem is usually solved in PEGs using a
heuristic that helps to simulate the error reporting technique from top-
down parsers, but the error messages are generic. We propose the intro-
duction of labeled failures to PEGs for error reporting, as labels help to
produce more meaningful error messages. The labeled failures approach
is close to that of generating and handling exceptions often used in pro-
gramming languages, being useful to annotate and label grammar pieces
that should not fail. Moreover, our approach is an extension to the PEGs
formalism that is expressive enough to implement some previous work on
parser combinators. Finally, labeled failures are also useful to compose
grammars preserving the error messages of each separate grammar.

Keywords: parsing, error reporting, parsing expression grammars, pack-
rat parsing, parser combinators

1 Introduction

When a parser receives an erroneous input, it should indicate the existence
of syntax errors. However, a generic error message (e.g. syntax error) does
not help the programmer to find and fix the errors that the input may have.
Therefore, the least that is expected from a parser is that it should produce
an error message indicating the position of an error in the input and some
information about the context of this error. The LL and LR methods detect
syntax errors very efficiently because they have the viable prefix property, that
is, these methods detect a syntax error as soon as a token is read and cannot be
used to form a viable prefix of the language [1].

Usually, there are two ways to handle errors: error reporting and error recov-
ery. In error reporting, the parser aborts with an informative message when the
first error is found. In error recovery, the parser is adapted to not abort on the
first error, but to try processing the rest of the input, informing all errors that
it found. Such error handling techniques are described in more detail in [1] and



[5]. In this paper we focus on error reporting because error recovery can produce
cascading errors.

Parsing Expression Grammars (PEGs) [4] are a new formalism for describing
the syntax of programming languages. We can view a PEG as a formal descrip-
tion of a top-down parser for the language it describes. The syntax of PEGs has
similarities to Extended Backus-Naur Form (EBNF), but, unlike EBNF, PEGs
avoid ambiguities in the definition of the grammar’s language due to the use of
an ordered choice operator. More specifically, a parser implemented by a PEG
is a recursive descent parser with restricted backtracking. This means that the
alternatives of a non-terminal are tried in order; when the first alternative rec-
ognizes an input prefix, no other alternative of this non-terminal is tried, but
when an alternative fails to recognize an input prefix, the parser backtracks on
the input to try the next alternative.

On the one hand, PEGs are an expressive formalism for describing top-down
parsers [4]; on the other hand, PEGs cannot use error handling techniques that
are often applied to top-down parsers, because these techniques assume the
parser reads the input without backtracking [2]. In top-down parsers without
backtracking, it is possible to signal a syntax error when there is no alternative
to continue reading. In PEGs, it is more complicated to identify the cause of an
error and the position where it happened because failures during parsing are not
necessarily errors, but just an indication that the parser should backtrack and
try a different alternative.

Ford [2] provided a heuristic to the problem of error handling in PEGs.
His heuristic simulates the error reporting technique that is implemented in
top-down parsers without backtracking. However, the error messages produced
by both regular top-down parsers and parsers that use this heuristic are still
generic. The best the parsers can do is to tell the user the position where the
error happened, what was found in the input and what they were expecting.

In this paper we present a new approach for error reporting in PEGs, based
on the concept of labeled failures. In our approach, each label may be tied to a
specific error message and resembles the concept of exceptions from programming
languages. Our approach is not tied to a specific implementation of PEGs, being
an extension to the PEGs formalism itself. We show how to use labeled failures to
implement error reporting. We also show that our extension is expressive enough
to implement alternative error reporting techniques from top-down parsers with
backtracking.

The rest of this paper is organized as follows: in Section 2 we contextualize
the problem of error handling in PEGs and we also explain in detail the heuristic
that Ford used to implement error reporting. In Section 3 we discuss alternative
work on error reporting for top-down parsers with backtracking. In Section 4 we
introduce the concept of labeled failures, show how to use it for error reporting,
and show how labeled failures can encode some of the techniques of Section 3.
Finally, we draw our conclusions in Section 5.



2 Error Reporting in PEGs

In this section we use examples to present in more detail how a PEG behaves
badly on the presence of syntax errors. After that, we present a heuristic pro-
posed by Ford [2] to implement error reporting in PEGs. Rather than using the
original definition of PEGs by Ford [4], our examples use the equivalent and
more concise definition proposed by Medeiros et al. [12, 13]. We will extend this
definition in Section 4 to present a semantics for PEGs with labeled failures.

A PEG G is a tuple (V, T, P, pS) where V is a finite set of non-terminals, T
is a finite set of terminals, P is a total function from non-terminals to parsing
expressions and pS is the initial parsing expression. We describe the function P
as a set of rules of the form A← p, where A ∈ V and p is a parsing expression.
A parsing expression, when applied to an input string, either fails or consumes
a prefix of the input resulting in the remaining suffix. The abstract syntax of
parsing expressions is given as follows:

p = ε | a | A | p1p2 | p1/p2 | p ∗ | !p

Intuitively, ε successfully matches the empty string, not changing the input;
a matches and consumes itself or fails otherwise; A tries to match the expression
P (A); p1p2 tries to match p1 followed by p2; p1/p2 tries to match p1; if p1 fails,
then it tries to match p2; p∗ repeatedly matches p until p fails, that is, it consumes
as much as it can from the input; the matching of !p succeeds if the input does
not match p and fails when the the input matches p, not consuming any input
in both cases; we call it the negative predicate or the lookahead predicate.

Hereafter, we present the fragment of a PEG for the Tiny language [11] to
show how error reporting differs between top-down parsers without backtracking
and PEGs. Tiny is a simple programming language with a syntax that resembles
Pascal’s.

Tiny ← CmdSeq

CmdSeq ← (Cmd SEMICOLON) (Cmd SEMICOLON)∗
Cmd ← IfCmd / RepeatCmd / AssignCmd / ReadCmd / WriteCmd

IfCmd ← IF Exp THEN CmdSeq (ELSE CmdSeq / ε) END

RepeatCmd ← REPEAT CmdSeq UNTIL Exp

AssignCmd ← Name ASSIGNMENT Exp

ReadCmd ← READ Name

WriteCmd ← WRITE Exp

PEGs usually express the language syntax down to the character level, with-
out the need of a separate lexer. For instance, we can write the lexical rule IF

as follows:
IF← if !IDRest Skip

That is, the rule matches the keyword if provided that it is not a prefix of
an identifier and then the rule skips surrounding white spaces and comments.



The non-terminal IDRest recognizes any character that may be present on a
proper suffix of an identifier while the non-terminal Skip recognizes white spaces
and comments. In the presented fragment, we omitted the lexical rules and the
definitions of Exp and Name for brevity.

Now, we present an example of erroneous Tiny code to compare approaches
for error reporting. The program has a missing semicolon (;) in the assignment
in line 5:

1 n := 5;

2 f := 1;

3 repeat

4 f := f * n;

5 n := n - 1

6 until (n < 1);

7 write f;

A hand-written top-down parser without backtracking that aborts on the
first error presents an error message like this:

factorial.tiny:6:1: syntax error, unexpected ’until’, expecting ’;’

The error is reported in line 6 because the parser cannot complete a valid
prefix of the language, since it unexpectedly finds the token until when it was
expecting a command terminator (;).

In PEGs, we can try to report errors using the remaining suffix, but this
approach usually does not help the PEG to produce an error message like the
one shown above. In general, when a PEG finishes parsing the input, a remaining
suffix that is not the empty string means that parsing did not reach the end of file
due to a syntax error. However, this remaining suffix usually does not indicate
the position where the longest parse ends. This problem happens because the
failure of a parsing expression does not necessarily mean an error. Actually, the
failure usually means that the PEG should backtrack the input to try a different
alternative. For this reason, the remaining suffix probably indicates a position
far away from the real position where the first error happened when parsing
finishes without consuming all the input.

In our example, the problem happens when the PEG tries to recognize the
sequence of commands inside the repeat command. Even though the program
has a missing semicolon (;) in the assignment in line 5, making the PEG fail to
recognize the sequence of commands inside the repeat command, this failure is
not treated as an error. Instead, this failure makes the recognition of the repeat

command also fail. For this reason, the PEG backtracks the input to line 3 to try
other command alternatives that exist in the language. Since it is not possible to
recognize a command other than repeat in line 3, the parsing finishes without
consuming all the input. Hence, if the PEG uses the remaining suffix to produce
an error message, the PEG shows a wrong position where the error happened.

We can also make the PEG fail whenever it does not consume all the input,
instead of checking whether the remaining suffix is the empty string. To do that,



we change the starting symbol to fail when it does not reach the end of file. Even
though the failure of the PEG indicates the presence of syntax errors, it does
not indicate a possible position where the first error happened.

According to Ford [2], although there is no perfect method to identify which
information is the most relevant to report an error, using the information of the
farthest position that the PEG reached in the input is a heuristic that provides
good results. PEGs implement top-down parsers and try to recognize the input
from left to right, so the position farthest to the right in the input that a PEG
reaches during parsing usually is close to the real error [2].

Ford used this heuristic to add error reporting to his packrat parsers [2].
A packrat parser generated by Pappy [3], Ford’s PEG parser generator, tracks
the farthest position and uses this position to report an error when parsing
fails because it finished without consuming all the input. In other words, this
heuristic helps packrat parsers to simulate the error reporting technique that is
implemented in top-down parsers without backtracking.

During our research, we realized that we can use the farthest position heuris-
tic to add error reporting to any implementation of PEGs that provides semantic
actions. The idea is to annotate the grammar with semantic actions that track
the farthest failure position. For instance, in Leg [16], a PEG parser generator
with Yacc-style semantic actions, we can annotate the rule CmdSeq as follows:

CmdSeq = Cmd (";" Skip | &{ updateffp() })

(Cmd (";" Skip | &{ updateffp() }))*

The parser calls the function updateffp when the matching of a semicolon
fails. The function updateffp is a semantic action that updates the farthest
failure position in a global variable if the current parsing position is greater than
the position that is stored in this global. After the update, the semantic action
forces another failure to not interrupt backtracking.

Since this semantic action propagates failures and runs only when a pars-
ing expression fails, we could annotate all terminals and non-terminals in the
grammar without changing the behavior of the PEG. In practice, we just need
to annotate terminals to implement error reporting.

However, storing just the farthest failure position does not give the parser
all the information it needs to produce an informative error message. That is,
the parser has the information about the position where the error happened, but
it lacks the information about what terminals failed at that position. Thus, we
should include the name of the terminals in the annotations so the parser can
also track these names to compute the set of expected terminals at a certain
position.

Basically, we give an extra argument to each semantic action. This extra
argument is a hard-coded name for the terminal that we want to keep track along
with the farthest failure position. For instance, now we annotate the CmdSeq rule
in Leg as follows:

CmdSeq = Cmd (";" Skip | &{ updateffp(";") })

(Cmd (";" Skip | &{ updateffp(";") }))*



We then extend the implementation of updateffp to also update the set
of expected terminals; the update of the farthest failure position continues the
same. If the current position is greater than the farthest failure, the set contains
only the given name. If the current position equals the farthest failure, the given
name is added to the set.

Parsers generated by Pappy also track the set of expected terminals, but
with limitations. The error messages include only symbols and keywords that
were defined in the grammar as literal strings. That is, the error messages do
not include terminals that were defined through character classes.

The approach of naming terminals in the semantic actions avoids the kind
of limitation found in Pappy, though it increases the annotation burden because
who is implementing the PEG is also responsible for adding one semantic action
for each terminal and its respective name.

The annotation burden can be lessened in implementations of PEGs that
treat parsing expressions as first-class objects, as we are able to define functions
to annotate the lexical parts of the grammar to track errors, record information
about the expected terminals to produce good error messages, and enforce lexical
conventions such as the presence of surrounding white spaces. For instance, in
LPeg [7, 8], a PEG library for Lua that defines patterns as first-class objects, we
can annotate the rule CmdSeq as follows:

CmdSeq = V"Cmd" * symb(";") * (V"Cmd" * symb(";"))^0;

The function symb works like a parser combinator [6]. It receives a string
as its only argument and returns a pattern that is equivalent to the parsing
expression that we used in the Leg example. That is, symb(";") is equivalent to
";" Skip | &{ updateffp(";") }.

We implemented error tracking and reporting using semantic actions as a set
of parsing combinators on top of LPeg and used these combinators to implement
the PEG for Tiny. It produces the following error message for the example we
have been using in this section:

factorial.tiny:6:1: syntax error, unexpected ’until’,

expecting ’;’, ’=’, ’<’, ’-’, ’+’, ’/’, ’*’

We tested the PEG for Tiny with other erroneous inputs and in all cases
the PEG identified an error in the same place as a top-down parser without
backtracking. In addition, the PEG for Tiny produced error messages that are
similar to the error messages produced by packrat parsers generated by Pappy.
We annotated other grammars too and successfully obtained similar results.
However, the error messages are still generic.

3 Error Reporting in Top-Down Parsers with
Backtracking

In this section we discuss alternative approaches for error reporting in top-down
parsers with backtracking other than the heuristic explained in Section 2.



Mizushima et al. [14] proposed a cut operator (↑) to reduce the space con-
sumption of packrat parsers; the authors claimed that the cut operator can also
be used to implement error reporting in packrat parsers, but the authors did
not give any details on how the cut operator could be used for this purpose.
The cut operator is borrowed from Prolog to annotate pieces of a PEG where
backtracking should be avoided. PEGs’ ordered choice works in a similar way
to Prolog’s green cuts, that is, they limit backtracking to discard unnecessary
solutions. The cut proposed to PEGs is a way to implement Prolog’s white cuts,
that is, they prevent backtracking to rules that will certainly fail.

The semantics of cut is similar to the semantics of an if-then-else con-
trol structure and can be simulated through predicates. For instance, the PEG
(with cut) A ← B ↑ C/D is functionally equivalent to the PEG (without cut)
A ← BC/!BD that is also functionally equivalent to the rule A ← B[C,D] on
Generalized Top-Down Parsing Language (GTDPL), one of the parsing tech-
niques that influenced the creation of PEGs [2–4]. On the three cases, the ex-
pression D is tried only if the expression B fails. Nevertheless, this translated
PEG still backtracks the input whenever B successfully matches and C fails.
Thus, it is not trivial to use this translation to implement error reporting in
PEGs.

Even though error handling is an important task for parsers, we did not find
any other research about error handling in PEGs, beyond the heuristic proposed
by Ford and the cut operator proposed by Mizushima et al. However, parser
combinators [6] present some similarities with PEGs so we will briefly discuss
them for the rest of this section.

In functional programming it is common to implement recursive descent
parsers using parser combinators [6]. A parser is a function that we use to model
symbols of the grammar. A parser combinator is a higher-order function that we
use to implement grammar constructions such as sequencing and choice. Usually,
we use parser combinators to implement parsers that return a list of results. That
is, we use non-deterministic parser combinators that return a list of results to
implement recursive descent parsers with full backtracking. We get parser combi-
nators that have the same semantics as PEGs by changing the return type from
list of results to Maybe. That is, we use deterministic parser combinators that
return Maybe to implement recursive descent parsers with limited backtracking.
In this paper we are referring to deterministic parser combinators.

Like PEGs, parser combinators also use ordered choice and try to accept
input prefixes. More precisely, parsers implemented using parser combinators
also backtrack the input in case of failure. For this reason, when the input string
contains syntax errors, the longest parse usually indicates a position far away
from the position where the error really happened.

Hutton [6] introduced the nofail combinator to implement error reporting in
a quite simple way: we just need to distinguish between failure and error during
parsing. More specifically, we can use the nofail combinator to annotate the
grammar’s terminals and non-terminals that should not fail; when they fail, the
failure should be transformed into an error that aborts parsing. This technique



p1 p2 p1p2 p1 | p2

Error Error Error Error
Error Fail Error Error
Error Epsn Error Error
Error OK (x) Error Error
Fail Error Fail Error
Fail Fail Fail Fail
Fail Epsn Fail Epsn
Fail OK (x) Fail OK (x)
Epsn Error Error Error
Epsn Fail Fail Epsn
Epsn Epsn Epsn Epsn
Epsn OK (x) OK (x) OK (x)
OK (x) Error Error OK (x)
OK (x) Fail Error OK (x)
OK (x) Epsn OK (x) OK (x)
OK (x) OK (y) OK (y) OK (x)

Table 1. Behavior of sequence and choice in the four-values technique

is also called the three-values technique because the parser finishes with one of
the following values: OK, Fail or Error.

Röjemo [17] presented a cut combinator that we can also use to annotate
the grammar pieces where parsing should be aborted on failure, on behalf of effi-
ciency and error reporting. The cut combinator is different from the cut operator
(↑) for PEGs because the combinator is abortive and unary while the operator
is not abortive and nullary. The cut combinator introduced by Röjemo has the
same semantics as the nofail combinator introduced by Hutton. However, the
cut implementation uses an approach based on continuations while the nofail

implementation uses an approach based on constructs.
Partridge and Wright [15] showed that error detection can be automated in

parser combinators when we assume that the grammar is LL(1). Their main
idea is: if one alternative successfully consumes at least one symbol, no other
alternative can successfully consume any symbols. Their technique is also known
as the four-values technique because the parser finishes with one of the following
values: Epsn, when the parser finishes with success without consuming any input;
OK, when the parser finishes with success consuming some input; Fail, when
the parser fails without consuming any input; and Error, when the parser fails
consuming some input. Three values were inspired by Hutton’s work [6], but
with new meanings.

In the four-values technique, we do not need to annotate the grammar be-
cause the authors changed the semantics of the sequence and choice combinators
to automatically generate the Error value according to the table 1. In summary,
the sequence combinator propagates an error when the second parse fails after
consuming some input while the choice combinator does not try further alter-
natives if the current one consumed at least one symbol from the input. In case
of error, the four-values technique detects the first symbol following the longest
parse of the input and uses this symbol to report an error.

The four-values technique assumes that the input is composed by tokens
which are provided by a separate lexer. However, being restricted to LL(1) gram-



mars can be a limitation because parser combinators, like PEGs, usually oper-
ate on strings of characters to implement both lexer and parser together. For
instance, a parser for Tiny that is implemented with Parsec [10] does not parse
the following program: read x;. That is, the matching of read against repeat

generates an error. Such behavior is confirmed in table 1 by the third line from
the bottom.

Parsec is a parser combinator library for Haskell that employs a technique
equivalent to the four-values technique for implementing LL(1) predictive parsers
that automatically report errors [10], so in this paper we refer to Parsec using the
four-values technique. A predictive parser is a recursive descent parser without
backtracking. Parsec inspired Ford on his heuristic that tracks the longest parse
of the input to implement error reporting in packrat parsers and on the creation
of a parser combinator library for Haskell to implement packrat parsers.

The authors of Parsec introduced the try combinator to avoid the LL(1)
limitation found in the four-values technique. More precisely, we use try to
annotate parts of the grammar where arbitrary lookahead is needed, though
Parsec is a library for implementing LL(1) predictive parsers. Dual to the nofail
combinator, the try combinator transforms an error into a failure. That is, the
try combinator pretends that a parser p did not consume any input when p fails.
For this reason, it should be used carefully because it breaks Parsec’s automatic
error detection system when it is overused.

Parsec’s restriction to LL(1) grammars made it possible to implement in
the library an error reporting technique similar to the one applied to top-down
parsers. Parsec produces error messages that include the error position, the char-
acter at this position and the FIRST set of the productions that were expected
at this position. Parsec also implements the error injection combinator (<?>) for
naming productions. This combinator gets two arguments: a parser p and a string
exp. The string exp replaces the FIRST set of a parser p when all the alternatives
of p failed. This combinator is useful to name terminals and non-terminals to
get better information about the context of a syntax error.

Swierstra and Duponcheel [18] showed an implementation of parser combi-
nators for error recovery, although most libraries and parser generators that are
based on parser combinators implement only error reporting. Their work shows
an implementation of parser combinators that repair the input in case of error,
produce an appropriated message, and continue parsing the rest of the input.

4 Labeled Failures for Error Reporting

Exceptions are a common mechanism for signaling and handling errors in pro-
gramming languages. Exceptions let programmers classify the different errors
their programs may signal by using distinct types for distinct errors, and decou-
ple error handling from regular program logic.

In this section we add labeled failures to PEGs, a mechanism akin to ex-
ceptions and exception handling, with the goal of improving error reporting
preserving PEGs composability. We also discuss how to use PEGs with labels to



implement some of the techniques that we have discussed in the previous section:
the nofail combinator [6], the cut combinator [17], the four-values technique
[15] and the try combinator [10].

A labeled PEG G is a tuple (V, T, P, L, fail, pS) where L is a finite set of
labels and fail ∈ L. The other parts use the same definitions from Section 2.
The abstract syntax of labeled parsing expressions adds the throw operator ⇑l,
which generates a failure with label l, and adds an extra argument S to the
ordered choice operator, which is the set of labels that the ordered choice should
catch. S must be a subset of L.

p = ε | a | A | p1p2 | p1/
Sp2 | p ∗ | !p | ⇑l

The semantics of PEGs with labels is defined by the relation
PEG
 among a

parsing expression, an input string and a result. The result is either a string

or a label. The notation G[p] xy
PEG
 y means that the expression p matches

the input xy, consumes the prefix x and leaves the suffix y as the output. The

notation G[p] xy
PEG
 l indicates that the matching of p fails with label l on the

input xy.
Figure 1 presents the semantics of PEGs with labels using natural semantics

[19]. Intuitively, ε successfully matches the empty string, not changing the input;
a matches and consumes itself and fails with label fail otherwise; A tries to
match the expression P (A); p1p2 tries to match p1, if p1 matches an input prefix,
then it tries to match p2 with the suffix left by p1, the label l is propagated
otherwise; p1/

Sp2 tries to match p1 in the input and tries to match p2 in the
same input only if p1 fails with a label l ∈ S, the label l is propagated otherwise;
p∗ repeatedly matches p until the matching of p silently fails with label fail,
and propagates a label l when p fails with this label; !p successfully matches if
the input does not match p with the label fail, fails producing the label fail
when the input matches p, and propagates a label l when p fails with this label,
not consuming the input in all cases; ⇑l produces the label l.

We faced some design decisions in our formulation that are worth discussing.
We use fail as a label to maintain compatibility with the original semantics

of PEGs. For the same reason, we define the expression p1/p2 as syntactic sugar
for p1/

{fail}p2.
We use a set of labels in the ordered choice as a convenience. We could have

each ordered choice handling a single label, and it would just lead to duplication:
an expression p1 /{l1,l2,...,ln} p2 would become ( ... ((p1 /l1 p2) /l2 p2) ... /ln p2).

The repetition stops silently only on the fail label to maintain the following
identity: the expression p∗ is equivalent to a fresh non-terminal A plus the rule
A← p A / ε.

The negative predicate succeeds only on the fail label to allow the im-
plementation of the positive predicate: the expression &p that implements the
positive predicate in the original semantics of PEGs [2–4] is equivalent to the
expression !!p. Both expressions successfully match if the input matches p, fail
producing the label fail when the input does not match p, and propagate a
label l when p fails with this label, not consuming the input in all cases.



Empty
G[ε] x

PEG
 x

(empty.1)

Terminal
G[a] ax

PEG
 x

(char.1)
G[b] ax

PEG
 fail

, b 6= a (char.2)
G[a] ε

PEG
 fail

(char.3)

Non-terminal
G[P (A)] x

PEG
 X

G[A] x
PEG
 X

(var.1)

Concatenation
G[p1] xy

PEG
 y G[p2] y

PEG
 X

G[p1 p2] xy
PEG
 X

(con.1)
G[p1] x

PEG
 l

G[p1 p2] x
PEG
 l

(con.2)

Ordered Choice
G[p1] xy

PEG
 y

G[p1 /S p2] xy
PEG
 y

(ord.1)
G[p1] x

PEG
 l

G[p1 /S p2] x
PEG
 l

, l 6∈ S (ord.2)

G[p1] x
PEG
 l G[p2] x

PEG
 X

G[p1 /S p2] x
PEG
 X

, l ∈ S (ord.3)

Repetition
G[p] x

PEG
 fail

G[p∗] x PEG
 x

(rep.1)
G[p] xyz

PEG
 yz G[p∗] yz PEG

 z

G[p∗] xyz PEG
 z

(rep.2)

G[p] x
PEG
 l

G[p∗] x PEG
 l

, l 6= fail (rep.3)

Negative Predicate
G[p] x

PEG
 fail

G[!p] x
PEG
 x

(not.1)
G[p] xy

PEG
 y

G[!p] xy
PEG
 fail

(not.2)

G[p] x
PEG
 l

G[!p] x
PEG
 l

, l 6= fail (not.3)

Throw
G[⇑l] PEG

 l
(throw.1)

Fig. 1. Natural Semantics of PEGs with labels

Now, we use labeled failures to implement error reporting in the fragment
of the Tiny grammar that we presented in Section 2. In the following example,
the expression [p]l is syntactic sugar for (p / ⇑l). We use the expression [p]l to
annotate the pieces of the PEG that should not fail and that should generate a
label l to name the error and interrupt backtracking when they fail, saving the
error position. That is, we use the fail label only for backtracking and other
labels for tagging errors.



Tiny ← CmdSeq

CmdSeq ← (Cmd [SEMICOLON]sc) (Cmd [SEMICOLON]sc)∗
Cmd ← IfCmd / RepeatCmd / AssignCmd / ReadCmd / WriteCmd

IfCmd ← IF [Exp]eif [THEN]then [CmdSeq ]cs1(ELSE [CmdSeq ]cs2/ε) [END]end

RepeatCmd ← REPEAT [CmdSeq ]csr [UNTIL]until [Exp]erep

AssignCmd ← Name [ASSIGNMENT]bind [Exp]ebind

ReadCmd ← READ [Name]read

WriteCmd ← WRITE [Exp]write

We use labeled failures to mark only the pieces of the PEG that should not
fail. The PEG detects an error situation when parsing finishes with a certain
label that was not caught, so it can identifies the error information that is tied
to that certain label to report a more meaningful error message. For instance, if
we use this PEG for Tiny to parse the example from Section 2, parsing finishes
with the sc label and the PEG can use it to produce an error message like below:

factorial.tiny:6:1: syntax error, there is a missing ’;’

Note how the semantics of the repetition works with the rule CmdSeq. Inside
the repetition, the fail label means that there is no more commands to be
matched and the repetition should stop while the sc label means that a semicolon
(;) failed to match. It would not be possible to write the rule CmdSeq using
repetition if we had chosen to stop the repetition with any label, instead of
stopping only with the fail label, because the repetition would accept the sc

label as the end of the repetition when it should propagate this label.
Like PEGs, parsers written using parser combinators also finish with success

or failure and usually backtrack in case of failure, making it difficult to implement
error reporting. In Section 3 we have briefly discussed some related work [6, 17,
15, 10] that solve this problem. Now, we will discuss how these techniques can
be expressed using PEGs with labels.

In Hutton’s deterministic parser combinators, the nofail combinator is used
to distinguish between failure and error. We can express the nofail combinators
using PEGs with labels as follows:

nofail p ≡ p / ⇑error

That is, nofail is an expression that transforms the failure of p into an error
to abort backtracking. Note that the error label should not be caught by any
ordered choice. Instead, the ordered choice propagates this label and catches
solely the fail label. The idea is that parsing should finish with one of the
following values: success, fail or error.

The annotation of the Tiny grammar to use nofail is similar to the an-
notation we have done using labeled failures. Basically, we just need to change



the grammar to use nofail instead of [p]l. For instance, we can write the rule
CmdSeq as follows:

CmdSeq ← (Cmd (nofail SEMICOLON)) (Cmd (nofail SEMICOLON))∗

If we are writing a grammar from scratch, there is no advantage to use nofail
instead of more specific labels, as the annotation burden is the same and with
nofail we lose more specific error messages.

The cut combinator was introduced to reduce the space inefficiency of nofail,
which is space inefficient when implemented in a lazy language due to the error
propagation. The semantics of PEGs abstracts the implementation details that
differentiate cut and nofail, thus, in PEGs they are expressed in the same way.

The four-values technique changed the semantics of parser combinators to
implement predictive parsers for LL(1) grammars that automatically identify
the longest input prefix in case of error, without needing annotations in the
grammar. We can express this technique using labeled failures by transforming
the original PEG with the following rules:

JεK ≡ ⇑epsn (1)

JaK ≡ a (2)

JAK ≡ A (3)

Jp1p2K ≡ Jp1K (Jp2K / ⇑error /{epsn} ε) /{epsn} Jp2K (4)

Jp1/p2K ≡ Jp1K /{epsn} (Jp2K / ⇑epsn) / Jp2K (5)

This translation is based on three labels, epsn means that the expression
successfully finished without consuming any input, fail means that the expres-
sion failed without consuming any input, and error means that the expression
failed after consuming some input. In our translation we do not have an ok

label because a resulting suffix means that the expression successfully finished
after consuming some input. It is straightforward to check that the translated
expressions behave according to the table 1 from Section 3.

Parsec introduced the try combinator to annotate parts of the grammar
where arbitrary lookahead is needed. We need arbitrary lookahead because PEGs
and parser combinators usually operate on the character level. The authors of
Parsec also showed a correspondence between the semantics of Parsec as imple-
mented in their library and Partridge and Wright’s four-valued combinators, so
we can emulate the behavior of Parsec using labeled failures by building on the
five rules above and adding the following rule for try:

Jtry pK ≡ JpK /{error} ⇑fail (6)

If we take the Tiny grammar from Section 2, insert try in the necessary
places, and pass this new grammar through the transformation J K, then we get
a PEG that automatically identifies errors in the input with the error label.
For instance, we can write the rule RepeatCmd as follows:

RepeatCmd ← (try REPEAT) CmdSeq UNTIL Exp



5 Conclusions

In this paper we discussed error reporting in PEGs. Unfortunately, PEGs behave
badly on the presence of syntax errors because backtracking usually makes the
PEG report a position far away from the position where the error happened.
Ford [2] showed how he changed his implementation of PEGs to add his farthest
position heuristic to have error reporting in packrat parsers. We showed that we
can use this heuristic without changing the implementation of PEGs, when it
provides mechanisms to produce semantic actions. Although the farthest posi-
tion heuristic helps PEGs to produce error messages that are close to the ones
produced by predictive top-down parsers, these error messages are still generic.

The main contribution of this paper is the introduction of labeled failures
to PEGs. The new approach closely resembles the technique of generating and
handling exceptions. In this approach, the throw operator ⇑l throws labeled
failures and the ordered choice catches these failures.

We introduced labeled failures to PEGs as a way to annotate error points
in the grammar and tie them to more meaningful error messages. We showed
that PEGs with labels report an error when parsing finishes with a label that
was not caught. In practice, if we use labeled failures along with the heuristic
proposed by Ford, PEGs give specific error messages that report the right place
of the error. Furthermore, these error messages can be customized according to
the labels that are being used. We also showed that our approach can express
several techniques for error reporting on parser combinators as presented in
related work [6, 17, 15, 10].

The grammar annotation demands care: if we mistakenly annotate expres-
sions that should be able to fail, this actually modifies the behavior of the parser
beyond error reporting. In any case, labeled PEGs introduce an annotation bur-
den that is lesser than the annotation burden introduced by error productions in
LR parsers, because error productions usually introduce reduce-reduce conflicts
to the parser [9].

We implemented the semantics of PEGs with labels using Haskell as a pro-
totype to help us testing our approach. We tested the annotation of Tiny and
Lua grammars using this prototype. The tests succeeded in our goal of reporting
errors in the correct places and with specific error messages. We also tested in
our prototype the translations that we have presented in the previous section,
and successfully obtained the expected results.

Finally, labeled failures also help to compose PEGs preserving specific error
messages of each separate PEG. For instance, we can compose an annotated
PEG that parses HTML with an annotated PEG that parses JavaScript, hav-
ing specific error messages for each PEG. Composing two different PEGs is an
interesting case study to be implemented. It would be also interesting to investi-
gate other cases where exception handling may be useful in PEGs beyond error
reporting.
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