
The Implementation of Lua 5.0

Roberto Ierusalimschy
Luiz Henrique de Figueiredo

Waldemar Celes

Lua
th

e
lan

guage

1

MAIN GOALS

• Portability

• ANSI C and C++

• avoid dark corners

• Simplicity

• small size

• Efficiency

2

VALUES AND OBJECTS

• Values represent all Lua values

• Objects represent values that involve memory allocation

• strings, tables, functions, heavy userdata, threads

• Representation of Values: tagged unions

typedef union { typedef struct lua_TValue {

GCObject *gc; Value value;

void *p; int tt

lua_Number n; } TValue;

int b;

} Value;

3

OBJECTS

• Pointed by field GCObject *gc in values

• Union with common head:

GCObject *next; lu_byte tt; lu_byte marked

• Redundant tag used by GC

• Strings are hibrid

• Objects from an implementation point of view

• Values from a semantics point of view

4

STRINGS

• Represented with explicit length

• Internalized

• save space

• save time for comparison/hashing

• more expensive when creating strings

5

IMPLEMENTATION OF TABLES

• Each table may have two parts, a “hash” part and an “array” part

• Example:
{n = 3; 100, 200, 300}

100

200

300

nil

Header

n 3

nil

6

TABLES: HASH PART

• Hashing with internal lists for collision resolution

• Run a rehash when table is full:

nil

val

linkvaluekey

 0
→ insert key 4 →

nil

val

link

nil

val

valuekey

 0

 4

7

TABLES: HASH PART (2)

• Avoid secondary collisions, moving old elements when inserting new
ones

nil

val

link

nil

val

valuekey

 0

 4 → insert key 3 →

nil

val

val

link

val

valuekey

 0

 4

 3

8

TABLES: ARRAY PART

• Problem: how to distribute elements among the two parts of a table?

• or: what is the best size for the array?

• Sparse arrays may waste lots of space

• A table with a single element at index 10,000 should not have
10,000 elements

9

TABLES: ARRAY PART (2)

• How should next table behave when we try to insert index 5?

a = {n = 3; 100, 200, 300}; a[5] = 500

100

200

300

nil

Header

n 3

nil

5 500

nil

Header

100

200

300

nil

n 3

nil

500

nil

nil

nil

10

COMPUTING THE SIZE OF A TABLE

• When a table rehashes, it recomputes the size of both its parts

• The array part has size N , where N satisfies the following rules:

• N is a power of 2

• the table contains at least N/2 integer keys in the interval [1, N]

• the table has at least one integer key in the interval [N/2 + 1, N]

• Algorithm is O(n), where n is the total number of elements in the
table

11

COMPUTING THE SIZE OF A TABLE (2)

• Basic algorithm: to build an array where ai is the number of integer
keys in the interval (2i−1,2i]

• array needs only 32 entries

• Easy task, given a fast algorithm to compute ⌊log2 x⌋

• the index of the highest one bit in x

12

COMPUTING THE SIZE OF A TABLE (3)

• Now, all we have to do is to traverse the array:

total = 0
bestsize = 0
for i=0,32 do
if a[i] > 0 then

total += a[i]
if total >= 2^(i-1) then

bestsize = i
end

end
end

13

VIRTUAL MACHINE

• Most virtual machines use a stack model

• heritage from Pascal p-code, followed by Java, etc.

• Example in Lua 4.0:

while a<lim do a=a+1 end

3 GETLOCAL 0 ; a
4 GETLOCAL 1 ; lim
5 JMPGE 4 ; to 10
6 GETLOCAL 0 ; a
7 ADDI 1
8 SETLOCAL 0 ; a
9 JMP -7 ; to 3

14

ANOTHER MODEL FOR VIRTUAL MACHINES

• Stack-machine instructions are too low level

• Interpreters add high overhead per instruction

• Register machines allow more powerful instructions

ADD 0 0 [1] ; a=a+1

• Overhead to decode more complex instruction is compensated by
fewer instructions

• “registers” for each function are allocated on the execution stack at
activation time

• large number of registers (up to 256) simplifies code generation

15

INSTRUCTION FORMATS

• Three-argument format, used for most operators

0561314222331

C B A OP

• All instructions have a 6-bit opcode

• Operand A refers to a register

• Operands B and C can refer to a register or a constant

• a constant can be any Lua value, stored in an array of constants
private to each function

16

INSTRUCTION EXAMPLES

ADD 0 0 259 ; a = a+1

DIV 0 259 0 ; a = 1/a

GETTABLE 0 1 260 ; a = t.x

SETTABLE 0 1 260 ; t.x = a

• assuming that the variable a is in register 0, t is in register 1, the number 1 is at
index 3 in the array of constants, and the string "x" is at index 4.

17

INSTRUCTION FORMATS

• There is an alternative format for instructions that do not need three
arguments or with arguments that do not fit in 9 bits

• used for jumps, access to global variables, access to constants
with indices greater than 256, etc.

056131431

Bx A OP

18

INSTRUCTION EXAMPLES

GETGLOBAL 0 260 ; a = x

SETGLOBAL 1 260 ; x = t

LT 0 259 ; a < 1 ?

JMP * 13

• assuming that the variable a is in register 0, t is in register 1, the number 1 is at
index 3 in the array of constants, and the string "x" is at index 4.

• conceptually, LT skips the next instruction (always a jump) if the test fails. In the
current implementation, it does the jump if the test succeeds.

• jumps interpret the Bx field as a signed offset (in excess-217)

19

CODE EXAMPLE

(all variables are local)

while i<lim do a[i] = 0 end

-- Lua 4.0

2 GETLOCAL 2 ; i
3 GETLOCAL 1 ; lim
4 JMPGE 5 ; to 10
5 GETLOCAL 0 ; a
6 GETLOCAL 2 ; i
7 PUSHINT 0
8 SETTABLE
9 JMP -8 ; to 2

-- Lua 5.0

2 JMP * 1 ; to 4
3 SETTABLE 0 2 256 ; a[i] = 0
4 LT * 2 1 ; i < lim?
5 JMP * -3 ; to 3

20

CLOSURES

• Lua has first-class functions with lexical scoping

• Variables in each function may have different scopes

local a =
local x = 0
for i = 1, N do
local y = i
a[i] = function (z) y=z; return x+y end

end

• Small implementation rules out complex algorithms

• One-pass compiler cannot know in advance whether a variable is
used by a inner function

• How to assign variables to the stack?

21

IMPLEMENTATION OF CLOSURES (1/4)

• All variables go to the stack

• Use of upvalues to represent external variables

• When a Closure is created, it searchs for an upvalue for each of its
external variables

• if upvalue not found, create a new one

• search is fast, because lists are typically very short

22

IMPLEMENTATION OF CLOSURES (2/4)

x

y

top

pending vars.

stack

x

y

x

y

top

pending vars.

stack

x

y

new closure new closure

23

IMPLEMENTATION OF CLOSURES (3/4)

• All accesses to external variables are through a pointer in the upvalue

• When an upvalue in the stack goes out of scope, the upvalue is
closed

• upvalue is removed from list

• the value is copied to an area in the upvalue itself

• the upvalue points to itself

24

IMPLEMENTATION OF CLOSURES (4/4)

top

top

x

y

stack

x

closure

y

pending vars.

x

y

pending vars.

stack

x

y

closure

25

INCREMENTAL GARBAGE COLLECTOR

• Uses a three-color algorithm

• white objects are not marked

• grey objects are marked but not traversed

• black objects are marked and traversed

• Main invariant: black objects never point to white objects

• Well known, but with several undocumented details

26

THREE-COLOR ALGORITHM: MARK

• Mark root objects as grey

• At each step, traverses a grey object (turning it black) and mark new
accessible objects as grey

• Stops when there are no more grey objects; white objects are
garbage

• Write barrier detects when storing a white object into a black one

• Optimization: stacks are always grey

• avoids barrier when writing to stacks

27

THREE-COLOR ALGORITHM: ATOMIC STEP

• Traverses stacks

• Separates dead userdata with finalizers

• Traverses them

• Clears weak tables

• Changes white objects to dead

• trick: toggles between two whites

28

THREE-COLOR ALGORITHM: SWEEP

• Sweep all objects

• Collect dead objects

• Change black objects to white

29

GARBAGE-COLLECTOR DETAILS

• Upvalues x dead threads

• dead threads are not traversed in the atomic step but when alive
they may have changed value pointed by an upvalue

• because threads have no barrier, upvalue may point to dead object

• solution: traverse all open upvalues in the atomic step

30

GARBAGE-COLLECTOR DETAILS (2)

• Granularity

• several tasks are atomic

• seems to be no problem in real use

• Step size

• how much to do at each step?

• how to compare ?step size? across different phases?

• Collector speed

• stops between steps and between collections

31

FINAL REMARKS

• Lexical scoping: no overhead for non users

• Virtual machine: good performance gains

• plus potential gains with CSE optimizations

• compiler for register-based machine is more complex

• Representation for tables

• arrays save more than 50% memory

• efficient representation both for dense and sparse arrays

• Incremental Garbage Collector

32

