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Abstract. The best exact algorithms for the Capacitated Vehicle Routing Problem (CVRP)
have been based on either branch-and-cut or Lagrangean relaxation/column generation. This
paper presents an algorithm that combines both approaches: it works over the intersection of
two polytopes, one associated with a traditional Lagrangean relaxation over q-routes, the other
defined by bound, degree and capacity constraints. This is equivalent to a linear program with
exponentially many variables and constraints that can lead to lower bounds that are superior
to those given by previous methods. The resulting branch-and-cut-and-price algorithm can
solve to optimality all instances from the literature with up to 135 vertices. This more than
doubles the size of the instances that can be consistently solved.

1. Introduction

Let G = (V,E) be an undirected graph with vertices V = {0, 1, . . . , n}. Vertex 0
represents the depot, whereas all others represent clients, each with an associated
positive demand d(·). Each edge e ∈ E has a nonnegative length `(e). Given G
and two positive integers (K and C), the Capacitated Vehicle Routing Problem

(CVRP) consists of finding routes for K vehicles satisfying the following con-
straints: (i) each route starts and ends at the depot, (ii) each client is visited by
a single vehicle, and (iii) the total demand of all clients in any route is at most
C. The goal is to minimize the sum of the lengths of all routes. This classical
NP-hard problem is a natural generalization of the Travelling Salesman Prob-
lem (TSP), and has widespread application itself. The CVRP was first proposed

Ricardo Fukasawa: School of Industrial and Systems Engineering, GeorgiaTech, USA. e-mail:
rfukasaw@isye.gatech.edu.
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Brazil. e-mail: {poggi,mreis}@inf.puc-rio.br.

Eduardo Uchoa: Departamento de Engenharia de Produção, Universidade Federal Fluminense,
Brazil. e-mail: uchoa@producao.uff.br.

Renato F. Werneck: Department of Computer Science, Princeton University, USA. e-mail:
rwerneck@cs.princeton.edu.

Mathematics Subject Classification (1991): 20E28, 20G40, 20C20

? Corresponding author.



2 Ricardo Fukasawa et al.

in 1959 by Dantzig and Ramser [14] and has received close attention from the
optimization community since then.

A landmark exact algorithm for the CVRP, presented in 1981 by Christofides,
Mingozzi and Toth [12], uses a Lagrangean bound from minimum q-route sub-
problems. A q-route is a walk that starts at the depot, traverses a sequence of
clients with total demand at most C, and returns to the depot. Some clients may
be visited more than once, so the set of valid CVRP routes is strictly contained
in the set of q-routes. The resulting branch-and-bound algorithm could solve
instances with up to 25 vertices, a respectful size at the time.

Several other algorithms using Lagrangean relaxation appear in the liter-
ature. Christofides et al. [12] also describe a lower bound based on k-degree
center trees, which are minimum spanning trees having degree K ≤ k ≤ 2K
on the depot, plus 2K − k least-cost edges. Lagrangean bounds based on K-
trees (sets of n + K − 1 edges spanning V ) having degree 2K in the depot were
used by Fisher [16] and by Martinhon, Lucena, and Maculan [30], among others.
Miller [31] presented an algorithm based on minimum b-matchings having degree
2K at the depot and 2 on the remaining vertices. Lagrangean bounds can be
improved by dualizing capacity inequalities [16,31] and also comb and multistar
inequalities [30].

Another family of exact algorithms stems from the formulation of the CVRP
as a set partitioning problem by Balinski and Quandt [8]. A column covers a set
of vertices S with total demand not exceeding C and has the cost of a minimum
route over {0} ∪S. Unfortunately, the formulation is not practical because pric-
ing over the exponential number of columns requires the solution of capacitated
prize-collecting TSPs, a problem almost as difficult as the CVRP itself. Agarwal,
Marthur and Salkin [3] proposed a column generation algorithm on a modified
set partitioning problem where column costs are given by a linear function over
the vertices yielding a lower bound on the actual route cost. Columns with the
modified cost can be priced by solving easy knapsack problems. Hadjiconstanti-
nou et al. [19] derive lower bounds from heuristic solutions to the dual of the
set partitioning formulation. The dual solutions are obtained by the so-called
additive approach, combining the q-route and k-shortest path relaxations.

For further information and comparative results on the algorithms mentioned
above, we refer the reader to the surveys by Toth and Vigo [38,39].

Recent research on the CVRP has been concentrated on the polyhedral de-
scription of the convex hull of the edge incidence vectors that correspond to
K feasible routes and on the development of effective separation procedures
[1,4,6,7,13,24,32]. In particular, Araque et al. [5], Augerat et al. [7], Blasum
and Hochstättler [10], Ralphs et al. [37], Achuthan, Caccetta, and Hill [2] and
Lysgaard, Letchford, and Eglese [29] describe complete branch-and-cut (BC) al-
gorithms. These are the best exact methods currently available for the CVRP.
However, the addition of several elaborate classes of cuts does not guarantee tight
lower bounds, especially for large values of K (K ≥ 7, say). Closing the resulting
duality gap usually requires exploring several nodes in the branch-and-cut tree.
Even resorting to massive computational power (up to 80 processors running in
parallel in a recent work by Ralphs [36,37]) several instances with fewer than 80
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vertices, including some proposed more than 30 years ago by Christofides and
Eilon [11], can not be solved at all. In fact, branch-and-cut algorithms for the
CVRP seem to be experiencing a “diminishing returns” stage, where substan-
tial theoretical and implementation efforts achieve practical results that are only
marginally better than those of previous works.

We present a new exact algorithm for the CVRP that seems to break through
this situation. The main idea is to combine the branch-and-cut approach with
the q-routes approach (which we interpret as column generation instead of the
original Lagrangean relaxation) to derive superior lower bounds. Since the re-
sulting formulation has an exponential number of both columns and rows, this
leads to a branch-and-cut-and-price (BCP) algorithm. Computational experi-
ments over the main instances from the literature show that this algorithm is
very consistent, solving all instances from the literature with up to 135 vertices.
Eighteen open instances were solved for the first time.

The idea of combining column and cut generation to improve lower bounds
has rarely been used, since new dual variables corresponding to separated cuts
may have the undesirable effect of changing the structure of the pricing sub-
problem, making it intractable. In the late 1990’s, several researchers [41,21,
22,40,15,9] independently noted that cuts expressed in terms of variables from
a suitable original formulation could be dynamically separated, translated and
added to the master problem. Those cuts do not change the structure of the
pricing subproblem. This observation allowed the construction of what we call
robust branch-and-cut-and-price algorithms.

Poggi de Aragão and Uchoa [35] present a detailed discussion on this subject,
including new reformulation techniques that extend the applicability of robust
branch-and-cut-and-price algorithms to virtually any combinatorial optimization
problem. This article on the CVRP is part of a larger effort to demonstrate that
these methods lead to significant improvements on a wide variety of problems.
Major advances have already been reported on three other problems: capacitated
minimum spanning tree [17], generalized assignment [34] and capacitated arc
routing problem [27].

This article is organized as follows. Section 2 describes the integer program-
ming formulation we will deal with. Section 3 gives a general description of our
algorithm, including its two main components: column and cut generation. Fol-
lowing the work of Irnich and Villeneuve [20] on the VRP with time windows,
our column generation procedure eliminates q-routes with small cycles. The sep-
aration routines are based on the families of inequalities recently discussed by
Letchford, Eglese, and Lysgaard [24,29]. Section 4 presents an empirical analysis
of our method. Final remarks are made in Section 5.

2. The New Formulation

A classical formulation for the CVRP [23] represents by xij the number of times
a vehicle traverses the edge (i, j) ∈ E. The set of client vertices is denoted by
V+ = {1, . . . , n}. Given a set S ⊆ V+, let d(S) be the sum of the demands of all
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vertices in S, and let δ(S) be the cut-set defined by S. Also, let k(S) = dd(S)/Ce.
Define the following polytope in R|E|:

P1 =







































∑

e∈δ({i})

xe = 2 ∀ i ∈ V+ (1)

∑

e∈δ({0})

xe = 2 · K (2)

∑

e∈δ(S)

xe ≥ 2 · k(S) ∀S ⊆ V+ (3)

xe ≤ 1 ∀ e ∈ E \ δ({0}) (4)
xe ≥ 0 ∀ e ∈ E .

Constraints (1) state that each client is visited once by some vehicle, whereas
(2) states that K vehicles must leave and enter the depot. Constraints (3) are
rounded capacity inequalities, which require all subsets to be served by enough
vehicles. Constraints (4) enforce that each edge not adjacent to the depot is
traversed at most once (edges adjacent to the depot can be used twice when
a route serves only one client). The integer vectors x in P1 define all feasible
solutions for the CVRP. There are exponentially many inequalities of type (3),
so the lower bound given by

L1 = min
x∈P1

∑

e∈E

`exe

must be computed by a cutting plane algorithm.
Alternatively, a formulation with an exponential number of columns can be

obtained by defining variables (columns) that correspond to q-routes without
2-cycles (subpaths i → j → i, i 6= 0). Restricting the q-routes to those without
such cycles improves the formulation and does not change the complexity of the
pricing [12]. Let Q be an m×p matrix where the columns are the edge incidence
vectors of all p such q-routes. Let qe

j be the coefficient associated with edge e in

the j-th column of Q. Consider the following polytope in R|E|, defined as the
projection of a polytope in Rp+|E|:

P2 = projx
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∑

j=1

qe
j · λj − xe = 0 ∀e ∈ E (5)

p
∑

j=1

λj = K (6)
∑

e∈δ({i})

xe = 2 ∀ i ∈ V+ (1)

xe ≥ 0 ∀ e ∈ E
λj ≥ 0 ∀ j ∈ {1, . . . , p} .

Constraints (5) define the coupling between variables x and λ. Constraint (6)
defines the number of vehicles to use. It can be shown that the set of integer vec-
tors in P2 also defines all feasible solutions for the CVRP. Due to the exponential
number of variables λ, the lower bound given by

L2 = min
x∈P2

∑

e∈E

`exe
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must be computed using column generation or Lagrangean relaxation.
The description of polyhedra associated with column generation or Lagrang-

ean relaxation in terms of two sets of variables, λ and x, used in the definition
of P2, is called Explicit Master in [35]. The main contribution of this article is
a formulation that amounts to optimizing over the intersection of polytopes P1

and P2. The Explicit Master format describes such intersection as follows:

P3 = P1∩P2 = projx















































































∑

e∈δ({i})

xe = 2 ∀ i ∈ V+ (1)

∑

e∈δ({0})

xe = 2 · K (2)

∑

e∈δ(S)

xe ≥ 2 · k(S) ∀S ⊆ V+ (3)

xe ≤ 1 ∀ e ∈ E \ δ({0}) (4)
p
∑

j=1

qe
j · λj − xe = 0 ∀e ∈ E (5)

p
∑

j=1

λj = K (6)

xe ≥ 0 ∀ e ∈ E
λj ≥ 0 ∀ j ∈ {1, . . . , p} .

Constraint (6) can be discarded, since it is implied by (2) and (5). Computing
the improved lower bound

L3 = min
x∈P3

∑

e∈E

`exe

requires solving a linear program with an exponential number of both variables
and constraints. A more compact LP is obtained if every occurrence xe in (1)–(4)
is replaced by its equivalent given by (5). The resulting LP will be referred to
as the Dantzig-Wolfe Master problem (DWM):

DWM =











































































L3 = min
p
∑

j=1

∑

e∈E

`e · q
e
j · λj (7)

s.t.
p
∑

j=1

∑

e∈δ({i})

qe
j · λj = 2 ∀ i ∈ V+ (8)

p
∑

j=1

∑

e∈δ({0})

qe
j · λj = 2 · K (9)

p
∑

j=1

∑

e∈δ(S)

qe
j · λj ≥ 2 · k(S) ∀S ⊆ V+ (10)

p
∑

j=1

qe
j · λj ≤ 1 ∀ e ∈ E \ δ({0}) (11)

λj ≥ 0 ∀ j ∈ {1, . . . , p} .

Capacity inequalities are not the only ones that can appear in the DWM.
A generic cut

∑

e∈E aexe ≥ b can be included as
∑p

j=1(
∑

e∈E aeq
e
j ) · λj ≥ b. In

fact, we added all classes of cuts described in [29].
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3. The Branch-and-Cut-and-Price Algorithm

3.1. Column Generation

The reduced cost of a column (λ variable) is the sum of the reduced costs of
the edges in the corresponding q-route. Let µ, ν, π, and ω be the dual variables
associated with constraints (8), (9), (10), and (11), respectively. The reduced
cost c̄e of an edge e is given by:

c̄e =











`e − µi − µj −
∑

S|δ(S)3e

πS − ωe e = {i, j} ∈ E \ δ({0})

`e − ν − µj −
∑

S|δ(S)3e

πS e = {0, j} ∈ δ({0}) .

An additional generic cut
∑p

j=1(
∑

e∈E aeq
e
j )·λj ≥ b in DWM, with dual variable

α, contributes with the value −ae · α to the computation of c̄e.
The pricing subproblem consists of finding q-routes (columns) of minimum

reduced cost. Although this problem is NP-hard, it can be solved in pseudopoly-
nomial time. The basic data structure is a C ×n matrix M . Each entry M(d, v)
will represent the least costly walk that reaches vertex v using total demand
exactly d. The entry contains a label consisting of the vertex (v), the cost of the
walk, and a pointer to a label representing the walk up to the previous vertex.
The matrix is filled by dynamic programming, row by row, starting with d = 1.
For each row d, the algorithm goes through each entry v and, for each neigh-
bor w of v, evaluates the extension of the walk represented by M(d, v) to w. If
c̄(M(d, v)) + c̄(v,w) < c̄(M(d + d(w), w)), M(d + d(w), w) is updated. Eventu-
ally, we will have the most negative walk with accumulated demand at most C
that arrives at each vertex v. Extending the walk to the depot (whose demand
is zero), we obtain the corresponding q-route. All negative q-routes thus found
(there will be at most n) are added to the linear program. There are nC entries
in the matrix, and each is processed in O(n) time, so the total running time is
O(n2C).

Cycle elimination. To strengthen the formulation, we could look for q-routes
without cycles. Since this problem is strongly NP-hard, we settle for s-cycle-free
q-routes, for small values of s.

The algorithm operates as above, using dynamic programming to fill a C×n
matrix with partial walks. Labels retain the exact same meaning as before, but
now each entry in the matrix is no longer a single label, but a bucket of labels.
Therefore, bucket M(d, v) represents not only the cheapest s-cycle-free walk with
total demand d that ends in v, but also alternative walks that ensure that all
possible s-vertex extensions from v are considered.

To formalize this notion, we use the concept of dominance. A label ` is s-

dominated by a set of labels L if no label in L costs more than ` and if every
path p of length s that can legally extend ` (i.e., without creating an s-cycle)
can also extend some label of L.
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Recall the algorithm looks for the best (shortest) s-cycle-free walk, and there-
fore only labels that might represent a segment of this walk need to be considered.
Dominated labels will not be part of the best walk. To simplify the presentation,
we assume the “best walk” is unique. What the algorithm actually requires is
the existence, for every dominated label `, of a minimum-cost s-cycle-free walk
that does not contain `. Suppose the best walk did contain a label ` dominated
by a set L. Label ` represents an s-cycle-free walk from the depot to some vertex;
let the remainder of the best walk be R. The definition of dominance implies
that there exists at least one label `′ ∈ L that can be concatenated with R to
create a shorter s-cycle-free route. (Note that `′ and R are free of s-cycles by
definition; dominance just ensures that there is no s-cycle in the junction.)

Now that we have the concept of dominance, we return to the algorithm.
Initially, all buckets are empty. Once an existing label is extended (in a process
identical to the original algorithm), a new label is created, and the algorithm
tries to insert it into the appropriate bucket. If the label is dominated by the
other labels in the bucket, it is simply discarded; otherwise, it is inserted (if
other labels in the bucket become dominated as a result, they are discarded).

The trickiest part of this routine is testing for dominance. Christofides, Min-
gozzi and Toth [12] have shown that, for s = 2, one only has to keep the two
lower-cost labels. Given any three labels in the same bucket, the one with highest
cost will be dominated by the other two. For larger values of s, deciding which
labels to keep becomes significantly more complicate, as shown by Irnich and
Villeneuve [20]. Our implementation follows their ideas. The reader is referred
to their paper for details, but it is worth mentioning that buckets must have size
at least s!, so the method quickly becomes impractical. For this reason, we only
tried values of s up to 4.

Heuristic Acceleration. Since full dynamic programming procedure is slow, it is
only natural to employ heuristics to find good q-routes faster. We use three differ-
ent techniques; when they are used, the algorithm still produces only s-cycle-free
q-routes, but not necessarily the minimum one. Hence, when no negative route
is found, the full algorithm must be run to attest that none exists.

The first acceleration technique we use is scaling, which considers g > 1
units of demand at a time. The exact algorithm is run with a modified demand
d′v(g) = ddv/ge for every vertex v, and modified capacity C ′ = bC/gc for the
vehicles. The running time will be proportional to C ′ instead of C, but the
solutions found will still be valid in the original setting.

The second technique is sparsification. Intuitively, small edges in the original
graph are more likely to appear in the solution. With that in mind, we pre-
compute a set of five disjoint spanning forests using an extension of Kruskal’s
algorithm similar to the “edge-greedy heuristic” described in [43]. By consid-
ering only edges in those trees and edges adjacent to the depot, the dynamic
programming will be limited to a restricted set of neighbors when processing
each vertex.
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The third acceleration is bucket pruning, which consists of storing only s
(instead of s!) labels per bucket. To minimize the number of valid s-extensions
blocked, we keep only labels that differ significantly from each other.

The algorithm starts using all three acceleration techniques. Whenever it
fails to find a negative q-route, it turns one of them off. If the algorithm fails
with no acceleration, we can safely declare that no negative q-route exists. On
the other hand, if only a subset of the heuristics is in use and they do find a
negative q-route, other heuristics are turned back on.

3.2. Cut Generation

At first, the LP formulation includes only degree constraints; other cuts are
added during the algorithm. Besides the rounded capacity cuts (10) and bound
cuts (11), we also use framed capacity, strengthened comb, multistar, partial
multistar, generalized multistar and hypotour cuts, all presented in [29]. Those
cuts are defined over x variables. We convert a solution λ̄ from DWM into a cor-
responding x̄. If this solution is fractional, it is given as input to the CVRPSEP
package [28]. The violated cuts found are translated back into λ variables to be
introduced in the LP.

3.3. Branch-and-Cut-and-Price Details

Representation of Variables and Constraints. When implementing a branch-
and-cut-and-price it is necessary to have a clear distinction between variables
and columns, and also between constraints and rows. Each λ variable is associ-
ated to a q-path, which is stored in a pool of variables. Every time a new cut
is added, we must access all q-paths corresponding to the columns in the cur-
rent LP to calculate the proper coefficients of the row to be inserted. Similarly,
each constraint over x variables is stored in a pool of constraints. Every time
a variable is priced, we must access each row in the current LP to determine
the corresponding constraints and compute the coefficients of the column to be
inserted.

We remark that the pools must be designed to allow the computation of the
inner product of a q-route and an x constraint in a very efficient way. Since many
such operations must be performed each time a new column or row is added, a
näıve implementation can significantly slow down the algorithm. Our pools are
indexed using auxiliary hash tables. Given an edge e, we can quickly determine
which columns in the LP are associated to q-paths containing e and which rows
are associated to constraints having nonzero coefficient in xe.

Dynamic Choice of Column Generation. It usually pays off to combine the
strengths of cut and column generation into a single algorithm. However, in
some instances, the increase in the lower bound is not worth the additional time
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spent. In these cases pure branch-and-cut performs better. Even when branch-
and-cut-and-price is clearly better, one still have to choose a value for s with a
good trade-off between column generation time and bound quality.

Our algorithm tries to identify the best option for a given instance before any
branching is performed. We start solving the root node as in a pure branch-and-
cut, without any column generation, recording the running time and the bound
achieved. After that, the root node is solved again with a branch-and-cut-and-
price using the column generation with s = 2. Then we solve it once again,
changing s to 3. For the rest of the branch-and-bound tree, the algorithm picks
the strategy with the best balance between running time and bound quality.

More precisely, if the time spent using s = 2 is less than 10 times the time
spent without column generation and the bound improvement is better than
0.3%, we consider that it is worth doing column generation and move on to
decide whether to do it with s = 2 or 3, otherwise we perform a pure branch-
and-cut. If using s = 3 takes less time and gives a better bound than using
s = 2, we choose s = 3. Otherwise, if the bound improvement using s = 3 is
at least 0.1% and the time is less than 10 times the time spent using s = 2, we
still choose s = 3. To avoid long runs, we interrupt the computation for s = 2
or s = 3 when it reaches 10 times the time spent by the pure branch-and-cut.

It is worth mentioning that our branch-and-cut-and-price code can be easily
converted into a traditional pure branch-and-cut. We simply introduce special
λ variables, corresponding not to q-routes, but to each individual edge in E. No
pricing is performed. With those variables, the transformation from x constraints
to λ constraints becomes an identity transformation.

Branching Rule. On each node the algorithm starts by adding columns until
there are none with negative reduced costs, then it looks for all violated cuts.
Such passes are repeated until both column generation and separation fail. If
the node cannot be fathomed at this point, we branch.

The branching rule is an adaptation of the rule used in [29]. We choose as
branching candidates sets S such that 2 < x∗(δ(S)) < 4 and branch by imposing
the disjunction (x(δ(S)) = 2) ∨ (x(δ(S)) ≥ 4).

We use strong branching to select which set to branch on. Since computing
the actual lower bound for each child node can be very time-consuming, we
estimate it by performing a small number of column generation iterations. Only
p candidate sets (5 ≤ p ≤ max{10 − depth, 5}) are evaluated. This limits the
time spent on strong branching, especially when the depth is high. Priority is
given to sets with smaller values of |x∗(δ(S)) − 2.7|/d(S). We use 2.7 because
constraint x(δ(S)) = 2 tends to have a greater impact on the LP relaxation
than x(δ(S)) ≥ 4, leading to an imbalance in the branch-and-bound tree. Values
closer to 2 than 4 increase the impact of imposing x(δ(S)) ≥ 4.

Node Selection and Primal Bounds. We used as initial primal bound the value
of the best previously known solution plus one. The node selection strategy
chosen was depth first search, because it requires less memory.
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4. Computational Experiments

We tested our algorithm on all instances from series A, B, E, F, P and M,
available at www.branchandcut.org. The tests were executed on a Pentium IV
running at 2.4 GHz with 1 GB of RAM. Linear programs were solved by CPLEX
7.1. Throughout this section, we refer to the branch-and-cut-and-price algorithm
with dynamic choice of column generation as Dyn-BCP and to the branch-and-
cut-and-price with predetermined column generation as BCP.

Tables 1 and 2 detail the results obtained by Dyn-BCP. Columns Root LB

and Root Time give the lower bound and total CPU time of the root node
of the branch-and-bound tree. This running time includes the dynamic choice
of column generation and the strong branching at the root. The next column
represents the size s of the cycles eliminated by the column generation procedure
(“–” indicates that column generation was not used). Tree Size represents the
total number of branch-and-bound nodes explored, and Total Time is the total
CPU time spent by the algorithm. Finally, Prev UB and Our UB indicate
the best solution value available in the literature and the one obtained by our
procedure. Values in bold indicate proven optimality. All instances with up to
135 vertices have been solved by our algorithm, eighteen of them for the first
time. Based on partial runs, we estimate that the three remaining instances
(from series M, with 151 to 200 vertices) could be solved in a few months of
CPU time.

Table 3 compares different lower bounds on various instances. Lower bounds
L1, L2 and L3 (defined in Section 2) are presented in the first three columns.
We remark that calculating L1 and L3 requires the expensive exact separation
of rounded capacity cuts, performed using the CPLEX MIP solver, as described
in [18]. The instances in the table are the 41 that have at least 50 vertices and
for which the L1 and L3 bounds could be computed within a reasonable amount
of time. Column LLE04 shows the lower bounds obtained in [29], which are the
best available in the literature. The next three columns contain the lower bounds
obtained at the root node of BCP with s-cycle elimination (for s = 2, 3, 4). As
BCP only uses heuristic separation of rounded capacity cuts, the bound obtained
for s = 2 is a little worse than L3 on a few instances. However, this bound is
usually better than L3 due to the presence of other families of cuts. As expected,
the bounds for s = 3 and s = 4 are even better. Column OPT contains optimal
solution values. The last line in the table shows the average gap obtained by each
bound with respect to the optimal solutions (considering only the instances in
the table).

Table 4 presents aggregate results for the root node using four different ver-
sions of BCP: a pure branch-and-cut (indicated by BC in the table) and branch-
and-cut-and-price with elimination of 2-, 3-, and 4-cycles. We consider in our
calculations only the 36 instances with at least 50 vertices for which Dyn-BCP

chose to use column generation and found the optimal solution. To avoid biasing
the results towards larger instances, all values presented are geometric means.

For each variant, we show the mean time to solve the root node, as well as the
mean time spent in the three most important phases of the algorithm: column
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Table 1. Results of the Dyn-BCP algorithm for the A and B instances.

Instance Root Root s Tree Total Prev. Our
LB Time (s) Size Time (s) UB UB

A-n37-k5 664.8 16 – 8 19 669 669
A-n37-k6 932.6 30 3 74 379 949 949
A-n38-k5 716.5 12 – 52 26 730 730
A-n39-k5 816.6 107 3 11 167 822 822
A-n39-k6 822.8 39 3 11 98 831 831
A-n44-k6 934.8 52 2 6 90 937 937
A-n45-k6 938.1 52 3 11 170 944 944
A-n45-k7 1139.3 88 3 26 331 1146 1146
A-n46-k7 914.0 63 2 3 92 914 914
A-n48-k7 1069.1 72 3 8 166 1073 1073
A-n53-k7 1003.9 138 3 16 611 1010 1010
A-n54-k7 1153.9 125 3 90 1409 1167 1167
A-n55-k9 1067.4 32 3 7 84 1073 1073
A-n60-k9 1344.4 161 3 224 3080 1354 1354
A-n61-k9 1022.5 108 3 121 1883 1034 1034
A-n62-k8 1280.4 722 3 101 3102 1290 1288
A-n63-k9 1607.0 238 3 49 1046 1616 1616
A-n63-k10 1299.1 136 3 387 4988 1315 1314
A-n64-k9 1385.3 265 3 648 11254 1402 1401
A-n65-k9 1166.5 154 3 17 516 1174 1174
A-n69-k9 1141.4 289 3 391 7171 1159 1159
A-n80-k10 1754.0 1120 3 153 6464 1763 1763

B-n38-k6 800.2 10 – 14 14 805 805
B-n39-k5 549.0 3 – 1 3 549 549
B-n41-k6 826.4 13 – 8 18 829 829
B-n43-k6 733.7 13 – 74 29 742 742
B-n44-k7 909.0 9 – 1 9 909 909
B-n45-k5 747.5 10 – 19 16 751 751
B-n45-k6 677.5 224 3 3 279 678 678
B-n50-k7 741.0 5 – 3 6 741 741
B-n50-k8 1295.0 97 3 287 2845 1312 1312
B-n51-k7 1025.2 16 – 83 46 1032 1032
B-n52-k7 745.8 7 – 9 9 747 747
B-n56-k7 704.0 15 – 9 22 707 707
B-n57-k7 1149.2 76 – 133 168 1153 1153
B-n57-k9 1596.0 61 3 15 193 1598 1598
B-n63-k10 1479.4 231 – 501 682 1496 1496
B-n64-k9 859.3 70 – 7 86 861 861
B-n66-k9 1307.5 145 3 126 1778 1316 1316
B-n67-k10 1024.4 218 – 327 568 1032 1032
B-n68-k9 1263.0 260 3 5912 87436 1275∗ 1272
B-n78-k10 1215.2 193 3 90 1053 1221 1221

* An earlier version of our algorithm [18] found a solution of 1272 but could not prove its
optimality. Using that information, K. Wenger [42] solved this instance.

generation, separation, and LP solving. For reference, we show the number of
columns and rows added by column generation and separation, respectively (the
original columns and rows are not considered). We also show the mean number
of iterations of column generation, as well as the number of passes performed
by the algorithm. For BCP, each pass is defined as the application of column
generation—until it converges—followed by a call to the separation routines; for
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Table 2. Results of the Dyn-BCP algorithm for the E, F, M and P instances.

Instance Root Root s Tree Total Prev. Our
LB Time (s) Size Time (s) UB UB

E-n13-k4 247.0 0 – 1 0 247 247
E-n22-k4 375.0 0 – 1 0 375 375
E-n23-k3 569.0 0 – 1 0 569 569
E-n30-k3 533.3 7 – 6 7 534 534
E-n31-k7 378.5 4 2 2 6 379 379
E-n33-k4 834.5 14 – 5 15 835 835
E-n51-k5 518.2 51 – 8 65 521 521
E-n76-k7 670.0 264 2 1712 46520 682 682
E-n76-k8 726.5 277 2 1031 22891 735 735
E-n76-k10 817.4 354 3 4292 80722 830 830
E-n76-k14 1006.5 224 3 6678 48637 1021 1021
E-n101-k8 805.2 1068 3 11622 801963 815 815
E-n101-k14 1053.8 658 3 5848 116284 1071 1067

F-n45-k4 724.0 8 – 1 8 724 724
F-n72-k4 236.4 70 – 42 121 237 237
F-n135-k7 1159.9 6618 – 25 7065 1162 1162

M-n101-k10 820.0 119 – 1 119 820 820
M-n121-k7 1031.1 5594 3 40 25678 1034 1034
M-n151-k12 999.1 945 3 – – 1015 –
M-n200-k16 1252.4 3168 3 – – – –
M-n200-k17 1254.2 2310 3 – – 1275 –

P-n16-k8 449.0 1 2 3 1 450 450
P-n19-k2 212.0 1 – 1 1 212 212
P-n20-k2 213.0 1 – 9 1 216 216
P-n21-k2 211.0 1 – 1 1 211 211
P-n22-k2 216.0 2 – 2 2 216 216
P-n22-k8 603.0 3 2 1 3 603 603
P-n23-k8 529.0 18 2 1 18 529 529
P-n40-k5 456.9 28 – 5 34 458 458
P-n45-k5 506.6 59 3 11 194 510 510
P-n50-k7 551.5 79 3 7 143 554 554
P-n50-k8 616.3 102 3 1084 9272 649 631
P-n50-k10 689.3 50 3 65 304 696 696
P-n51-k10 735.2 35 3 22 105 741 741
P-n55-k7 557.9 90 2 450 4649 568 568
P-n55-k8 579.8 42 2 196 1822 588 588
P-n55-k10 681.4 107 3 1556 9076 699 694
P-n55-k15 972.8 251 3 398 1944 993 989
P-n60-k10 738.9 126 3 52 570 756 744
P-n60-k15 962.8 118 3 76 442 1033 968
P-n65-k10 786.0 159 3 23 422 792 792
P-n70-k10 814.5 292 3 1752 24039 834 827
P-n76-k4 588.8 363 – 59 572 593 593
P-n76-k5 616.8 273 – 3399 14546 627 627
P-n101-k4 678.5 1055 – 23 1253 681 681



Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing Problem 13

Table 3. Comparison of lower bounds.

Instance Lower Bounds OPT
L1 L2 L3 LLE04 s = 2 s = 3 s = 4

A-n53-k7 996.6 978.5 1002.2 998.7 1002.2 1003.9 1004.1 1010
A-n54-k7 1130.7 1114.0 1150.0 1135.3 1150.3 1153.2 1155.5 1167
A-n55-k9 1055.9 1025.4 1066.4 1058.3 1066.4 1067.2 1067.6 1073
A-n60-k9 1316.5 1305.6 1341.6 1319.6 1341.6 1344.4 1344.9 1354
A-n61-k9 1004.8 996.8 1018.6 1010.2 1018.8 1022.4 1023.3 1034
A-n62-k8 1244.1 1222.7 1274.1 1251.7 1273.2 1280.1 1280.9 1288
A-n63-k9 1572.2 1564.8 1603.5 1580.7 1603.5 1606.4 1608.6 1616
A-n63-k10 1262.2 1267.4 1294.5 1266.6 1294.2 1299.1 1302.8 1314
A-n64-k9 1340.1 1353.3 1378.9 1351.6 1378.8 1385.2 1389.1 1401
A-n65-k9 1151.1 1133.0 1163.4 1155.2 1164.5 1166.6 1168.6 1174
A-n69-k9 1108.9 1113.2 1138.4 1114.4 1138.7 1140.8 1143.8 1159
A-n80-k10 1699.9 1712.2 1749.7 1709.6 1750.1 1753.8 1755.4 1763
B-n50-k7 740.0 664.8 741.0 741.0 741.0 741.0 741.0 741
B-n50-k8 1279.2 1217.5 1291.8 1281.1 1291.8 1295.1 1302.0 1312
B-n51-k7 1024.6 918.4 1025.9 1025.6 1025.9 1026.4 1026.6 1032
B-n52-k7 745.0 640.2 746.3 746.0 746.4 746.4 746.4 747
B-n56-k7 703.4 606.9 704.5 705.0 704.5 705.0 705.0 707
B-n57-k7 1148.6 1058.5 1150.9 1150.1 1150.9 1151.6 1152.3 1153
B-n57-k9 1586.7 1511.5 1595.2 1589.2 1595.2 1596.0 1596.0 1598
B-n63-k10 1478.9 1418.4 1484.2 1481.0 1484.2 1486.7 1487.2 1496
B-n64-k9 858.5 769.3 860.1 860.5 860.2 860.4 860.5 861
B-n66-k9 1295.2 1223.1 1302.6 1298.5 1303.6 1307.3 1308.4 1316
B-n67-k10 1023.8 984.5 1026.4 1024.8 1026.4 1026.8 1027.2 1032
B-n68-k9 1256.8 1163.9 1261.5 1258.1 1261.6 1263.0 1263.5 1272
B-n78-k10 1202.3 1124.5 1212.5 1205.6 1212.6 1215.0 1215.9 1221
E-n51-k5 514.5 512.9 518.0 519.0 519.1 519.1 519.0 521
E-n76-k7 661.4 663.3 668.4 666.4 669.9 670.4 670.5 682
E-n76-k8 711.2 716.7 725.1 717.9 726.0 726.4 726.8 735
E-n76-k10 789.5 811.4 816.5 799.9 816.8 816.8 817.3 830
E-n76-k14 948.1 999.6 1004.8 969.6 1004.8 1006.5 1007.4 1021
E-n101-k8 796.4 786.4 801.8 802.6 803.7 804.1 804.3 815
E-n101-k14 1008.3 1045.1 1051.6 1026.9 1051.6 1053.5 1053.8 1067
M-n101-k10 819.5 798.1 820.0 820.0 820.0 820.0 820.0 820
M-n121-k7 1009.7 1013.0 1030.9 1017.4 1031.2 1031.8 1032.0 1034
P-n50-k8 596.9 612.5 615.3 602.1 615.7 616.2 616.9 631
P-n55-k10 646.7 677.2 680.1 662.1 680.0 681.3 681.3 694
P-n55-k15 895.1 963.0 967.5 906.7 967.5 972.8 972.8 989
P-n60-k10 708.3 733.5 737.2 718.4 737.2 738.7 739.0 744
P-n60-k15 903.3 955.6 961.2 929.8 961.2 962.8 963.5 968
P-n65-k10 756.5 779.8 785.2 767.1 785.2 785.9 786.9 792
P-n70-k10 786.9 808.3 812.7 795.6 813.4 814.3 814.8 827

AvgGAP 2.92% 4.76% 1.02% 2.26% 0.97% 0.82% 0.74% —

the pure branch-and-cut, a pass is defined as a call to the separation routines.
Finally, we present the gap between the lower bound found by the algorithm
and the optimal solution.

The table makes it clear that even the simplest form of column generation
(which eliminates 2-cycles only) reduces the gap by a factor of almost three when
compared to the pure branch-and-cut, while leaving the mean time to solve the
root node almost unchanged. Eliminating 3-cycles further reduces the gap, with
a minimal increase in running time. Eliminating 4-cycles, on the other hand,
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Table 4. Root node statistics for different variants of BCP. Values are geometric means over
all instances with at least 50 vertices that were solved to optimality using branch-and-cut-and-
price.

BC s = 2 s = 3 s = 4
Column generation time (s) 0.0 4.0 5.3 11.3
Separation time (s) 4.7 2.1 2.0 1.8
LP solving time (s) 6.6 4.7 3.9 3.7
Total time (s) 12.1 12.7 12.9 18.3
Columns added 0 4338 4074 4087
Rows added 1053 156 137 129
Gap (%) 3.19 1.08 0.89 0.79
CG iterations 0.0 141.1 133.7 131.6
Passes 37.2 8.5 8.0 7.7

significantly increases the total running time, while decreasing the mean gap by
a smaller factor. That is why Dyn-BCP only chooses between s = 2 and s = 3
(or no column generation at all). Still, a few instances (like B-n50-k8) are better
solved with s = 4.

Table 5 presents the same pieces of information as Table 3, but for ten indi-
vidual instances selected so as to illustrate different aspects of the behavior of
BCP. These results show that only considering means can be misleading, since
the performance of a BCP (when compared to a pure branch-and-cut) is heavily
dependent on the instance. In most cases, it does improve the lower bound dra-
matically with only a minor increase (and sometimes even a reduction) in the
running time. This behavior can be seen on A-n63-k10, A-n80-k10, B-n50-k8,
E-n76-k14, and E-n101-k14. Other instances, such as M-n121-k7, B-n68-k9, and
E-n101-k8, also see a remarkable increase in the lower bound quality, but with
significantly higher running times—BCP is still a good choice, but not clearly
superior to BC. A third class is formed by instances for which the BCP not only
has a marginal effect on the bounds, but also takes an unacceptably long time
to run (due to column generation convergence problems). This happens with
P-n101-k4 and F-n72-k4; for the latter, we could not compute the bounds for
s = 3 or s = 4, even allowing several hours of computation. Fortunately, those
instances are precisely the ones that are solved very well by a pure BC. This
fact makes Dyn-BCP a very consistent algorithm.

It can be noted that branch-and-cut-and-price usually achieves the greatest
improvements over pure branch-and-cut when the ratio n/K, the average number
of clients per vehicle, is smallest. In such cases, q-routes without small cycles are
very close to being actual routes, so one can expect the duality gap to be reduced.
Figure 1, created from the instances of Table 3, illustrates this observation. The
horizontal axis represents the ratio n/K. The value plotted is (s3−lle)/(opt−lle),
where s3 is the bound of the BCP with s = 3, lle is the LLE04 bound and opt is
the optimal solution value. This ratio represents the reduction of the duality gap
relative to the LLE04 gap. The value is zero whenever both methods produce
the same result and one when the BCP closes the gap in full. Circles represent
instances that were solved by our algorithm for the first time, while crosses
indicate instances that had already been solved.
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Table 5. Detailed root node statistics for a set of representative instances.

Operations Time (s) Gap
Instance s Columns Rows Iter. Passes CG Sep. LP Total (%)
A-n63-k10 – 0 1137 0 41 0.0 3.4 7.8 11.3 3.95

2 4776 169 157 9 4.5 2.2 4.9 11.8 1.51
3 4576 170 138 7 5.1 1.6 4.3 11.0 1.14
4 4283 117 125 6 9.4 1.0 2.6 13.0 0.85

A-n80-k10 – 0 1566 0 42 0.0 7.5 24.0 31.8 3.57
2 7716 229 206 8 12.4 1.8 16.1 30.6 0.74
3 9240 228 219 10 18.4 3.3 21.1 43.0 0.52
4 8707 172 208 9 39.5 3.4 17.1 60.2 0.43

B-n50-k8 – 0 1220 0 38 0.0 1.6 4.8 6.5 2.50
2 3625 223 163 9 3.1 1.6 5.3 10.1 1.54
3 3450 187 158 9 4.5 2.8 4.1 11.5 1.30
4 3189 168 143 7 8.8 1.6 3.2 13.7 0.76

B-n68-k9 – 0 1103 0 60 0.0 3.5 6.2 9.8 1.19
2 6478 212 206 8 8.5 1.9 13.8 24.4 0.82
3 5716 227 189 8 9.9 1.2 11.3 22.6 0.71
4 5389 208 203 11 26.0 2.0 9.4 37.6 0.67

E-n76-k14 – 0 1366 0 38 0.0 9.8 16.5 26.5 7.13
2 3665 91 82 5 2.3 2.6 1.3 6.2 1.59
3 3872 66 84 6 3.1 2.8 1.3 7.2 1.42
4 3517 75 79 7 6.3 4.6 1.2 12.1 1.33

E-n101-k8 – 0 1119 0 48 0.0 25.7 22.0 48.3 1.93
2 15349 335 356 16 41.3 10.1 105.5 158.5 1.38
3 16838 290 357 16 58.9 9.5 107.5 177.3 1.34
4 14348 296 330 14 99.0 6.6 90.3 197.1 1.31

E-n101-k14 – 0 2576 0 82 0.0 19.1 60.8 80.6 5.38
2 7843 150 129 9 9.9 3.1 7.3 20.5 1.44
3 6433 130 119 9 11.0 6.2 5.6 23.0 1.26
4 7262 157 130 8 22.6 2.5 7.5 32.8 1.23

F-n72-k4 – 0 313 0 66 0.0 2.3 1.7 4.1 0.34
2 31415 261 2178 18 4546.2 3.5 630.9 5187.8 0.74

M-n121-k7 – 0 2916 0 76 0.0 21.5 142.8 166.0 2.32
2 39253 355 1244 13 334.7 3.6 625.1 970.9 0.30
3 40729 344 1128 12 368.1 3.7 550.5 927.8 0.26
4 42830 216 1146 9 715.9 3.2 578.0 1302.1 0.21

P-n101-k4 – 0 648 0 42 0.0 7.2 8.3 16.1 0.39
2 227271 472 14272 28 5954.5 16.9 21543.4 27929.6 0.37
3 379023 505 20599 37 15991.0 19.0 63765.2 80432.0 0.39
4 228294 460 11317 21 8446.0 11.5 31751.2 40540.0 0.37

5. Conclusion

Figures 2, 3, and 4 display the optimal solutions of instances E-n76-k10, E-n76-
k14 and E-n101-k14. Each client is represented as a box containing its demand.
Solving those instances for the first time can be viewed as a considerable achieve-
ment. The E instances were proposed in 1969 [11] and have been the main bench-
mark of CVRP algorithms since then, appearing in dozens of published articles.
Until this work, those three open instances were considered as very far from
being solved, as attested by the comments in the conclusion of [29]:

In our view, the most pressing problem for research in this field is to
understand why certain instances (such as the ‘E’ instances with 76 ver-
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Fig. 1. Gap improvement of BCP with s = 3 (s3) with respect to [29] (lle). The graph
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. Circles represent instances solved to optimality for the

first time and crosses the ones already closed.

tices) are so difficult. It is possible that there exists an unknown class
of valid inequalities which would be effective for these instances. Finding
such a class and devising a suitable separation algorithm for it remains a
challenge.

This paper has shown that combining known cuts with column generation is a
more practical way of improving CVRP algorithms than searching for increas-
ingly complicated families of cuts.

This does not mean that our BCP algorithm would not benefit from further
polyhedral research on the CVRP. Currently, rounded capacity cuts are highly
effective—their efficient heuristic separation contributes significantly to the good
overall performance. We did try all other families of cuts for the CVRP known to
be effective in a pure BC: framed capacities, generalized capacities, strengthened
combs, multistars, and extended hypotours. Surprisingly, however, their effect
was quite modest in practice—only on E-n101-k8 the root bound increased by
more than two units. Therefore, any improvement to the cutting part of our
BCP will indeed require new families of inequalities. Unfortunately, looking for
facet-defining inequalities may not be enough within the BCP framework, since
a facet of the CVRP polyhedron can also be a facet of the polyhedron induced
by column generation over the q-routes. For example, Letchford and Salazar [26]
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Fig. 2. Optimal solution to E-n76-k10 (vehicle capacity = 140).

have recently proved that generalized large multistar inequalities are useless in
our BCP, since they do not cut P2.

In the short term, improvements to the BCP are more likely to come from
column generation. The goal is to devise efficient ways of pricing over a set
of columns as close to cycle-free q-routes as possible. The s-cycle elimination
approach we chose was reasonably effective, at least for s ≤ 4. But other alter-
natives to further restrict the q-routes can also be tried. One could, for instance,
forbid q-routes that visit vertices in a small set S more than once. This set could
be dynamically chosen in order to eliminate q-routes with long cycles that are
particularly harmful to bound quality.

In principle, several of the combinatorial relaxations of the CVRP—such as
k-degree center trees, K-trees, or b-matchings—could also be used instead of (or
even in addition to) q-routes. We think they are unlikely to have a noticeable
impact, for two reasons. First, among the relaxations mentioned above, only q-
routes take client demands and vehicle capacities into account. These numerical
elements are precisely what makes the CVRP much harder in practice than a
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Fig. 3. Optimal solution to E-n76-k14 (vehicle capacity = 100).

pure graph problem such as the TSP. It seems that known families of inequali-
ties for the CVRP, mostly inspired by previous work on the TSP, cannot cope
well with this numerical aspect. The inequalities implicitly given by P2 can do
better. The second reason for not using the alternatives above is that only q-
routes lead to a pricing problem that is superpolynomial, but still practical. The
polyhedra associated with polynomial pricing problems can be fully described
and efficiently separated, which usually makes a pure BC (instead of BCP) a
faster alternative. For instance, we can separate over the b-matching polyhedron
in a very efficient way [33,25]. Separation over the q-route polyhedron, on the
other hand, is possible only implicitly, with column generation.

Even if we leave column and cut generation as they are, we can still accelerate
the algorithm through better integration. The task of designing, coding and
fine-tuning a high-performance branch-and-cut or branch-and-price procedure is
complex, requiring experience to choose among several possible strategies, and,
often, some computational tricks. BCP multiplies the possibilities and, therefore,
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Fig. 4. Optimal solution to E-n101-k14 (vehicle capacity = 112).

the difficulties. We believe that there is still plenty of room for such improvements
in our BCP.
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