
Roberto Ierusalimschy
Luiz Henrique de Figueiredo

Waldemar Celes

OutlineOutline

 brief introduction: what is Lua
 Lua's evolution

 principles we learned

Lua is...Lua is...

 a scripting language
 interpreted (can run dynamic code)
 dynamically typed
 with (incremental) garbage collection
 strong support for strings
 also with coroutines, first-class functions with

lexical scoping, proper tail calls, etc.

Lua is...Lua is...

 a scripting language
 its main implementation

 (at least) two other implementations
 Lua-ML
 Lua2IL (.Net)

Lua is...Lua is...

 a scripting language
 its main implementation
 an embeddable language

 implemented as a library
 offers a clear API for host applications
 not only an implementation aspect!

Lua is...Lua is...

 a scripting language
 its main implementation
 an embeddable language

 embedded in a fair share of applications
 Adobe Photoshop Lightroom, LuaTeX,

nmap, wireshark, Olivetti printers, ...
 niche in games

The BeginningThe Beginning

1992: Tecgraf1992: Tecgraf

 partnership between PUC-Rio and
Petrobras (the Brazilian Oil Company)

1992: Tecgraf1992: Tecgraf

 two projects using "little languages"

DEL, for data entry PGM, to visualize geologic profiles

d

:e gasket "gasket properties"
mat s # material
d f 0 # distance
y f 0 # settlement stress
t i 1 # facing type

:p gasket.d>30
gasket.d<3000
gasket.y>335.8
gasket.y<2576.8

DELDEL
Data Entry LanguageData Entry Language

 form definition
 parameter list
 types and default values

type @track {x:number, y:number=23, z}

type @line {t:@track=@track{x=8}, z:number*}

-- create an object 't1', of type 'track'
t1 = @track {y=9, x=10, z="hi!"}

l = @line {t=@track{x=t1.y, y=t1.x}, z=[2,3,4]}

SOLSOL
SimpleSimple Object Language Object Language

 data description language
 not totally unlike XML
 BibTeX-like syntax

1992: Tecgraf1992: Tecgraf

 two projects using "little languages"
 DEL and PGM

 both shared several limitations
 decision-making facilites
 arithmetic expressions
 abstraction mechanisms

19931993

 Roberto (PGM), Luiz (DEL) and
Waldemar (PGM) got together to find a
common solution to their common
problems...

What we needed?What we needed?

 a "generic configuration language"
 a "complete" language
 easily embeddable
 portable

 Petrobras had a diverse array of machines

 as simple as possible
 non-intimidating syntax

 for end users (engineers, geologists, etc.)

As we were giving up Sol,

a friend suggested a new name...

...and Lua was born

How was Lua 1.0?How was Lua 1.0?

 not that different from Sol...
t1 = @track{x = 10.3, y = 25.9,
 title = "depth"}

How was Lua 1.0?How was Lua 1.0?

t1 = @track{x = 10.3, y = 25.9,
 title = "depth"}

function track (t)
 if not t.x then t.x = 0.0 end
 if type(t.x) ~= "number" then
 print("invalid 'x' value")
 end
 if type(t.y) ~= "number" then
 print("invalid 'y' value")
 end
end

 but quite different...

LuaLua 1.01.0

 implemented as a library
 called 1.0 a posteriori
 the simplest thing that could possibly work
 standard implementation

 precompiler with yacc/lex
 opcodes for a stack-based virtual machine

 less than 6000 lines of C code

Tables in Lua 1.0Tables in Lua 1.0

 associative arrays
 the only data structure

 still is
 records, lists, objects are just different

constructors for tables

 sugar for records:
 t.x for t["x"]

 primitive implementation
 linked lists!

Lua Lua 11.0.0

 expectations: to solve our problems with
PGM and DEL
 could be useful in other Tecgraf products

 fulfilled our expectations
 both DEL and PGM used Lua successfully
 PGM still in use today in oil platforms

 it was a big success in Tecgraf

Soon, several projects at Tecgraf
were using Lua

Lua 1.1Lua 1.1

 new users brought new demands
 several small improvements
 mainly for performance

 reference manual
 well-defined and well-documented C API

Lua 2.1Lua 2.1

 growing pressure for OO features
 several important changes

 several incompatibilities!

 cleaner C API
 no more direct references from C to Lua

objects

 constructors
 no more '@'
 simpler syntax

function a:foo (x)
 ...
end

a.foo = function (self,x)
 ...
end

a:foo(x) a.foo(a,x)

Object OrientationObject Orientation

 tables + first-class functions ≈ objects
 some (syntactical) sugar helped:

FallbacksFallbacks

 similar to exception-handling with
resumption

 delegation
 allowed prototype-based OO
 inspired by Self

 kind of minimum mechanism to get the
label "OO inside"

a = {x = 10}
b = {parent = a, y = 20}
print(b.y, b.x) --> 20, 10

Delegation at workDelegation at work

function a.foo (self)
 return self.x + self.y
end
print(b.foo(b)) --> 30

DelegationDelegation

 Lua provided only a fallback for absent
indices

 call function inherit when an index is
absent from a table

setfallback("index", inherit)

function inherit (t, f)
 if f == "parent" then -- avoid loops
 return nil
 end
 local p = t.parent
 if type(p) == "table" then
 return p[f]
 else
 return nil
 end
end

Most of the work done by the program...

DelegationDelegation

Lua 2.2 Lua 2.2 –– 2.5 2.5

 external precompiler
 faster load for large programs (metafiles)

 debug facilities
 only basic primitives

 pattern matching

Lua 3.0Lua 3.0

 problems with fallbacks
 fallbacks were not built-in, but were global
 different inheritance mechanisms from

different libraries would clash
 not a problem for small programs, without

external code

Lua 3.0Lua 3.0

 problems with fallbacks
 Lua 3.0 introduced tag methods

 each object has a numerical tag
 tag methods = fallbacks associated with tags
 incompatible with previous mechanism

 there was a "compatibility script"

Lua 3.1Lua 3.1

 functional features
 syntax for anonymous, nested functions
 since Lua 1.0, function f ... was sugar

for f = function ..., except that the
latter was not valid syntax!

foreach(t, function (k, v)
 print(k, v)
end)

button.action = function ... end

iterators

callbacks

Lexical scopingLexical scoping

 functional features
 no simple and efficient way to implement

lexical scoping
 on-the-fly compilation with no intermediate

representation + activation records in a stack
 hindered earlier adoption of nested functions

function f (x)
 return function () return %x end
end

upvalue

UpvaluesUpvalues
 "a form of proper lexical scoping"
 the frozen value of an external local variable

inside a nested function
 trick somewhat similar to Java demand for
final when building nested classes

 special syntax to avoid misunderstandings

Lua 3.2Lua 3.2

 multithreading?
 for Web servers

Lua 3.2Lua 3.2

 multithreading?
 multiple "Lua processes"

 multiple independent states in an application
 no shared memory

 would require major change in the API
 each function should get the state as an

extra argument
 instead, a single C global variable in the

code points to the running state
 extra API functions set the running state

Lua 4.0Lua 4.0

 major change in the API
 all functions got a new parameter (the state)
 no more C global variables in the code
 libraries should not use C globals, too
 concurrent C threads can each has its own

state

 we took the opportunity and made
several other improvements in the API
 stack oriented

Plans for Lua 4Plans for Lua 4..11

 multithreading?
 multiple characters in games

Plans for Lua 4Plans for Lua 4..11

 multithreading?
 problems with multithreading

 (preemption + shared memory)
 not portable
 no one can write correct programs when
a=a+1 is non deterministic

 core mechanisms originally proposed for
OS programming

 almost impossible to debug

Plans for Lua 4Plans for Lua 4..11

 multithreading?
 coroutines!

 portable implementation
 deterministic semantics
 coroutines + scheduler =

non-preemptive multithreading
 could be used as a basis for multithreading

for those that really wanted it

Plans for Lua 4Plans for Lua 4..11

 new algorithm for upvales
 allowed "true" lexical scoping!

 new algorithm for tables
 store array part in an actual array

 new register-based virtual machine
 tags replaced by metatables

 regular tables that store metamethods (old
tag methods) for the object

Plans for Lua 4Plans for Lua 4..11

 new algorithm for upvales
 allowed "true" lexical scoping!

 new algorithm for tables
 store array part in an actual array

 new register-based virtual machine
 tags replaced by metatables

 regular tables that store metamethods (old
tag methods) for the object

Too much for a minor version...

Lua 5.0Lua 5.0

 coroutines
 lexical scoping
 metatables
 boolean type, weak tables, proper tail

calls, ...
 module system

 incompatibility

ModulesModules

 tables as modules
 math.sin (sin entry in table math)

 actually not a mechanism, but a policy
 possible since Lua 1.0, but Lua itself did not

use it

 several facilities for free
local m = mod local renaming

local foo = mod.foo unqualified import

mod.submod.foo(...) submodules

Lua 5.Lua 5.11

 incremental garbage collector
 demand from games

 better support for modules
 more policies
 functions to help following "good practice"

 support for dynamic libraries
 not portable!
 the mother of all (non-portable) libraries
 this support cannot be dynamically loaded!

Principles we learnedPrinciples we learned

Principles we learnedPrinciples we learned

 it is much easier to add a missing feature
than to remove an excessive one
 nevertheless, we have removed several

features

 it is very hard to anticipate all implications
of a new feature
 clash with future features

Principles we learnedPrinciples we learned

 "Mechanisms instead of policies"
 effective way to avoid tough decisions
 type definitions in Lua 1.0
 delegation in Lua 2.1
 coroutines
 did not work with modules...

Principles we learnedPrinciples we learned

 emphasis on embedding
 portability

 development for a single and very well
documented platform: ANSI C

 keep it simple
 ?

Growth in Growth in lineslines of of codecode

 a proxy for complexity...

1.0

1.1

2.1

2.2

2.4

2.5

3.0 3.1

3.2 4.0

5.0

5.1

Roberto Ierusalimschy
Luiz Henrique de Figueiredo

Waldemar Celes

