
Enhancing Data Warehouse Design with the NFR
Framework

Fábio Rilston Silva Paim, Jaelson F. B. Castro

Universidade Federal de Pernambuco, Centro de Informática
Av. Professor Luis Freire s/n, Cidade Universitária,

CEP 50740-540, Recife, PE, Brazil
{frsp,jbc@serpro.gov.br}

Abstract. In recent years, Data Warehouse has emerged as a powerful technology
for integrating heterogeneous data into a multidimensional repository on behalf of
decision-support analysis. The complex extraction, transformation and loading
process involved, as well as the aggregational-intensive queries are governed by a
multitude of quality factors such as integrity, accessibility, performance, and other
domain-specific non-functional requirements (NFRs). This clearly advocates the use
of an NFR approach in support of building a high-quality data warehouse
specification. In this work we extend the NFR Framework [3] to define catalogues
of major data warehouse NFR types and related operational methods, for latter reuse
during the specification stage. We illustrate the contributions of our approach in a
case study on a large data warehouse project.

1. Introduction

In recent years Data Warehouse (DW) has emerged as a powerful technology for
integrating sparsely distributed operational data into a comprehensive analytical fashion
on behalf of an old enterprise’s dream: to predict and thus make decisions upon their
(near) future. The design of such systems is rather different from the design of the
conventional operational systems that supply data to the warehouse. The former not only
involves information requirements of decision makers, but also the structure and allocated
requirements of the latter. Software engineers are required to deal with the complex
process of extracting, transforming, and aggregating data while managing to deploy a
solution that precisely, timely integrates with a number of heterogeneous source-provider
systems; presents analytical results in an accurate, reliable form; offers flexibility at the
front-end where ad-hoc queries are to be launched; and do all this with the support of a
complete, non-redundant dimensional model. Thus, both operational and strategical
visions have to be wrapped up in a multidimensional package to meet corporative
analytical requirements that pervade pure decision-support functionality as well as strong

quality constraints like integrity, accessibility, performance and domain-specific non-
functional requirements such as multidimensionality [2]. This clearly advocates the use of
Requirements Engineering techniques to build a precise data warehouse specification.

To pursue this goal, we innovate by proposing a methodological approach for
requirements analysis of data warehouse systems in [1]. Our approach provides an
iteractive, phase-oriented method to guide requirements engineers throughout the data
warehouse specification process. The approach, however, is rather general with regard to
exploring non-functional requirements and the alternative paths developers would have to
probe into in order to understand both positive and negative influences of a certain quality
requirement to the data warehouse design process.

The NFR Framework (Chung et al. [3]) fills in this gap by enabling developers to
produce tailored solutions that embrace the quality characteristics of a particular domain,
including priorities, related operational methods and reasoning about the influence of a
non-functional choice to the system design. To deal with the large number of possible
development alternatives, developers can consult the Framework’s design catalogues,
which organize past experience, standard techniques, knowledge about particular non-
functional requirements as well as their tradeoffs and interdependences.

In this work, we adopt the NFR Framework to complement the requirements
specification phase of our methodology. We start by defining a hierarchical tree of the
major data warehouse non-functional requirements. Most significant non-functional
requirements are further decomposed into catalogues of operational methods that, in
conjunction with the Framework structure, enable engineers to select from the
combination of qualitative and implementation factors that best meet users’ decision-
support needs.

This work is organized as follows. In section 2 we briefly present our approach for
requirements analysis of data warehouse systems. In section 3 we describe the NFR
Framework. The main set of data warehouse non-functional requirements, and their
related Operationalization Catalogues, are discussed in Sections 4 and 5 respectively.
Section 6 illustrates the contributions of the extended NFR Framework to the design of a
large-scale governmental data warehouse. Section 7 summarizes our conclusions.

2. Analysing Data Warehouse Requirements

Data Warehouse systems offer efficient access to integrated and historical data from
heterogeneous information sources to help managers in planning and decision-making.
The data within the warehouse is extracted from the sources, consolidated, aggregated and
accumulated in multidimensional data structures to support strategic analysis, powered by
a technology named OnLine Analytical Processing (OLAP) [4]. To achieve good OLAP
performance, the multidimensional model classifies data into facts, numeric data that
quantifies a specific business activity that one wishes to analyze (e.g. quantity of products
sold); and dimensions, a hierarchical classification chain of qualitative values through

Enhancing Data Warehause Design with the NFR Framework 41

which data can be consolidated (e.g. the quantity of products sold can be summarized
hierarchically by clerk, department and store along a “Store” dimension). To facilitate the
assembling process, developers commonly make use of the so-called “divide to conquer”
strategy to identify and deploy meaningful subsets of data, containing information related
to a certain business activity, named Data Marts. These well-defined blocks represent a
starting point in an incremental cycle that aims to deliver the enterprise-wide data
warehouse by integrating each independent piece, one at a time.

Designing and implementing such an environment is a highly complex engineering
task that calls for methodological support. In [1], we rely on the Twin Peaks principle [5]
to propose an iterative process of requirements modeling that progressively (and
simultaneously) yields an increasingly more detailed requirements specification. Initially
elicited Data Mart requirements traverse a sequence of iterations that analyze, negotiate
within involved groups, register and conform requirements to a broader data warehouse
specification. The product of each iteration can be either a set of more refined
requirements to serve as the entry point for a subsequent iteration; or a final version
(baseline) of the Data Mart specification. The Specification Process integrates a phase-
oriented methodology (Fig.1) that guides developers throughout the data warehouse
requirements analysis, whereas template artifacts collect each aspect of the users demand.

S
Con
mo

42 WER 2002

Management
Plan

Business
Domain Project

Guidelines
User

Needs

Early DataMart
Requirements

 Requirements
Management
Planning

New
Baseline

DataMart
Requirements Release

Accorded
Changes

Data Warehouse
Requirements Updated

Data Warehouse
Requirements

Development
Cycle

 Requirements
Specification

 Requirements
Validation

 Requirements Management Control

Fig. 1. Phase-Oriented Framework for Data Warehouse Requirements Analysis

urrounding this process stands a backbone activity (Requirements Management
trol) that performs permanent quality assessment of requirements change impacts. For

re detailed information about the methodology, the reader can refer to [1].

3. Overview of the NFR Framework

The NFR Framework [3,6,7,8] is a goal-driven, process-oriented approach to dealing with
Non-Functional Requirements (NFRs), hence being complementary to the traditional
product-oriented approach whose emphasis lies in product evaluation, usually involving
metrics. During the software development process, the framework allows treating NFRs
as potentially conflicting or synergistic goals to achieve, while considering development
alternatives which could meet the stated NFRs, examining design tradeoffs, relating
design decisions to NFRs, justifying the decisions in relation to the needs of the intended
application domain, and assisting defect detection [8].

A cornerstone concept in the framework is the notion of softgoals. A softgoal represent
a goal that has no clear-cut definition and/or criteria as to whether it is satisfied or not.
Softgoals are related through relationships that represent the influence or interdependency
of one softgoal on another [3]. A softgoal is said to be “satisfied” when there is sufficient
positive evidence and little negative evidence against it. These interdependencies and
influences can be investigated in terms of the incremental and interactive construction,
elaboration, analysis and revision of Softgoal Interdependency Graphs (SIG – Fig.2),
which comply the following basic steps1:

1. Develop the NFR goals and their decomposition into an AND/OR softgoal hierarchy.
2. Define knowledge catalogues to systematically organize development techniques

(operationalization methods) regarding a specific NFR.
3. Identify correlations among softgoals.
4. Develop goal criticalities.
5. Analyze design tradeoffs and rationale.
6. Identify an operationalizing scenario that best satisfies quality system requirements.
7. Relate the decision made to functional requirements in the target system.

The light clouds in a SIG indicate a NFR softgoal, i.e., the NFR itself. The NFR
softgoals have the following nomenclature: Type [Topic1, Topic2,…], where Type is a
non-functional aspect (e.g. security) and Topic is a subject of the target system to which
the softgoal is associated (e.g. accounts). Topics can further be decomposed into
attributes, indicated by a “.” following the topic description (e.g. accounts.balance). The
dark clouds indicate a design softgoal, i.e., a design technique, operation, constraint or
other architectural component. The lines between dark and light clouds indicate the degree
to which the design softgoal corresponding to the dark cloud satisfices the NFR
represented by a light cloud. Satisficing can occur in four intensities: strongly positively

1 A more recent use of The NFR Framework has been to investigate alternative architecture configurations for a

target system, to which it has been proved very effective [10,36]. Nonetheless, to what concerns data
warehouse systems, we are now interested in more general sets of operationalizing methods to assist data
warehouse designers in settling down the basis for a future architecture. Our basic-step description reflects
this goal.

Enhancing Data Warehause Design with the NFR Framework 43

satisficing (++), positively satisficing (+), negatively satisficing (-), strongly negatively
satisficing (--). Determination of the degree of satisficing takes place during the step 3
above.

Completeness
[accounts]

User-Friendly Access
[accounts]

Secure
[accounts]

Good Performance
[accounts]

X

X

!

Integrity
[accounts] Availability

[accounts]

Confidentiality
[accounts]

Accuracy
[accounts]

Space
[accounts]

Response Time
[accounts]

Use Indexing
[accounts]

 Claim
[Optimized validation will
not hurt Response too much]

Validate access
against eligibility
rules

Use uncompressed
format [accounts]

+ - +
-

-

+

+
Authorize access

to information
[accounts]

Identify
users

Use PIN

Compare
signature

Require
additional

ID

Authenticate
user access

++ Strongly positive satisficing
+ Positive satisficing
- Negative satisficing
-- Strongly Negative satisficing

Interdependency
 Implicity
 Explicity

 ! Critical
Accepted

X Rejected

Operationalizing
Method NFR

Softgoal Claim

Softgoals

Fig. 2. Softgoal Interdependency Graph (adapted from [3])

Goal criticalities are indicated by a “!” sign next to the softgoals – a single “!” denotes
that the softgoal is critical while “!!” indicates that the softgoal is severely critical. Critical
considerations take place during the step 4 above. In addition, a single arc means an AND
of all the softgoals originating from a softgoal, while a double arc means an OR of all the
sub-softgoals. Finally, in step 6, an interactive labeling procedure is used to label the leaf
NFR softgoals based on how much they are satisficed and their criticalities, and propagate
the labels up the SIG at the end. The latest version of the NFR Framework notation uses
numeric values (metrics) inside a NFR cloud to register the degree to which the generated
architecture satisfices the various softgoals. In this work, however, for simplicity reasons,
we will use a “ ” and an “x” signs instead of metrics to indicate selection (acceptance) or
rejection (denying) of a given softgoal. Dashed clouds represent claim softgoals, i.e., the
rationale applied to select/reject a given softgoal based on domain characteristics such as
priorities and workload [10].

44 WER 2002

4. Data Warehouse NFRs

Handling quality requirements during data warehouse design involves allowing for
distinct needs and domain visions of each stakeholder role. Jarke et al. put forward that
decision makers are usually interested in the quality of stored data, their timeliness and
easy of querying through OLAP tools [11]. Designers also need to guarantee the quality of
the multidimensional schema that underpins decision-support analysis, and rely heavily on
the quality of operational systems documentation and data to achieve this goal. On the
other hand, database administrators are concerned with the degree of accessibility to
operational source data and their consolidated version already stored in the warehouse, as
well as the performance and timeliness of the loading process.

The NFR Framework organizes such quality requirements in NFR Type Catalogues, as
a hierarchy of types, the more general ones shown above more specialized ones. NFR type
catalogues can be customized to reflect domain-specific characteristics. Chung et al. [3]
thoroughly details catalogues for Accuracy, Security and Performance. We use a
Knowledge-Based approach [10] to adopt and extend this prime NFR set to provide a
broad catalogue of most important data warehouse NFRs (Fig.3), based on the work of
[3,8,11,12,13,14,15,16,17]. The goal here is to make further use of these NFR types and
operationalization catalogues during the requirements specification phase of our
methodology.

 Data Warehouse NFRs

Security Performance Multidimensionality User-Friendliness

Space Time

Processing
Time

Response
Time

Availability Integrity

Confidentiality

Main
Memory

Secondary
Memory Reliability

Distributivity

Operability

Flexibility

Learnability

Integrability

Timely

Accessibility

Interpretability

Data
Interpretability

Documentation
Readability

Completeness
Accuracy

Correctness

Minimality Traceability Consistency

Summarizability
Domain

Compliance

Fig. 3. Hierarchical tree representing the Data Warehouse NFR Type Catalogue

Enhancing Data Warehause Design with the NFR Framework 45

We note, however, that our proposed catalogues do not intend to enclose an exhaustive
list of data warehouse NFR types and methods, but to focus on the most important ones to
data warehouse design. Table 1 describes the main set of data warehouse NFRs and their
related quality requirements. In the next sections we discuss in a more fine-grained
fashion these main NFRs, while developing their operationalization catalogues. Due to
space restrictions, we will attain our discussion to the three most relevant NFRs:
performance, multidimensionality, and integrity.

Table 1. Data Warehouse Non-Functional Requirements

1. Performance
The data warehouse architecture degree of efficiency at responding to a processing request.
1.1 Time The data warehouse architecture good time performance.
1.1.1 Response Time Decreased or low time response to analytical querying.
1.1.2 Processing Time Decreased or low time response to backstage processing.
1.2 Space Efficient usage of processing memory.
1.2.1 Main Memory Degree of optimization of main memory usage.
1.2.2 Secondary Memory Degree of optimization of secondary memory usage.
2. Security
The degree of information protection and resilient behavior of the data warehouse and its data.
2.1 Integrity Degree of precision and validity of multidimensional data.
2.1.1 Accuracy Precision of stored data and summarized results.
2.1.1.1 Consistency Logical coherence of data warehouse data.
2.1.1.1.1 Domain-Compliance Data adequacy to domain standards.
2.1.1.1.2 Summarizability Ability to correctly summarize data along aggregational paths.
2.1.1.2 Minimality Degree up to which undesired redundancy is avoided during the

source integration process.
2.1.2 Correctness Extent to which the data warehouse specification maps source

information to satisfy user needs.
2.1.2.1 Traceability Capacity of relating stakeholders requirements to the data

warehouse schema.
2.1.3 Completeness Degree to which all data warehouse crucial knowledge is

properly implemented on its multidimensional model and stored
data.

2.2 Availability Extent to which the source or data warehouse system is
promptly available to all stakeholders.

2.2.1 Reliability Percentage of time the source or data warehouse system is
available for use considering aspects of maturity, fault tolerance
and recoverability.

2.2.2 Distributivity Data warehouse capacity of reaching all decision makers.
2.3 Confidentiality Data warehouse capacity of guarding against unauthorized

disclosure.

46 WER 2002

3. Multidimensionality
Ability to represent decision-support requirements as and provide access to dimensional and factual data.
3.1 Conformance Ability to represent common data warehouse aspects in

identically the same way across the entire data warehouse
specification.

3.2 Integrability Capacity of adequately and efficiently integrate operational
information.

3.2.1 Timely Degree to which the data updating frequency meets business
users.

3.3 Accessibility Possibility to access data for querying.
3.4 Interpretability Extent to which data can be interpreted to efficiently model the

data warehouse.
3.4.1 Documentation

Readability
Degree to which documentation in operational sources is
understandable.

3.4.2 Data Interpretability Degree of data description soundness.
4. User-Friendliness
Degree to which the data warehouse software is ease to use.
4.1 Operability The ease of operation of a data warehouse.
4.2 Flexibility Extent to which the data warehouse software facilitates ad hoc

querying.
4.3 Learnability The physical and or intellectual skill required to learn the

system.

5. NFR Operationalization Catalogues

Operationalizing Methods refine NFR softgoals into operationalizing softgoals, or the
latter into more specific operationalizing softgoals [10]. These operationalizations depict
possible design or implementation scenarios and once in the SIG diagram enable
designers to measure the implications and contributions of these scenarios to the (or part
of the) whole data warehouse design process.

5.1 Operationalizing Performance

Performance is a vital quality factor for systems [3], and this is no less true for data
warehouse systems. To build a successful DW, it is crucial that its central component - the
database - be a high-performance product that will meet organization's current and future
needs. Inmon and Hackathorn [18] there even affirm to be a very real, although indirect,
relationship between the end user’s query speed and his/her productivity as a decision-
maker. This is just one side of the problem. On the other side stands an enormous amount
of data to be extracted, transformed and loaded onto the repository. As data warehouse

Enhancing Data Warehause Design with the NFR Framework 47

applications usually deal with aggregation of millions of data, both backstage and query
performance are essential aspects to be considered.

There are several techniques to tackle this issue (Fig.4). One can generally organize
them into two large groups: techniques for optimizing time and space performance. The
first group of techniques seeks to offer best response and processing times. Optimal
response time can be achieved by pre-aggregating harvested data in database views, and
breaking the traditional data modeling rules by denormalizing the database. To overcome
data retrieving overload, data warehouses make large use of joining and indexing
techniques. Besides accessing, data must be efficiently populated into the repository.
Good processing performance often requires shared disk architectures [20] and, whenever
the warehouse exceeds billions of data, parallelism of processors. The second group of
techniques deals with optimal space usage, at both main and secondary memory levels.
Blocksize adjustment and Caching [12] eases main memory usage, whereas data
duplication techniques like Data Mirroring and RAID-5 [21] enhance file disk (secondary
memory) performance. Yet, Data Partitioning is another solution to improve both time
and space performance, where multiple tables are created to store minute levels of data.

 Performance Operationalization Methods

Join Techniques

Indexing

Denormalization

Parallelism

Relational
Shared

Architectures

Blocksize
Adjustment

Caching

Partitioning

Optimal
Disk Usage

Symmetric
Multiprocessing

Massively
Parallel

Processing

B-Tree

Nested
Loop

Sort/Merge

Hash

Pointer-
Based

Traditional
Bitmap

Composite

Shared
Disk

Data
Mirroring RAID-5

Vertical Horizontal

Optimize
Time

Optimize
Space

Snowflaking

. . .

Fig. 4. Performance Operationalization Catalogue

5.2 Operationalizing Multidimensionality

Multidimensionality [2], an aspect unique to data warehouse systems, is normally stated
as a technique of modeling information as facts (what we want to analyze) and

48 WER 2002

dimensions (what we shall use to analyze). To the quality extent, it requires more than a
collection of facts and dimensions. Building a multidimensional architecture entails
accessing external and internal information under strict time and quality control
constraints; integrating raw information to derive suitable strategic information; and
conforming common dimensional requirements to get reusability. We broaden then the
multidimensionality concept to embrace all this intertwined quality factors, while
compose a related methods catalogue as demonstrated in Fig.5.

 Multidimensionality Operationalization Methods

Use Case
Modeling

Repository
Updating

Bus
Architecture

Data
Aggregation

Integration
Protocol

Standard
Software
Process

Templates

Glossary
of Terms

Loading
Scheme

Data
Cleansing

Daily

. . .

Snowflake

Periodic

Transformation

Data
Quality
Control

Data
Modeling

ODS

Batch
Processing

Metadata

Conformed
Specification

Conformed
Dimensions

Conformed
Facts

Loading

Incremental
Loading

Multiple
Loading

Parallel
Loading

High-Quality
Documentation

Data Mining

OLAP

ROLAP MOLAP

Static
Access

HOLAP

Request for
Info(RFI)

Dinamic
Access

Constellation

StarSchema

Mediators

Wrappers

Extraction

ETL

Reconciling

Data
Interpretation

Business
Modeling

Data
Access

OLAP
Operators

OLAP
Modeling

. . .

Fig. 5. Multidimensionality Operationalization Catalogue

The first step towards multidimensionality is to integrate operational data on a timely
basis. A great number of techniques have been proposed in the literature to deal with ETL
(Extraction/Transformation/Loading) activities such as data cleansing, summarization,

Enhancing Data Warehause Design with the NFR Framework 49

and reconciling ([23]). Data administrators must also decide for the loading periodicity
that offers best tradeoff between users requirements and environment restrictions. An
essential condition when planning for ETL is to assure good quality external source
documentation, which is strongly facilitated by adopting software documentation and
development standards. Data description soundness is almost mandatory to guarantee
cost-effective data loading and querying. Data Modeling facilities like the use of domains,
primary and foreign keys, aliases, as well as business modeling techniques contribute to
increase data interpretability.

Data Accessibility is at the core of multidimensional databases. Data warehouses aim
at providing fast and up-to-date access to business information. Unfortunately, these two
aspects are somehow conflicting. In order to gain fast retrieving on query processing,
OLAP operations work on relational (ROLAP) or multidimensional (MOLAP) data
architectures that store summarized data. This approach, however, lacks freshness of
information, once data content might have been changed after being materialized into the
repository. To attack this problem, modern DW architectures make use of Mediators [24]
to permit direct access to operational data.Yet, real-time integration schemes like
mediators tend to decrease the querying response-time, apart from being a relatively new
technique on the commercial scene, which is dominated by the static access approach and
its multidimensional modeling techniques: star (denormalized) and snowflake
(normalized) schema [27]. A majority of data warehouses is built upon the star schema
(where dimension tables are stick to a central fact table, forming a star shape) due to its
incredible speed performance. Still, a single dimension table can serve more than one fact
table (e.g. Time). It is, thus, fundamental for such dimension to possess a unique, multi-
service structure. Analogously, there might be facts common to more than one fact table
(e.g. sales total). One can accomplish a certain degree of multidimensional conformance
by utilizing systematic approaches as in [1] and planning for bus architecture construction
as in [12]. Metadata [25] holds a major supportive role across all previously mentioned
techniques, collecting all necessary information to assist in the ETL phase and content
analysis.

5.3 Operationalizing Integrity

The completeness, correctness and accuracy of the data extracted and fed into the
warehouse will be a function of the reliability and authenticity of the warehouse to its
users. Thus, in data warehouse environments, there needs to be a means to ensure the
integrity of data, first by having procedures to control the quality of the data movement
from operational systems, and second by having controls to assure consistent data
consolidation and presentation. Data integration techniques (see Sect. 5.2) like data
cleansing positively satisfice integrity requirements. Notwithstanding, final adjustments
are still needed to ensure accuracy of data in terms of minimality and consistency.
Integrity constraints are basic to deploy minimal (non-redundant) data and data
aggregation assurance (summarizability). Data consistency is also determined by the

50 WER 2002

degree of data compliance to business domains, which is empowered by large use of
metadata, integration standards and data quality control procedures. These last two assets
are very important means of improving data correctness and completeness, and so is a
good requirements analysis process. Adding to the issue of correctness, it is extremely
required to track user requirements accommodation to the multidimensional schema with
means like traceability matrices [26]. Fig.6 summarizes the main integrity-assurance
techniques.

Integrity Operationalization Methods

Summarization Traceablity
Matrices

Data
Quality
Control

ETL

Metadata

Integration
Standards

Spartiality
Prevention

Database
Constraints

Non-Nullable
Constraints

Integrity
Constraints

Aggregation
Analysis

Transformation

Fig. 6. Integrity Operationalization Catalogue

6. Using the Data Warehouse-Extended NFR Framework

We now illustrate the application of the Data Warehouse-Extended NFR Framework
(hereafter DW-ENF) to the development of a large data warehouse system named SAFE2.
SAFE was developed by SERPRO, a Federal Data Processing Agency of the Brazilian
Government, to provide the Internal Revenues Department with a detailed strategical view
over the federal taxes collecting process. SAFE stores tax information in a subject-driven
perspective to perform complex OLAP queries. Subjects are defined as client’s core
business areas, and modeled by means of single Data Mart solutions. A central fact table
in each Data Mart holds real world facts vital to the analysis scenario envisioned for each
subject.

SAFE is an ongoing project conducted under the premises of our proposed
methodology [1]. To enhance the power of our method (and SAFE’s final quality as well),

2 SAFE is an acronym to “Sistema de Análises Fiscais Estratégicas” (Internal Revenues Strategic Information

System).

Enhancing Data Warehause Design with the NFR Framework 51

we made use of the Extended NFR Framework during the Requirements Specification
phase to examine optimal design alternatives. Due to space restrictions, we chose three
design critical requirements to work on in this brief case study:

 R1 – Query response time must not exceed 1 minute;
 R2 – The system should present the most up-to-date information as possible;
 R3 – The system must allow the user to drill across data from different subjects;

One can realize from the DW-ENF that these quality criteria relate directly to the
performance and multidimensionality potential expected from SAFE. The question to be
answered at this point is which design alternative best fits the three conditions. We will
have thus to investigate the querying response time, the timeliness of data loading and the
accessibility implementation methods. Using the DW-ENF catalogues, we construct the
SIG shown in Fig.7.

From R1 we conclude that time performance is critical to SAFE. In fact, a robust
machine with terabytes of storage capacity has been acquired to deal with the space issue,
so that space is no longer a major issue to the project. This leads us to mark the Time
softgoal with a “!”. Still, response time prevails against processing time, for the
frequency of data updating overcomes the time to process data in significance, which can
be taken from R2 and also from the mentioned architectural facilities. To represent this,
we mark the Timely softgoal with a “!” and the Response Time softgoal with a “!!”. Time
investigation will focus now on the response time factor.

Now let us take a closer look over the performance problem. The SIG shows that, in
order to optimize time response, the designer can choose from any of the following
methods: join and indexing techniques, parallelism of processors, and/or data
denormalization. However, the tool used to implement the OLAP environment
automatically controls and optimize data joining. Yet, SAFE’s warehouse is expected to
store up to a hundred millions of factual and dimensional registers, which eliminates the
need for investments in expensive parallel processing. From the prior arguments, the data
warehouse designer can reject respectively the Join Techniques and the Parallelism
softgoals. We continue with the analysis of indexing techniques. SAFE Interface enables
users to perform regular as well as complex analytical queries. Complex queries
frequently perform joins between multiple tables, which is empathized by the need of drill
across operations (R3). Regular queries, instead, return a low amount of data from a few
fact tables. The two kinds of queries require distinct indexing approaches, indicated by the
Indexing[queries] softgoal decomposition into Indexing[RegularQueries] and
Indexing[ComplexQueries]. Regular queries are well supported by B-Tree Indexes,
while complex ones require more sophisticated indexing schemes like Bitmap Indexes.
The designer chooses B-Tree and Bitmap Indexing, then, to satisfice SAFE’s query
performance requirements.

On the other hand, requirement R3 strongly suggests the adoption of a special form of
star schema namely Constellation [27], where single star schemas are hierarchically

52 WER 2002

linked from their fact tables. The links between fact tables will provide the ability required
by the client to “drill across” different subject information, which is indicated by the
strong interdependency between the Constellation and the Drill Across design softgoals.
Denormalization, in turn, becomes an eligible softgoal, as it strongly supports star
schemas.

Multidimensionality
[data]

Performance
[queries]

X

X

X

X

!

Space
[queries]

Time
[queries]

Optimize Time
[queries]

Claim
[There exists no time

window to process daily]

++

-

- +

Dinamic
Access

Join
Techniques

!

X !!

Response Time
[queries] Processing

Time
[queries]

++

Indexing
[queries]

Denormalization

+

B-Tree
Indexes

Bitmap
Indexes

Integrability
[data]

Acessibility
[data]

Timely
[data]

X

Periodic
Loading +

Monthly
Loading

Data Access
[data]

Daily
Loading

--

Static
Access

++

OLAP

OLAP
Modeling

OLAP
Operations

X

MOLAP ROLAP
+ +

OLAP
Operations

[BasicQuerying]

OLAP Operations
[AdvancedQuerying]

+

Drill Across

X
Snowflake

+ +

+

Constellation

++++

Claim
[Out of design scope]

--
--

Claim
[Response Time is
critical for the system]

++

+

Indexing
[RegularQueries]

Indexing
[ComplexQueries]

StarSchema

Parallelism

Fig. 7. Example of DW-ENF application in the SAFE system design

Although it may hurt space performance, such is not a concern in this project. Besides,
the other logical choice, Snowflaking, has been denied for it hurts the dominant response
time softgoal. Ultimately, the designer is confronted with the need for very timely loading

Enhancing Data Warehause Design with the NFR Framework 53

of data. Requirement R2 suggests that a daily processing approach be chosen. This
approach, however, has to be denied due to the absence of sufficient “time window” to
extract data from all sources (this activity takes place inside SERPRO’s mainframes). In
fact, the shortest period of time when all data could be loaded into the warehouse is a
month. Thus, a monthly loading approach is accepted, and the client is informed of the
update restriction.

We finish our brief investigation with the concluding design alternative for the SAFE
system, regarding requirements R1, R2 and R3:

7.

Qu
for
dep
spe
req
dat
we
obj

goa
app
int
obj
wh
NF
fun
app
hav
[19
fou
wit
com
sys
dis
[13

54 WER 2002
The data warehouse architecture will be built around a constellation
schema, with interlinked fact tables to enable drill across operations. Data
denormalization, together with B-Tree and Bitmap indexes will be used to
improve query speed.
Related Works

ality characteristics of software have been an important theme in software engineering
 a long time [29]. In recent years, Requirements Engineering has covered more in-
th the crucial role played by quality (or non-functional) requirements in software
cification [31,32,33]. The first efforts addressed the what-how range of the
uirements problem, leaving an implicit, quantitative notion of requirements behind
a and operation sets. Further works attempted to capture the reasons why requirements
re needed in a given software specification, and whether they satisfied higher-level
ectives (goals) that naturally arise in any requirements engineering process [30].
In the early nineties, two complementary frameworks were proposed for integrating
ls and requirements modeling. The first framework [31] utilized a quantitative
roach to investigate the degree of satisfaction between goals and refined subgoals,

roducing operationalizing links to relate goals to requirements on operations and
ects. The NFR framework [6] appeared subsequently to propose a qualitative approach
ere lower-level requirements are expected to satisfy more abstract “soft” goals. The
R Framework has been used ever since in a variety of ways and domains to treat non-
ctional requirements [8,9,10,28,33]. Our work is, however, the first example of
lication of the NFR Framework in the data warehouse domain. In fact, few researches
e addressed the quality assurance theme in such domain. The long term DWQ Project
] heads most of the works in the area, looking forward to developing a semantic
ndation that allows data warehouse designers to link the choice of architectural models
h quality-of-service factors. As part of this project, the works of [11,16] developed a
prehensive study about the influence of quality requirements in the decision-support

tems design, from the point of view of involved stakeholders. Kimball et al. [12]
cuss techniques and procedures to assure data warehouse high-quality data, while
,36] analyze thoroughly particular multidimensional quality factors. Our approach goes

beyond these works to propose a framework that assists designers in a higher-level of
abstraction to deploy user-fitting solutions.

8. Conclusions

In this paper we have addressed the problem of dealing with non-functional requirements
in the development of data warehouse systems. We extended the NFR Framework to
define a set of data warehouse-specific NFR types and operationalization catalogues,
which we referd to as DW-ENF. The catalogues can be further reused during the
Requirements Specification phase of an innovative data warehouse requirements analysis
methodology to investigate design alternatives that satisfice overall users’ quality
constraints. We illustrated the potentiality of our DW-ENF approach with an excerpt from
the development process of a large data warehouse system for the Brazilian Government.

Although simple in nature, the study case gives an idea of how designers can benefit
from using the DW-ENF approach to build quality into decision-support systems, and
bridge the gap between functional and non-functional aspects of the application. Complex
systems like SAFE, however, demand more intricate tradeoff analysis that cannot be
easily accomplished without tool support. We intend to use the NFR-Assistant tool [35] to
explore in more deeply ways the structure and contributions of the DW-ENF framework
to the development of data warehouse systems in our ongoing project with SERPRO.
Further works include also extending the framework to investigate weaknesses and
strengths of alternative architecture configurations of a given data warehouse solution to
support design evolution.

References

1. Paim, F. R., Carvalho, A. E., Castro, J. B. “Towards a Methodology for Requirements Analysis of
Data Warehouse Systems”. In Proc. of the XVI Simpósio Brasileiro de Engenharia de Software
(SBES2002), Gramado, Rio Grande do Sul, Brazil, 2002.

2. Abelló, A., Samos, J., Saltor, F. “Benefits of an Object Oriented Multidimensional Data Model”.
Lecture Notes in Computer Science, a. 1944, pg. 141 ff, Proc. of Objects and Database 2000
(ECOOP Workshop), France, 2000.

3. Chung, L., Nixon, B., Yu, E., Mylopoulos, J. Non-Functional Requirements in Software
Engineering. Kluwer Publishing, 2000.

4. Codd, E. F., Codd, S. B., Salley, C. T. “Providing OLAP (Online Analytical Processing) to User
Analyst: an IT Mandate”. White paper at http://www.arborsoft.com/OLAP.html, Arbor Software,
1993.

5. Nuseibeh, B. “Weaving The Software Development Process Between Requirements and
Architecture”. Proceedings of ICSE2001 International Workshop: From Software Requirements
to Architectures (STRAW-01), Toronto, Canada, 2001.

Enhancing Data Warehause Design with the NFR Framework 55

6. Mylopoulos, J., Chung, L., Nixon, B. “Representing and Using Non-Functional Requirements: A
Process-Oriented Approach”. IEEE Transactions on Software Engineering, Vol. 18, No. 6, June
1992, pp. 483-497.

7. Mylopoulos, J., Chung, L., Liao, S. S. Y., Wang, H., Yu, E. “Exploring Alternatives during
Requirements Analysis”. IEEE Software, Jan/Feb, 2001, pp. 2-6.

8. Chung, L., Nixon, B. “Dealing with Non-Functional Requirements: Three Experimental Studies
of a Process-Oriented Approach”. In Proceedings of the IEEE 17th International Conference on
Software Engineering (ICSE), Seattle, April 24-28, 1995, pp. 25-37.

9. Chung, L., Subramanian, N. “Process-Oriented Metrics for Software Architecture Adaptability".
In Proceedings of the 12th Intl. Symposium on Software Reliability Engineering (ISRE), Hong
Kong, China, 2001.

10. Subramanian, N., Chung, L. "Software Architecture Adaptability: An NFR Approach". In
Proceedings of the Intl. Workshop on Principles of Software Evolution (IWPSE`01), September
10-11, Vienna, Austria. IEEE Computer Society Press, 2001.

11. Jarke, M., Jeusfeld, M., Quix, C., Vassiliadis, P. “Architecture and Quality in Data Warehouses:
An Extended Repository Approach”. Information Systems, Vol. 24, No. 3, 1999, pp. 229-253.

12. Kimball, R., Reeves, L., Ross, M., Thornthwaite, W. The Data Warehouse Lifecycle Toolkit.
New York, John Wiley & Sons, 1998.

13. Lenz, H.-J., Shoshani, A. “Summarizability in OLAP and Statistical Data Bases”. In Proc. of
the 9th Intl. Conference on Scientific and Statistical Database Management (SSDBM), IEEE
Computer Society, 1997.

14. Pressman, R. S. Software Engineering: A Practitioner 's Approach. McGraw-Hill Book
Company (New York), fifth edition, 2000.

15. Date, C. J. An Introduction to Database Systems. Addison-Wesley Publishing Company,
seventh edition, 1999.

16. Vassiliadis, P., Bouzeghoub, M., Quix, C. “Towards Quality-oriented Data Warehouse Usage
and Evolution”. In Proceedings of the 11th Conference on Advanced Information Systems
Engineering (CAiSE '99), Heidelberg, Germany, 1999.

17. Vassiliadis, P. “Data Warehouse Modeling and Quality Issues”. PhD thesis, Department of
Electrical and Computer Engineering, National Technical University of Athens, Greece, 2000.

18. Inmon, W. H., Hackathorn, R. D. Using the Data Warehouse, John Wiley & Sons, 1994.
19. Foundations of Data Warehouse Quality – DWQ Project. http://www.dbnet.ece.ntua.gr/~dwq/.
20. Spiliopoulou, M., Hatzopoulos, M., Contronis, Y. “Parallel Optimization of Large Join Queries

with Set Operators and Aggregates in a Parallel Environment Supporting Pipeline”. IEEE
Transactions on Knowledge and Data Engineering, 8(3): 429--445, June, 1996.

21. Asami, S. “Reducing the cost of system administration of a disk storage system built from
commodity components”. Technical Report CSD-00-1100, University of California, Berkeley,
2000.

22. Marco, D. Building and Managing the Meta Data Repository: A Full Lifecycle Guide. John
Wiley & Sons, first edition, 2000.

23. English, L. Improving Data Warehouse and Business Information Quality: Methods for
Reducing Costs and Increasing Profits. John Wiley & Sons, first edition, 1999.

24. Wiederhold, G. “Mediators in the Architecture of Future Information Systems”. IEEE
Computer, 25(3): 38-49, 1992.

25. Do, H. H., Rahm, E. “On Metadata Interoperability in Data Warehouses”. Technischer Report 1-
2000, Institut für Informatik, Universität Leipzig, 2000.

26. Sommerville, I., Kotonya, G. Requirements Engineering: Processes and Techniques. Addison-
Wiley, 1997.

56 WER 2002

http://www.dbnet.ece.ntua.gr/~dwq/

27. Moody, D. L., Kortink, M. A. “From enterprise models to dimensional models: A methodology
for data warehouse and data mart design”. In Proceedings of 2nd Intl. Workshop on Design and
Management of Data Warehouses (DMDW), Stockholm, Sweden, 2000.

28. Chung, L., Nixon, B. A., Yu, Eric. “Using Quality Requirements to Systematically Develop
Quality Software”. In Proceedings of the 4th International Conference on Software Quality,
McLean, VA, USA, October 3-5, 1994.

29. Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., MacLeod, G. J., Merritt, M. J.
Characteristics of Software Quality. Amsterdam: North-Holland, 1978.

30. van Lamsweerde, A. "Requirements Engineering in the year 00: A Research Perspective". In
Proceedings of the International Conference on Software Engineering (ICSE’2000), Limerick,
June, 2000 (invited paper).

31. Dardenne, A., van Lamsweerde, A., Fickas, S. “Goal-Directed Requirements Acquisition”.
Science of Computer Programming, Special Issue on 6th Intl. Workshop on Software
Specification and Design, Como, Italy, 1991.

32. Fickas, S. Automating the Software Specification Process. Technical Report 87-05, University
of Oregon Computer Science Department, December, 1987.

33. Jarke, M., Bubenko, J., Rolland, C., Sutcliffe, A., Vassiliou, Y. “Theories Underlying
Requirements Engineering: An Overview of NATURE at Genesis”. Intl. Symposium on
Requirements Engineering, San Diego, CA, January, 4-6, 1993.

34. Chung, L., Subramanian, N. "Architecture-based Semantic Evolution for Embedded Systems: A
Study of Remotely Controlled Systems". To appear in Journal of Software Maintenance and
Evolution.

35. Tran, Q., Chung, L. "NFR-Assistant: Tool Support for Achieving Quality". In Proc. of IEEE
Symposium on Application-Specific Systems and Software Engineering and Technology
(ASSET'99), Richardson, Texas, March 24 - 27, 1999.

36. Theodoratos, D., Bouzeghoub, M. “Data Currency Quality Factors in Data Warehouse Design”.
In Proc. of Intl. Workshop on Design and Management of Data Warehouses (DMDW'99),
Heidelberg, Germany, June 1999, pp. 15 / 1-16.

Enhancing Data Warehause Design with the NFR Framework 57

