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Abstract

Since cut and column generation were established as two of the most important techniques in integer

programming, researchers have looked for ways of combining them into a robust branch-and-cut-and-price

algorithm. Here, “robust” means that neither branching nor the addition of cuts should change the struc-

ture of the pricing subproblems. In the last few years, several researchers independently noted that cuts

expressed in terms of variables from a suitable original formulation could be added to the master problem

without disturbing the pricing. This fact is still little known outside the “column generation community”

and its consequences on integer programming are just beginning to be explored. This work intends to be

an analysis of how to reformulate an integer program in order to build an efficient robust branch-and-cut-

and-price. In particular, we propose an alternative master problem that can be quite advantageous in some

situations. Another key issue addressed is how to avoid the pitfalls that arise from variable symmetries

in the original formulations of many problems. We refer to extensive computational experiments on the

capacitated vehicle routing, capacitated minimum spanning tree, and generalized assignment problems.

Remarkable results on benchmark instances from the literature clearly attest the power of combining cut

and column generation.



1 Introduction

Branch-and-Cut-and-Price (BCP) algorithms are branch-and-bound algorithms where the dual bounds are

obtained by solving a linear program with exponentially many rows and columns. Therefore, cut generation

(separation) and column generation (pricing) must be performed. We say that such algorithm is robust

when the structures of the separation and pricing subproblems remain unchanged during its execution.

The first BCP appears to be the one by Nemhauser and Park [9] on the edge-coloring problem. That

algorithm was non-robust, the new cuts added to the master problem complicate the pricing subproblem,

so it eventually has to be solved by costly IP techniques. Non-robust BCP algorithms are not likely to be

effective on most cases.

In the late 90’s, several researchers independently noted that cuts expressed in terms of variables from

the original formulation could be dynamically separated, translated and added to the master problem.

Those cuts do not change the structure of the pricing subproblem. Such observation allowed the construc-

tion of true robust BCP algorithms [12, 7, 8, 11, 3, 1].

This work gives two original contributions to the design of robust BCP algorithms.

1. We introduce an alternative to the traditional Dantzig-Wolfe master problem for column generation.

We call it Explicit Master. A nice feature of the Explicit Master is that it makes the robust BCP

mechanism quite evident. We prove that the Dantzig-Wolfe Master is equivalent to the Explicit Mas-

ter plus the restriction that the reduced costs of all original variables must be zero. The algorithmic

implication is that by working with the Explicit Master one may be able to fix variables cheaply. The

Explicit Master is also a convenient device for performing what we call multiple column generation.

2. Symmetry on the variables from the original formulation is a serious drawback that prevents the

construction of effective robust BCP algorithms on many important problems, such as bin-packing,

cutting stock, graph coloring, several clustering and scheduling problems, among others. We propose a

reformulation scheme to avoid those symmetries, extending the applicability of robust BCP algorithms

to virtually any combinatorial optimization problem.

Perhaps a third important contribution is simply to point out the vast potential impact that BCP

algorithms represent in the practice of integer programming. Up to now, BCP was only applied to (a few)

problems where a pure branch-and-price (BP) already performed well. We argue that the applicability

of this technique goes far beyond that class of problems. This claim is supported by computational

2



experiments.

We take our results on the classical Capacitated Vehicle Routing Problem (CVRP) as a prototypical

example. Pure BP algorithms are quite weak on the CVRP. The best results for this problem had been

obtained by sophisticated branch-and-cut (BC) algorithms. But many instances from the literature in the

range of 50–100 vertices, including some proposed more than 30 years ago, appeared to be far from being

solved. A robust BCP for that problem led to a breakthrough, consistently solving instances with up to

100 vertices [5].

2 Dantzig-Wolfe Master × Explicit Master

Let (O) be the following integer program with n variables

ZIP = min cx

(O) s.t. Ax = b

Dx ≤ d

x ∈ Zn
+

We assume that Q = {x ∈ Zn
+|Dx ≤ d} is a finite set with elements x1, . . . , xp. Let Q be a n × p

matrix where each column corresponds to one element of Q. There is a one-to-one correspondence between

elements of Q and solutions of

x = Qλ

s.t. 1λ = 1

λ ∈ {0, 1}p

The traditional IP reformulation of (O) consists in replacing x with the expression above [6]. Relaxing the

integrality constraints, we get the Dantzig-Wolfe Master LP.

ZDWM = min (cQ)λ

s.t. (AQ)λ = b

(DWM) 1λ = 1

λ ≥ 0
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The lower bound ZDWM may improve over the one obtained with the linear relaxation of (O), for ZDWM =

min cx s.t. Ax = b, x ∈ Conv(Dx ≤ d, x ∈ Zn
+). Because p is very large, (DWM) has to be solved by

column generation. The pricing subproblem is the following IP.

v(µ, ν) = min (c− µA)x − ν

(PS) s.t. Dx ≤ d

x ∈ Zn
+,

where µ and ν are the dual variables associated with the rows of (DWM). The column generation scheme

is only practical when constraints Dx ≤ d have a “nice structure”, which allows many pricing subproblems

to be solved in reasonable time. It is essential to keep the pricing subproblem tractable after cutting (or

branching).

Let λ be a fractional solution of (DWM). Define x = Qλ. Separate a valid cut aix ≤ bi such that

aix > bi. The constraint (aiQ)λ ≤ bi can be added to (DWM), just as if aix ≤ bi belonged to the original

Ax = b constraints in (O). The pricing subproblem will continue to be (PS), the only difference being the

extra row of A and the extra element of µ that have to be considered in the calculation of (c− µA).

Consider again the original problem (O). Introduce additional variables x′, defined to be equal to x,

as follows.

ZIP = min cx

(O′) s.t. x′ −x = 0

Ax = b

Dx′ ≤ d

x′ ∈ Zn
+

x ∈ Zn
+

Replace x′ by its equivalent expression in terms of Q. Dropping the integrality we get the Explicit Master
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LP.

ZEM = min cx

(EM) s.t. Qλ −x = 0

1λ = 1

Ax = b

λ, x ≥ 0

Let π, ν and µ be the dual variables associated to the three sets of constraints in (EM). The columns

corresponding to λ variables are priced by solving the following IP.

v(π, ν) = min −πx − ν

(PS′) s.t. Dx ≤ d

x ∈ Zn
+

Variables µ do not appear in the subproblem. It is clear that separating cuts over x and adding them to

Ax = b does not change the pricing structure.

As expected, ZDWM = ZEM . The size of (DWM) is smaller than the size of (EM). What are the

potential advantages of constructing a robust BCP over (EM) ?

2.1 Fixing by Reduced Costs

After solving (DWM), one can try to fix x variables by the so-called Lagrangean Probing. Each attempt

to fix a single variable requires the solution of an IP similar to (PS). This can be much time consuming

on many cases. On the other hand, after solving (EM), x variables can be fixed by reduced costs for free.

The following lemma explains that difference between (DWM) and (EM).

Lemma 1 Solving (DWM) is equivalent to solving (EM) with the dual space restricted by constraints

c̄ = c− µA + π = 0.

The fixing of variables by reduced costs in (EM) can be much improved in practice by a dual pertur-

bation that favors dual solutions leading to large reduced costs.
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2.2 Multiple Column Generation

Suppose we have the following IP, where Dx ≤ d and Fx ≤ f are both “nicely structured” sets of

constraints, but (Dx ≤ d, Fx ≤ f) is not.

min cx

(O) s.t. Ax = b

Dx ≤ d

Fx ≤ f

x ∈ Zn
+

Let Q1 and Q2 be the matrices where columns correspond to integer solutions in {x ∈ Zn
+|Dx ≤ d} and

{x ∈ Zn
+|Fx ≤ f} respectively. The Explicit Master is a convenient device to perform multiple column

generation on Q1 and Q2, as shown bellow.

min cx

(EM) s.t. Q1λ1 −x = 0

1λ1 = 1

Q2λ2 −x = 0

1λ2 = 1

Ax = b

λ1, λ2, x ≥ 0

3 Reformulating Symmetric Problems

On many important problems where BP is usually applied, the corresponding original formulations are

highly symmetric. This happens on problems like bin-packing, cutting stock, graph coloring, several clus-

tering and scheduling problems, and many others. Most of those problems share the same characteristic:

one searches for an optimal feasible assignment of elements to sets, and some of those sets are indistinguish-

able. The original formulations corresponding to their usual column generation may have variables like xl
i,

meaning that element i is assigned to the set numbered l. Cutting (or branching) over those symmetric

variables can be completely ineffective.

We propose a remedy to allow effective robust BCP algorithms on those problems. An automatic
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reformulation translates an original formulation over xl
i variables to a new one over variables xij meaning

that items i and j are assigned to the same set and that items k, i < k < j, are not assigned to that set.

Cuts over the xij variables can be very effective. The side effect of the reformulation is that the pricing

subproblems get a little more difficult, but remains unchanged after cutting or branching, as required.

We exemplify on the Bin-Packing Problem (BPP). Given a set of items numbered as {1, . . . , n}, positive

integer weights d(1), . . . , d(n) and a bin capacity C; the BPP is to determine how to pack the items into

the minimum number of bins. Introduce a dummy item 0. Define the set V as {0, . . . , n} and V+ as

{1, . . . , n} Given a set S ⊆ V+, let d(S) be the sum of the weights of all items in S. Define a directed

graph G = (V, A), where A = {(i, j) | i ∈ V, j ∈ V, i < j}. For each arc in A define a binary variable xij .

The reformulation on xij variables follows:

min
∑

(0,j)∈δ+(0)

x0j (1)

∑
(i,j)∈δ−(j)

xij = 1 ∀j ∈ V+ (2)

∑
(i,j)∈δ+(i)

xij ≤ 1 ∀i ∈ V+ (3)

∑
(i,j)∈δ(S)

xij ≥ dd(S)/Ce ∀S ⊆ V+ (4)

xij ∈ {0, 1} ∀(i, j) ∈ A (5)

Constraints (2-3) and (5) together requires x to define in G a collection of cycles and directed paths from

vertex 0. Constraints (4) forbids cycles and directed paths where total vertex weights exceeds C. Note

that this formulation is completely asymmetric, each solution corresponds to a different packing.

Define Q as the set of 0-1 vectors that define directed paths from vertex 0 not exceeding total vertex

weight C. Define Ax = b as the set of constraints (2). It can be shown that

ZDWM = min 1λ

(DWM) s.t. (AQ)λ = b

λ ≥ 0

,

yields exactly the same bound obtainable by solving the traditional column generation for the BPP. But

now, branching or cutting over the x variables (using inequalities (4), for instance) is effective and robust.

The pricing problem is not a knapsack problem anymore, but a capacitated shortest-path problem over an

acyclic graph. It can still be solved by efficient pseudo-polynomial algorithms.
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The same reformulation can be applied to the graph coloring problem. In that case the set Q corresponds

to directed paths in G from vertex 0 and only traversing vertices corresponding to independent sets in the

graph that is being colored. The resulting pricing is strongly NP-hard, but tractable for graphs with up

to a few hundreds vertices. Cuts corresponding to odd holes, anti-odd holes and other structures can be

added to obtain high quality bounds.

The automatic reformulation can be extended to more complex symmetric problems, where the original

integer variables are like xl
i, but represent the number of copies of item i assigned to the set numbered l.

This is also true for variables xol
i , the number of copies of item i assigned to the set of type o numbered l.

This last case covers several important problems, like cutting stock with different stock sizes, scheduling

on heterogeneous machines, etc. Again, the resulting reformulations can be proved to be completely

asymmetric.

4 Computational Results

We are currently implementing robust BCP algorithms for many classical problems. We briefly cite some

results already published.

• Capacitated Vehicle Routing Problem [5]. As already mentioned in the introduction, a robust BCP

over the Dantizig-Wolfe Master yielded excellent results on the CVRP.

• Capacitated Spanning Tree Problem [4]. Since the pricing subproblem here is expensive, we imple-

mented the robust BCP over the Explicit Master to allow fixing by reduced costs. The resulting

algorithm obtained a breakthrough, being the only one able to solve the instances with non-unitary

demands from the OR-Library with 50 and 100 vertices.

• Generalized Assignment Problem [10]. A robust BCP over the Dantzig-Wolfe Master could solve 3

out of the 5 remaining open instances from the OR-Library.

5 Perspectives

BCP algorithms are still rare in the literature of today. The new theoretical insights about robust BCP

and the good computational results that are being obtained by such algorithms on important problems
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indicate that this situation may soon change. This certainly raises many interesting questions and research

topics.

• Obtaining high-performance from a BC or from a BP requires experience to choose among several

possible strategies (and often requires some computational tricks too). BCP multiplies the number

of possibilities. For example, should one price to optimality before cutting ? Or cutting is better

done along with (or even before) pricing ?

• For obvious reasons, polyhedral research concentrates on polytopes associated to problems where pure

BC works. Robust BCP motivates new polyhedral investigations on other problems. For example,

what are the families of facets of the BPP polytope over the xij variables ?

• Which families of cuts yield effective cuts in a BCP context ? The point is that even families of facets

can be already implicitly given by the column generation. A result of this kind was recently obtained

by A. Letchford1, proving that generalized multistar inequalities for the CVRP are useless in a BCP

similar to that described in [5].

• In a similar way, robust BCP motivates devising new combinatorial relaxations/decompositions to

problems, even if they do not yield a good pure BP algorithm. Take the Travelling Salesperson

Problem (TSP) as example. The 1-tree relaxation is not interesting on a BCP because it can be

shown that fractional solutions satisfying the degree and subtour elimination constraints can be

represented as convex combinations of 1-trees and those subtour cuts can be separated in polynomial

time. But what about state-space relaxations like those proposed in [2] ? And the closed walk of

size n avoiding subcycles of size less than k and visiting exactly once the vertices of a given set

S relaxation ? It is possible in a BCP to restrict x to be a convex combination of such walks by

polynomial-time pricing (for fixed k and |S|). Can we do the same using known TSP cuts separated

in polynomial time ?
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