
LPEG: a new approach to patternLPEG: a new approach to pattern
matchingmatching

Roberto Ierusalimschy

LPEG

PEG: Parsing ExpressionPEG: Parsing Expression
GrammarsGrammars
• not totally unlike context-free grammars
• emphasis on string recognition

• not on string generation
• incorporate useful constructs from pattern-

matching systems
• a*, a?, a+

• key concepts: restricted backtracking and
predicates

LPEG

Short historyShort history

• restricted backtracking and the not
predicate first proposed by Alexander
Birman, ~1970

• later described by Aho & Ullman as TDPL
(Top Down Parsing Languages) and
GTDPL (general TDLP)
• Aho & Ullman. The Theory of Parsing, Translation

and Compiling. Prentice Hall, 1972.

• revamped by Bryan Ford, MIT, in 2002
• pattern-matching sugar
• Packrat implementation

LPEG

PEGs basicsPEGs basics

• to match A, match B followed by C
followed by D

• if any of these matches fails, try E
followed by F

• if all options fail, A fails

A <- B C D / E F / ...

LPEG

Restricted BacktrackingRestricted Backtracking

• to match A, try first A1
• if it fails, backtrack and try A2
• repeat until a match
• once an alternative matches, no more

backtrack for this rule
• even if B fails!

S <- A B
A <- A1 / A2 / ...

LPEG

Example: greedy repetitionExample: greedy repetition

• ordered choice makes repetition greedy
• restricted backtracking makes it blind
• matches maximum span of As

• possessive repetition

S <- A* S <- A S / ε

LPEG

Non-blind greedy repetitionNon-blind greedy repetition

• ordered choice makes repetition greedy
• whole pattern only succeeds with B at the

end
• if ending B fails, previous A S fails too

• engine backtracks until a match
• conventional greedy repetition

S <- A S / B

LPEG

Non-blind non-greedy repetitionNon-blind non-greedy repetition

• ordered choice makes repetition lazy
• matches minimum number of As until a B

• lazy (or reluctant) repetition

S <- B / A S

LPEG

PredicatesPredicates

• check for a match without consuming input
• allows arbitrary look ahead

• !A (not predicate) only succeeds if A fails
• either A or !A fails, so no input is consumed

• !. matches end of input
• any character fails

• &A (and predicate) is sugar for !!A

LPEG

Predicates: examplePredicates: example

• predicates allow PEGs for non context-
free languages

• next grammar matches anbncn

S <- &P1 P2
P1 <- AB 'c'
AB <- 'a' AB 'b' / ε
P2 <- 'a'* BC !.
BC <- 'b' BC 'c' / ε

LPEG

PEG x (real) regular expressionsPEG x (real) regular expressions

• regular expressions are too limited
• problems with captures and non-greedy

repetitions
• problems with complement

• PEG allows whole grammars
• nesting, etc.

LPEG

PEG x PEG x ""regular expressionsregular expressions""

• PEG has a clear and formally-defined
semantics
• instead of a set of ad-hoc operators

• PEG has a clear and formally-defined
performance model
• no need for ad-hoc optimizations

• PEG allows a simple and efficient
implementation
• parsing machines

LPEG

LPEG: PEG for LuaLPEG: PEG for Lua

• a small library for pattern matching based
on PEGs

• SNOBOL tradition: language constructors
to build patterns
• verbose, but clear

letter = lpeg.R("az")
digit = lpeg.R("09")
alphanum = letter + digit

LPEG

LPEG basic constructsLPEG basic constructs

lpeg.R("xy") -- range
lpeg.S("xyz") -- set
lpeg.P("name") -- literal
lpeg.P(number) -- that many characters
P1 + P2 -- ordered choice
P1 * P2 -- concatenation
-P -- not P
P1 - P2 -- P1 if not P2
P^n -- at least n repetitions
P^-n -- at most n repetitions

LPEG

V = lpeg.V
addop = lpeg.S"+-"
mulop = lpeg.S"*/"
number = lpeg.R"09"^1

exp = lpeg.P{"Exp",
 Exp = V"Factor" * (addop * V"Factor")^0,
 Factor = V"Term" * (mulop * V"Term")^0,
 Term = number + "(" * V"Exp" * ")"
}

LPEG grammarsLPEG grammars

• described by tables
• lpeg.V creates a non terminal

LPEG

SearchSearch

• unlike most pattern-matching tools, LPEG
has no implicit search
• works only in anchored mode

• search is easily expressed within the
pattern:

(1 - P)^0 * P

{ P + 1 * lpeg.V(1) }

LPEG

CapturesCaptures

• patterns that create values based on
matches
• lpeg.C(patt) - captures the match
• lpeg.P(patt) - captures the current position
• lpeg.Cc(values) - captures 'value'
• lpeg.Ct(patt) - creates a list with the

nested captures
• lpeg.Ca(patt) - "accumulates" the nested

captures

LPEG

Captures: examplesCaptures: examples

function split (s, sep)
 sep = lpeg.P(sep)
 local elem = lpeg.C((1 - sep)^0)
 local p = elem * (sep * elem)^0
 return lpeg.match(p, s)
end

split("a,b,,", ",") --> "a", "b", "", ""

LPEG

Captures: examplesCaptures: examples

function split (s, sep)
 sep = lpeg.P(sep)
 local elem = lpeg.C((1 - sep)^0)
 local p = lpeg.Ct(elem * (sep * elem)^0)
 return lpeg.match(p, s)
end

split("a,b,,", ",") --> {"a", "b", "", ""}

LPEG

SubstitutionsSubstitutions

• No special function; done with captures
• lpeg.Cs(patt) - captures the match, with

nested captures replaced by their values
• patt / string - captures 'string', with

marks replaced by nested captures
• patt / table - captures 'table[match]'
• patt / function - applies 'function' to

match

LPEG

Substitutions: exampleSubstitutions: example

digits = lpeg.C(lpeg.R"09"^1)
letter = lpeg.C(lpeg.R"az")
Esc = lpeg.P"\\"

Char = (1 - Esc)
 + Esc * digits / string.char
 + Esc * letter / { n = "\n", t = "\t",
 ...
 }

p = lpeg.Cs(Char^0)
p:match([[\n\97b]]) --> "\nab"

LPEG

Substitutions: exampleSubstitutions: example

local Q = lpeg.P'"'
local R = (1 - lpeg.S',"\n')
local IQ = (1 - Q) + (Q * Q / '"')
local field = Q * lpeg.Cs(IQ^0) * Q
 + lpeg.C(R^0)

local End = lpeg.P'\n' + -1

local record = field * (',' * field)^0 * End

function csv (s)
 return lpeg.match(record, s)
end

LPEG

ImplementationImplementation

• Any PEG can be recognized in linear time
• but constant is too high
• space is also linear!

• LPEG uses a parsing machine for
matching
• each pattern represented as code for the PM
• backtracking may be exponential for some

patterns
• but has a clear performance model
• quite efficient for "usual" patterns

LPEG

ConclusionsConclusions

• PEG offers a nice conceptual base for
pattern matching

• LPEG implements PEG with a
performance competitive with other
pattern-matching tools

• for those that do not like its verboseness,
there is a module that accepts regexp-like
notation
• some limitations when using other Lua values

