
Why (and why not) Lua?

Roberto Ierusalimschy



2

Why do we need multiple languages?

Wouldn't the world be better if everybody 
used the same programming language?

After all, programming languages have 
strong network effects!



3

Network Effect

● I should learn the most popular language.
– to find a job

● I should use the most popular language.
– to find programmers

● I should use the most popular language.
– to find libraries, documentation, etc.

● I should use the language I am already using.
– to not have to learn a new language



4

Fact: if we all settled for arguments like “it 
would be good to use the same language 
as X” or “language X is better known than 
Y”, we would all be using Fortran today.

Why are we not?



5

Very Simplified Story

● FORTRAN (FORmula TRANslator) was 
specialized for scientific computation.

● COBOL (COmmon Business-Oriented 
Language) was created, specialized for 
commercial-oriented sofware.

● There were also Algol and Lisp...

But why do we need multiple languages?



6

PL/I

● A truly general-purpose programming language
– “FORTRAN VI is not intended to be compatible with 

any known FORTRAN IV. It includes the functional 
capabilities of FORTRAN IV as well as those 
capabilities normally associated with 'commercial' 
and 'algorithmic' languages.”

● Championed by IBM
– this was 1964

● Why was PL/I not a big success?
– compare its usage with Fortran and Cobol



7

A programming 
language is not a pile 
of features.



8

The “Subset Fallacy”

● I can use only the features I like/need.
● Features that I do not use do not affect me.
● The bigger the pile, the better the language.



9

The “Subset Fallacy”

● Bugs frequently involve parts that you think you 
are not using
– so you should know them for debugging

● Other people's code involves parts that you do 
not use
– so you should know them for maintenance

– so you should know them to use libraries



10

The “Subset Fallacy”

● Compilers and interpreters must support the 
entire language
– extra features make them larger, more complex, 

and slower

– many features hamper optimizations   



11

The “Subset Fallacy”

● The main benefits offered by a programming 
language are not only what it allows us to do, 
but also what it prevents us from doing!
– stack overflows!

– memory safety



12

The design of a language involves many trade-
offs, and we need explicit goals and priorities to 
settle these trade-offs. Different languages choose 
different goals, and therefore settle these trade-
offs in different directions. Like any tool, no 
language is good for everything.



13

How Does Lua Solve Trade-offs?

● A set of explicit goals that we prioritize:
– scripting

– portability

– small size

– simplicity



14

How Does Lua Solve Trade-offs?

● Also, pragmatism!
● Other secondary goals:

– performance

– friendliness to non programmers (simplicity)



15

How does that work in practice?

attained goals



16

Scripting

● Scripting language x dynamic language
● Program written in two languages

– a scripting language and a system language

● System language implements the hard parts
– algorithms, data structures

– reasonably stable parts

● Scripting language connects those parts
– flexible, easy to change



17

The Two Sides of Scripting

● Extending: an application written in an 
extensible language calls libraries/functions in 
the system language

● Embedding: an application written in the system 
language calls libraries/functions in an 
extension language

● Lua has been designed to excel in both 
scenarios!



18

Portability

● Runs in virtually any platform
– Posix (Linux, BSD, etc.), OS X, Windows, Android, iOS, 

Arduino, Raspberry Pi, Symbian, Nintendo DS, PSP, 
PS3, IBM z/OS, etc.

– written in ANSI C

● Runs inside OS kernels
– NetBSD

● Runs directly on the bare metal, without an OS
– NodeMCU ESP8266



19

Size

Lua 5.3

Lua 1.0

Lua 5.2

Lua 5.1
Lua 5.0

Lua4.0



20

Simplicity

Reference manual with ~100 pages

(SPINE)

Documents the language, the 
C API, and the standard 
libraries.



21

Simplicity

● Few but powerful mechanisms
● Associative arrays (aka Tables)

– implements all data structures (maps, arrays, 
structures, objects, modules, etc.)

● Closures
● Coroutines



22

How does that work in practice?

Some case studies



23



24

Scripting in Grim Fandango
“[The engine] doesn't know anything about adventure 

games, or talking, or puzzles, or anything else that makes 
Grim Fandango the game it is. It just knows how to render a 
set from data that it's loaded and draw characters in that set.
[…]

“The real heroes in the development of Grim Fandango 
were the scripters. They wrote everything from how to 
respond to the controls to dialogs to camera scripts to door 
scripts to the in-game menus and options screens. […]

“A TREMENDOUS amount of this game is written in Lua. 
The engine, including the Lua interpreter, is really just a small 
part of the finished product.”

Bret Mogilefsky



25

Games

● Embeddability
– real embedding (as opposed to extending)

● Easy for non programmers
– game designers (scripters)

● Small size
● Portability

– Grim Fandango runs on Linux, OS X, PlayStation, Android, 
iOS, Nintendo Switch 

● Performance



26

Embedded Systems

   TVs (Samsung), Routers (Cisco, Technicolor), 
Keyboards (Logitech), Car panels (Volvo, 
Mercedes), Printers (Olivetti, Océ), Set-top boxes 
(Verison, Ginga), Calculators (Texas Instruments), 
Mobiles (Huawei), IoT (Sierra Wireless, 
NodeMCU), …



27

Embedded Systems (and IoT)

● Portability
● Small size

– often, not small enough

● Scripting
– isolation from the hardware and low-level stuff

● Easy for non programmers



28



29

Scripting Applications

● Scripting
● Easy for non programmers
● Small size



30

Why not Lua?



31

Good reasons for not using Lua

● When there are better options ;-)
● Restricted memory, both large and small

– GC, few data types

– no direct control over memory use

● Hard real-time systems
– no direct control over CPU use (GC, re-hashing, 

pattern matching)

● Quick-and-dirty programs when missing a key 
library



32

Bad reasons for not using Lua

● Nitpicking
● Hard to find programmers

– easy to learn (!)

● Missing libraries (?)
– writing a library is usually hard, but writing a binding 

is usually not



33

Conclusions

● Language design involves trade-offs
– either consciously or unconsciously

● No language is good for everything
● Most large software projects involve several 

different languages
● Lua is very explicit about its set of goals



34


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

