
Evolving Use Case Maps as a Scenario and Workflow Description Language

Gunter Mussbacher
SITE, University of Ottawa, 800 King Edward, Ottawa, ON, K1N 6N5, Canada

gunterm@site.uottawa.ca

Abstract

Since 1996, the core Use Case Map (UCM) nota-

tion has remained remarkably stable. As the structure
and intent of workflow and scenario languages are
very similar, UCMs have been applied to scenario,
workflow, and business process modeling. The recent
rise of workflow languages for the description of busi-
ness processes and web services resulted in a more
formal assessment method for such languages based
on generic workflow and communication patterns. We
present such an assessment for UCMs, thereby meas-
uring the applicability of UCMs for workflow descrip-
tion in particular and scenario descriptions in general
and gathering evidence on how to evolve the UCM
notation. The results are compared to similar assess-
ments which were carried out for current standards for
workflow, business process design, and business proc-
ess execution languages such as the Business Process
Modeling Notation (BPMN), the Business Process
Execution Language for Web Services (BPEL4WS),
and UML 2.0 Activity Diagrams.

1. Introduction

Use Case Maps (UCMs) [28] are an integral part of
the International Telecommunication Union’s (ITU)
effort to standardize the User Requirements Notation
(URN) [29]. As any other language, UCMs have to be
reevaluated from time to time in light of new techno-
logical development. Over the recent years, many lan-
guages and techniques have been suggested for the
description of workflows for web services and the
composition of web services [34]. The main standard
for executing business processes is the Business Proc-
ess Execution Language for Web Services
(BPEL4WS) 1.1 published by the OASIS WSBPEL
TC [20]. The major players in this field, Microsoft and
IBM, have contributed significantly to this standard
and have incorporated it into their web service devel-

opment environments, BizTalk [17] and WebSphere
[14], respectively. A new version, WSBPEL 2.0, was
recently released. The main standard for modeling
business processes at a higher level than BPEL4WS is
the Business Process Modeling Notation (BPMN) 1.0
published by OMG [11]. This notation is more busi-
ness-oriented than technology-oriented, is better suited
for the design, management, and monitoring of busi-
ness processes, and aims to be more easily understood
by all business users. A formal mapping to BPEL4WS
bridges the gap between business process design and
business process implementation. Another OMG stan-
dard used to model high-level business processes is the
UML 2.0 Activity Diagrams notation [19].

It is important for the future of UCMs, to under-
stand the strengths and weaknesses of the UCM nota-
tion compared to these new languages because of the
great similarity of UCMs and these languages. At first
glance, UCMs are very well suited to describe work-
flow. As a general scenario notation, the structure and
intent is similar to workflow languages. Furthermore,
UCMs have already been used for business process
modeling [32]. Until now, a more formal assessment of
the applicability of UCMs for workflow description
has not been performed. Such an assessment must a)
indicate whether UCMs are capable of describing
commonly encountered workflow situations, and b)
allow UCMs’ capabilities to be compared to the main
standards BPMN, Activity Diagrams, and BPEL4WS.

An assessment based on generic workflow patterns
which have been collected from workflow situations
frequently encountered when modeling workflow cer-
tainly satisfies the first criteria. As the workflow pat-
terns are not just applicable to workflow descriptions
but also to scenarios in general (see the examples in
this paper), the assessment gives also an indication on
the capabilities of UCMs as a general scenario notation
and not just a workflow language. The second criteria
is also satisfied as assessments based on workflow
patterns have already been conducted for BPMN [33],
Activity Diagrams [33][35], and BPEL4WS [34]. Note
that this paper compares UCMs with BPEL4WS 1.1

instead of WSBPEL 2.0 because an assessment is only
available for the former.

The main goal of this paper is to provide insight
into how to evolve UCMs and tool support for UCMs.
A UCM notation, capable of supporting more work-
flow patterns, is also generally a more powerful sce-
nario description language. Therefore and whenever
possible, this paper presents an improved UCM nota-
tion for each workflow pattern that cannot be modeled
with the current UCM notation. The results of the as-
sessment (i.e. the applicability of UCMs for workflow
description based on UCMs’ support for generic work-
flow patterns) and the comparison with BPMN, Activ-
ity Diagrams, and BPEL4WS provide the basis for
such an improvement.

As BPEL4WS is a business process execution lan-
guage, [34] also assessed the language based on ge-
neric communication patterns. UCMs are therefore
also evaluated with regards to these communication
patterns in order to allow a more comprehensive com-
parison with BPEL4WS. Note that workflow lan-
guages can also be analyzed from data and resource
perspectives [30] which are beyond the scope of this
paper given the space constraints.

In the remainder of this paper, section 2 provides
background on UCMs, web services, BPMN, and the
generic workflow and communication patterns. Section
3 first describes the details of the pattern-based ap-
proach used for the assessment, and then assesses the
support of UCMs for each of the workflow and com-
munication patterns. The section closes with a sum-
mary of the assessment and a comparison of the results
with similar assessments for BPMN 1.0, UML 2.0 Ac-
tivity Diagrams, and BPEL4WS 1.1. Furthermore, the
requirements for evolving UCMs as a scenario and
workflow description language are listed based on the
findings of section 3. Finally, section 4 gives a conclu-
sion and identifies future work.

2. Background

2.1. Use Case Maps

Use Case Maps (UCMs) [28] are an integral part of
the International Telecommunication Union’s (ITU)
effort to standardize the User Requirements Notation
(URN) [29]. UCMs are a scenario notation best suited
for the description of functional requirements and if
desired, high-level design. UCMs consist of one or
more paths describing the causal flow of behavior of a
system (e.g. one or many use cases). Optionally, be-
havioral aspects are superimposed over components
which represent the architectural structure of a system

(e.g. classes or packages). UCMs abstract from the
details of message exchange and communication infra-
structures while still showing the interaction between
architectural entities. As UCMs integrate many scenar-
ios and use cases into one combined model of a sys-
tem, it is possible to reason about undesired interac-
tions between scenarios [3], analyze performance im-
plications [21][24], and drive testing efforts based on
UCM specifications [5]. As UCMs show architectural
structures, various architectural alternatives can be
analyzed [6][7][32]. Over the last decade, UCMs have
successfully been used for service-oriented, concur-
rent, distributed, and reactive systems such as tele-
communications systems [2][7], e-commerce systems
[4], agent systems [12], operating systems [8], and
health information systems [1]. UCMs have also been
used for business process modeling [32] and aspect-
oriented modeling [18]. Many examples of UCMs can
be found in the publications referenced in this para-
graph.

…
…

…
…

[C1]
[C2]

[C3]

OR-Fork …
…

…
…

OR-Join

…
…

…
… …

…

…
…

AND-JoinAND-Fork

Start
Point

End
Point

Path

… …
… … Responsibility

Direction Arrow

Waiting Place

Trigger
Path
(asynchronous)

Waiting
Path

Continuation
Path

Timer

Timer
Release
(synchronous)

Waiting
Path

Continuation
Path

Timeout
Path

… …IN1 OUT1 Static Stub &
Segments ID

Dynamic StubIN1 OUT1… …
S{IN1} E{OUT1}

Plug-in Map Component

[Guard]
…

…

…
…

[C1]
[C2]

[C3]

…
…

…
…

[C1]
[C2]

[C3]

OR-Fork …
…

…
… …
…

…
…

OR-Join

…
…

…
… …

…

…
…

AND-JoinAND-Fork

…
…

…
……
…

…
… …

…

…
… …
…

…
…

AND-JoinAND-Fork

Start
Point

End
Point

Path

… …… …
… …… …… … Responsibility

Direction Arrow

Waiting Place

Trigger
Path
(asynchronous)

Waiting
Path

Continuation
Path

Waiting Place

Trigger
Path
(asynchronous)

Waiting
Path

Continuation
Path

Timer

Timer
Release
(synchronous)

Waiting
Path

Continuation
Path

Timeout
PathTimer

Timer
Release
(synchronous)

Waiting
Path

Continuation
Path

Timeout
Path

… …IN1 OUT1… …… …IN1 OUT1 Static Stub &
Segments ID

Dynamic StubIN1 OUT1… …IN1 OUT1… …… …
S{IN1} E{OUT1}S{IN1} E{OUT1}

Plug-in Map Component

[Guard]

Figure 1: Basic Elements of UCM Notation

The basic elements of the UCM notation are shown
in Figure 1. A map contains any number of paths and
structural elements (components). Responsibilities de-
scribe required actions or steps to fulfill a scenario.
Paths express causal sequences. OR-forks (possibly
including guarding conditions) and OR-joins are used
to show alternatives, while AND-forks and AND-joins
depict concurrency. Loops can be modeled implicitly
with OR-forks and OR-joins. UCM models can be
decomposed using stubs which contain sub-maps
called plug-ins. Plug-in maps are reusable units of be-
havior and structure. A stub may be static which means
that it can have at most one plug-in, whereas a dynamic
stub may have many plug-ins which may be selected at
runtime. A selection policy decides which plug-ins of a
dynamic stub to choose at runtime. Map elements
which reside inside a component are said to be bound
to the component. Timers and waiting places denote
locations on the path where the scenario stops until a

condition is satisfied. If an endpoint is connected to a
waiting place or a timer, the stopped scenario contin-
ues when this end point is reached (synchronous inter-
action). Asynchronous, in-passing triggering of wait-
ing places and timers is also possible. A timer may
have a timeout path which is indicated by a zigzag line.
A more complete coverage of the notation elements is
available in [9][10][28].

UCMs and UML Activity Diagrams share many
characteristics, but UCMs offer more flexibility in how
sub-diagrams can be connected, how sub-components
can be represented, and how dynamic responsibilities
and dynamic components (not shown here) can be used
to capture requirements for agent systems. UCMs also
integrate a simple data model, performance annota-
tions, and a simple action language used for analysis.
Activity Diagrams, however, have better support for
data flow modeling and a better integration with the
rest of UML. UCMs, on the other hand, are better inte-
grated with goal-oriented models created with the
Goal-oriented Requirement Language (GRL) [27].
URN is currently the only requirements notation that
explicitly addresses scenarios and goals in one unified
language in a graphical way.

jUCMNav [15] is a new Eclipse-based editing tool
for UCMs. The tool makes it possible to create, main-
tain, analyze, and transform UCM models.

A traversal mechanism which allows highlighting
of individual scenarios and scenario combinations in
UCM models is built into jUCMNav. The mechanism
is also used when translating UCMs into more concrete
design diagrams such as message sequence charts
(MSC). Besides improving the usability of the tool and
allowing for a smoother transition to downstream
modeling activities, the traversal mechanism defines
more precisely the semantics of UCMs. There is no
standard traversal mechanism for UCMs. The current
traversal mechanism is based on a simple but intuitive
interpretation of the notational elements for sequences,
alternatives, and concurrency in UCMs. An OR-fork is
an exclusive or, there is no synchronization on an OR-
join, an AND-fork denotes strict concurrency, and
stubs are interpreted as containing an exclusive or
statement for the selection of a single plug-in map. The
current traversal mechanism also allows the definition
of Boolean, Integer, and Enumeration variables and is
capable of evaluating and changing such scenario
variables during the traversal of the UCM model.

2.2. Web Services and BPMN

The first era of the Internet allowed for static con-
tent to be presented to a worldwide audience. The sec-
ond era saw the emergence of dynamic content which

could be tailored to a single user in order to provide
personalized experiences. The Internet has come a long
way from its beginnings and is now entering its third
era: the programmable web. Web services are at the
core of the third era of the Internet. Large corporations
such as Microsoft and IBM see web services as the
future of the whole information technology [23]. Web
services are set to have an enormous impact on e-
commerce by making automated business-to-business
interactions a reality.

The web services programming stack allows appli-
cation developers to advertise, locate, and make use of
web services [13]. Web services interact over a net-
work based on protocols such as HTTP, FTP, SMTP,
or the Internet Inter-ORB Protocol (IIOP). The inter-
face of a web service is described with the Web Ser-
vices Description Language (WSDL) [31]. Messaging
between other applications and a web service occurs
with the help of the Simple Object Access Protocol
(SOAP) [25]. Universal Description, Discovery, and
Integration (UDDI) [26] allows for web services to
register themselves and for other applications to locate
them. At the top of the stack, and therefore most visi-
ble to application developers, are workflow and busi-
ness process execution languages such as the Business
Process Execution Language for Web Services
(BPEL4WS) [20] which allow the description and
composition of web services.

BPEL4WS, however, is a very technical language
which is not well suited for business users. The Busi-
ness Process Modeling Notation (BPMN) [11] ad-
dresses this problem and provides an environment
which is more suited for business-oriented users. It
allows business processes to be designed, managed,
and monitored, and provides a formal mapping to
BPEL4WS. Consequently, a good workflow descrip-
tion language can make a very valuable contribution to
the future development of web services.

2.3. Workflow and Communication Patterns

In 2000, an analysis of workflow languages resulted
in the publication of 21 workflow patterns divided into
six groups that describe typical control flow dependen-
cies in workflow models [36]. The first two groups
address basic and advanced controls related to branch-
ing and merging of control paths. The third discusses
structural restrictions on loops and implicit termina-
tion. The fourth covers situations with multiple in-
stances of activities. The fifth deals with state-based
patterns, while the last group discusses cancellations.
See Table 1 in section 3.9 for a complete list of the
workflow patterns and sections 3.2 to 3.7 for an expla-
nation of the individual workflow patterns.

Since the initial publication of these patterns, many
workflow management systems (e.g. Domino Work-
flow, FLOWer, I-Flow, MQSeries/Workflow, SAP R/3
Workflow, and Visual Workflow) and standards for
business process modeling and workflow modeling
(e.g. Activity Diagrams, BPMN, BPEL4WS, BPML,
WSCI, WSFL, XLANG, and XPDL) have been as-
sessed based on the collected workflow patterns [36].
Furthermore, a PhD thesis [16] was written “to estab-
lish a formal foundation for control-flow aspects of
workflow specification languages, that assists in un-
derstanding fundamental properties of such languages,
in particular their expressive power” [36]. The research
culminated in the YAWL (Yet Another Workflow
Language) initiative [37] with its goal to create a
workflow language with direct support for all of the
discovered workflow patterns.

On the other hand, communication patterns [22]
have been collected in the context of Enterprise Appli-
cation Integration (EAI). They are applicable to web
services as both, EAI and web services, are concerned
with communication flows between distributed proc-
esses. The patterns are divided into two groups, syn-
chronous and asynchronous communication. See Table
1 in section 3.9 for a complete list of the communica-
tion patterns and section 3.8 for an explanation of the
individual communication patterns.

3. Assessment and Evolution of UCMs

3.1. The Approach

We follow the approach in [34] to assess the appli-
cability of UCMs for workflow description. UCMs are
analyzed by determining to what extent 21 workflow
patterns and six communication patterns are directly
supported by the notation. A pattern is directly sup-
ported if a UCM language construct exists that con-
cisely expresses the pattern. More complex, work-
around solutions are not taken into account since all
patterns can be expressed in some way by standard
features of specification languages (including those of
UCMs). In other words, the mere ability to express a
pattern in some way is not sufficient because concise-
ness and simplicity are key factors to be considered. If
current UCM features do not allow workflow patterns
to be modeled, new notational elements or a special-
ized traversal mechanism are suggested to improve the
UCM notation (indicated by “new” in the pattern fig-
ures).

In general, business processes and their activities
can be modeled straightforwardly in UCMs with paths
and responsibilities. Business partners can be modeled

with components to which certain activities are as-
signed by placing the relevant portion of the path in-
side the component. Sections 3.2 to 3.7 go through
each of the 21 workflow patterns.

3.2. Basic Control Patterns

Sequence (Figure 2.a)—This pattern is trivially
supported through a UCM path.

a) Sequence

order pay

b) Parallel Split

shipGoods
pay

printReceipt

c) Synchronization

buyTravelGuide
travel

getVaccinations

d) Exclusive Choice

e) Simple Merge

takeElevatorToOffice
driveCar

takeBus

takeBus

driveCar

[else]

[car works]

Figure 2: Basic Control Patterns (Group 1)

Parallel Split (Figure 2.b)—This pattern indicates
that several activities can be performed in parallel or in
any order. The pattern is mapped directly onto an
AND-fork which can have any number of parallel
branches.

Synchronization (Figure 2.c)—This pattern indi-
cates a point in the workflow where several concurrent
branches converge into one single branch. The pattern
assumes that each incoming branch is only executed
once. The pattern is mapped directly onto an AND-join
which can have any number of incoming parallel
branches.

Exclusive Choice (Figure 2.d)—This pattern is
trivially supported by an OR-fork which can have any
number of alternative branches. The conditions for all
branches, however, have to be mutually exclusive.

Simple Merge (Figure 2.e)—This pattern describes
a point in the workflow where several alternative
branches are merged together into one without syn-
chronization. The pattern is directly supported by an
OR-join which can have any number of incoming al-
ternative branches. Note that this usage of an OR-join
is just a special case of the usage of an OR-join for the
Multiple Merge pattern described below.

3.3. Advanced Branching and Synchronization
Patterns

Multiple Choice (Figure 3.a)—This pattern de-
scribes the situation where more than one alternative
branch can be selected and executed at the same time.
The pattern is directly supported by an OR-fork which
can have any number of alternative branches. Because
conditions can be specified unrestrictedly for each
branch, multiple branches can be enabled at the same
time. Since this pattern deals with concurrency, it may
however be more appropriate to extend the UCM nota-
tion and allow conditions to be specified on branches
of AND-forks. As an alternative, a dynamic stub can
also be used. In this case, the selection policy enables
multiple plug-ins at the same time. This is the preferred
approach if the branches have to be synchronized at
any point (see Synchronizing Merge). Even though the
pattern is supported by the UCM notation, the current
traversal mechanism does not support such an interpre-
tation. Instead, the current traversal mechanism ex-
pects exactly one branch of an OR-fork (or one plug-in
of a dynamic stub) to be enabled with an option to
choose randomly one out of all enabled branches or
plug-ins in case of a non-deterministic situation.

Synchronizing Merge (Figure 3.b)—This pattern
describes a point in the workflow where several
branches are merged together into one with synchroni-
zation. The pattern assumes that each incoming branch
is at the most executed once. It can be assumed that the
number of branches taken is known at the time the
merge is reached (at least one branch and at the most
all branches). This pattern cannot be modeled with an
OR-join (because OR-joins do not synchronize) or an
AND-join (because AND-joins require all incoming
branches to be taken in order to proceed). The pattern
can be modeled with a dynamic stub and one plug-in
for each branch if a specialized traversal mechanism
can identify a stub with Synchronizing Merge behavior
(the default for stubs is Simple Merge). The selection
policy of the synchronizing stub enables the required
number of plug-ins. The traversal mechanism then
waits until all plug-ins have completed their activities
before continuing along the path after the stub. The
selection policy for the example in Figure 3 could be
[Wednesday || Saturday] for the first plug-in, [any day]
for the second plug-in, and [Saturday || Sunday] for the
third plug-in. New visual clues clearly become neces-
sary with the introduction of new types of stubs. The S
inside the stub indicates the synchronization.

Multiple Merge (Figure 3.c)—This pattern covers
the situation where multiple branches are merged into
one without synchronization but with the expectation

that activities following the merge will be performed
once for each active branch. The pattern is directly
supported by an OR-join. Note that OR-constructs and
AND-constructs in UCMs do not have to be properly
nested and can therefore be used together.

a) Multiple Choice c) Multiple Merge

b) Synchronizing Merge d) N-out-of-M Join

e) Discriminator

playSoccer

watchMovie

[Fri]

[Fri || Sat]

packItems
selectClothing

selectToiletryArticles

Plug-ins:
doLaundry

cook

buyGroceries

Plug-ins: (2 must complete)

monitorChicago

monitorRent

monitorDreamgirls

relax
doHousework

S
order

monitorDVDs

S
n/m

watchMovie
getMovie

S
1/

Plug-ins: (1 must complete)

askFriendForMovie

requestMovieAtLibraryn

new

new

new

new

Figure 3: Advanced Branching and Synchroni-
zation Patterns (Group 2)

N-out-of-M Join (Figure 3.d)— This pattern is a
type of merge with multiple concurrent incoming
branches. The pattern is useful in a case where the nth
branch out of m incoming branches triggers the con-
tinuation of the workflow. All other incoming branches
are ignored. Upon receipt of the last incoming branch,
the n-out-of-m join is reset, so that the next set of in-
coming branches can once again trigger the continua-
tion of the workflow. This pattern can be modeled with
a more general version of the synchronizing stub for
which N is specified. In this case, the selection policy
of the stub enables all plug-ins. The traversal mecha-
nism continues with the workflow once the nth plug-in
has completed. All other plug-ins do not trigger a con-
tinuation of the workflow. Once all plug-ins have
completed, the stub is reset. Sn/m inside the stub indi-
cates the N-out-of-M Join pattern. The example in
Figure 3.d describes the situation where a number of
DVDs are monitored for availability and two DVDs
are sufficient to receive free shipping (thus only two of
the plug-ins need to complete before continuing).

Discriminator (Figure 3.e)—This pattern is a spe-
cial case of the n-out-of-m join. It is a 1-out-of-m join
and can be modeled similarly to the n-out-of-m join
with a synchronizing stub. S1/n inside the stub indicates
the Discriminator pattern.

3.4. Structural Patterns

Arbitrary Circles (Figure 4)—This pattern ad-
dresses non-structured cycles. The pattern is directly
supported by the UCM notation since loops created
with OR-forks and OR-joins do not have to be prop-
erly nested.

Arbitrary Circles

doSitUps liftWeights doPushUps

Figure 4: Structural Patterns (Group 3)

Implicit Termination—This pattern indicates that
a workflow terminates automatically if there is nothing
left to do. The pattern is directly supported by UCMs
since there is no need to explicitly specify a termina-
tion responsibility in a UCM model. End points indi-
cate the end of a workflow.

3.5. Patterns Involving Multiple Instances

Multiple Instances without synchronization
(Figure 5.a)—This pattern describes the situation
where an activity in a workflow needs to be executed
multiple times in parallel without the need to synchro-
nize any instances of the activity. This pattern can be
modeled easily with a component and is therefore di-
rectly supported by UCMs. The UCM notation allows
a replication factor to be specified for components, in-
dicating whether one or more instances of a component
take part in the scenario. The pattern, however, re-
quires a specialized traversal mechanism capable of
executing several instances of a component in parallel.

Multiple Instances with a priori known design
time knowledge (Figure 5.b)—This pattern describes
a point in the workflow where several instances of an
activity have to be executed in parallel. These in-
stances are synchronized in that the workflow contin-
ues only when all instances have been completed. The
number of instances is known at design time. This pat-
tern cannot be modeled with a replicated component
since the instances of the component do not synchro-
nize. The pattern, however, can be modeled concisely
with a static synchronizing stub for which a replication

factor is defined. The pattern is therefore directly sup-
ported by UCMs but requires a specialized traversal
mechanism with the ability to define a replication fac-
tor for stubs. The plug-in of the stub is enabled the
desired number of times in parallel, and the traversal
mechanism waits until all plug-ins have been com-
pleted. In the example in Figure 5.b, S2x inside the stub
indicates the MI with a priori known design time
knowledge pattern.

a) MI without synchronization
Courier

buyXmasGifts deliverGift

b) MI with a priori known design time knowledge

c) MI with a priori known runtime knowledge

new

collectApplication
Papers

send
plicationAp

S
2

Plug-in: (two times)

x
new getRecommendation

Letter

bookFlight

issue
Ticket

S
n

Plug-in: (n times)

x
new bookFlightSegment

Figure 5: Patterns Involving Multiple Instances
(Group 4)

Multiple Instances with a priori known runtime
knowledge (Figure 5.c)—This pattern is the same as
the previous one except that the number of instances is
not known at design time but at runtime before the
instances have to be created. Again, the pattern is di-
rectly supported by a static synchronizing stub. Its
plug-in is enabled the desired number of times known
at this point in the workflow, and the traversal mecha-
nism waits until all plug-ins have been completed.
Note that this requires scenario variables to be defined.
Snx inside the stub indicates the MI with a priori
known runtime knowledge pattern.

Multiple Instances with no a priori runtime
knowledge—This pattern is also very similar to the
previous two patterns. The difference is that the num-
ber of instances is not known, not even while the in-
stances are executing. The pattern could be modeled
similarly to the two previous patterns but requires ad-
ditional processing by the traversal mechanism in order
to decide whether another plug-in is still required. This
processing could be in the form of a condition that
needs to be evaluated. The evaluation would have to
take place while the already existing plug-ins are exe-

cuting. As this moves considerably further away from
the original definition of a stub, this pattern is deemed
to be not supported by UCMs. An example of this pat-
tern is a court case with a callWitness activity. New
witnesses may be called during the court case even
when other witnesses already have been questioned.
Only when all witnesses have been heard will the jury
start deliberation.

3.6. State-Based Patterns

Deferred Choice (Figure 6.a)—This pattern de-
scribes a situation very similar to Exclusive Choice.
The crucial difference is that the decision which
branch to choose is not made at the choice point but
implicitly by starting the first activity of one branch. In
other words, all alternatives are possible until one al-
ternative starts at which point all other alternatives are
not available anymore (the other alternatives do not
even start). An example for this pattern is the approval
of a document which could be done either by the head
of the department or by the project manager. The pat-
tern can be modeled with UCMs with the help of an
OR-fork (or a dynamic stub with plug-ins) without any
specified conditions. The pattern is therefore directly
supported but requires the traversal mechanism to un-
derstand such OR-forks or dynamic stubs.

a) Deferred Choice

b) Interleaved Parallel
Routing

c) Milestone

new

new

new

Plug-in: (two times)

Project Manager

Head of Department
approveDocument

approveDocument

Applicant

takeWrittenTest

takeOralTest

openBidding

bid

closeBidding

Figure 6: State-Based Patterns (Group 5)

Interleaved Parallel Routing (Figure 6.b)—This
pattern describes the situation where two activities may
be performed in any order but not in parallel. All ex-
amples given in [34] and [36] indicate a resource con-
flict as the reason for not being able to execute the
activities in parallel. If this is the case, then UCMs

with a specialized traversal mechanism directly support
the pattern. The traversal mechanism can determine
from the binding of responsibilities to components
whether concurrent responsibilities are bound to the
same component. If this is the case, then the concurrent
branches are interpreted as Interleaved Parallel Rout-
ing. All other concurrent paths are interpreted as
strictly parallel.

Milestone (Figure 6.c)—This pattern describes a
point in the workflow where activity B can be exe-
cuted (possibly multiple times) because activity A has
already been executed and activity C has not yet been
executed. The pattern is similar to Deferred Choice in
that there is a race condition between two activities (B
and C in this case) and only one activity is executed at
one time. Milestone is different than Deferred Choice
in that activity C is executed at some point. UCMs can
model the Milestone pattern with an OR-fork without
conditions and an implicit loop. Considering that direct
support for this pattern in BPMN [33] is at least as
complex as the UCM solution, this pattern is directly
supported. The example in Figure 6 shows openBid-
ding as activity A, bid as activity B, and closeBidding
as activity C. A specialized traversal mechanism, how-
ever, is required for this pattern just as it is required for
Deferred Choice.

3.7. Cancellation Patterns

Cancel Activity and Cancel Case—These patterns
deal with the cancellation of an activity or workflow,
respectively. The pattern can be used, among other
things, to model exceptions. The UCM standard in-
cludes the abort construct which could be used for this
purpose. jUCMNav, however, does not support this
construct and the intended use of an abort makes it
difficult to cancel activities or workflows which are
not shown on the same UCM. Therefore, these patterns
are deemed to be not supported by the UCM notation.

3.8. Communication Patterns

While UCMs abstract in general from the details of
message exchange and communication infrastructures,
it is still possible to model more detailed interactions
between various architectural entities. The communi-
cation patterns represent different types of such inter-
actions. The descriptions of the interaction type and
the workflow descriptions, however, should not occur
in the same UCM. UCMs describing the workflow
should focus on the workflow alone, whereas other
UCMs should focus on the interaction aspect. For in-
stance, a workflow UCM may show two business part-

ners and a path which explains the services provided
one after the other by each business partner. A path
which crosses from the component of one business
partner into the component of the other business part-
ner represents some form of interaction. Multiple mes-
sage exchanges may be necessary to achieve the inter-
action, but the workflow UCM abstracts away from
that. The interaction UCM on the other hand shows the
details of the interaction between these two compo-
nents, allowing for a smoother transition into more
detailed design. Interaction UCMs only have to be
created once and are applicable to all instances of this
interaction because the generic components in the in-
teraction UCM can be bound to actual components in
many workflow UCMs. Conceptually, one can think of
the point in a workflow UCM where an interaction
between components occurs as being replaced by a
stub which contains one interaction UCM as a plug-in.
Over the years, this concept has been discussed nu-
merous times in the UCM community but tool support
is not yet available for establishing links between
workflow (or application) UCMs and interaction
UCMs. Consequently, the identification of such a point
in a UCM is also currently not supported, and therefore
would have to be introduced as a new feature when the
traversal mechanism is upgraded to support workflow
description.

a) Request/Reply

b) One-Way

c) Synchronous Polling

A

request

wait

B

reply
continue

A

request

wait

B

ack
continue

A

request

B

reply

continue

received

process
[else] [received]

check

timer

Figure 7: Synchronous Communication
(Group 7)

The following paragraphs go through each of the
six communication patterns (three synchronous and
three asynchronous), showing how each of the patterns
can be modeled by an interaction UCM.

Request/Reply (Figure 7.a)—This pattern de-
scribes a synchronous interaction where one side
makes a request and then waits for a reply from the
other side before continuing. This is modeled with a
waiting place in UCMs.

One-Way (Figure 7.b)—This patterns is very simi-
lar to Request/Reply except that the reply is only an
acknowledgement and does not contain any other in-
formation.

Synchronous Polling (Figure 7.c)—This pattern
describes a synchronous interaction where one side
makes a request but continues processing instead of
waiting for a reply. At certain intervals, the requester
checks whether a reply was received. If a reply was
received, the reply is processed. If not, another timer is
set for the next check. Note that the traversal mecha-
nism requires a Boolean variable which is set to false
at the request responsibility. The Boolean variable is
evaluated at the OR-fork and set to true at the received
responsibility.

a) Message Passing

b) Publish/Subscribe

c) Broadcast
new

new

A

request

B

process
continue

Broadcaster

broadcast

Receiver

continue

[react]

[do not react]

Publisher Subscriber

notify

continue

addToSubscribers register

process

removeFromSubscribers deregister

Figure 8: Asynchronous Communication
(Group 8)

Message Passing (Figure 8.a)—This pattern de-
scribes an asynchronous interaction where one side
makes a request and continues with the workflow. The
other side processes the request.

Publish/Subscribe (Figure 8.b)—This pattern de-
scribes an asynchronous interaction where interested
parties subscribe to a publisher and then process
change notifications from the publisher until deregis-
tering from the publisher. The interaction UCM makes
use of the replication factor of components to indicate
multiple subscribers. Therefore, the current traversal
mechanism does not work for the pattern and has to be
improved to properly deal with multiple instances of a
component.

Broadcast (Figure 8.c)—This pattern describes an
asynchronous interaction where a request is sent to all
receivers in a network. Each receiver decides individu-

ally on how to react to the request. The interaction
UCM makes use of the replication factor of compo-
nents to indicate multiple receivers. Therefore, the cur-
rent traversal mechanism does not work for the pattern
and has to be improved to properly deal with multiple
instances of a component.

3.9. Summary of Results

The results of the assessment are summarized in
Table 1. BPMN 1.0 [33] directly supports all but one
workflow pattern, UML 2.0 Activity Diagrams
[33][35] directly support 17 out of 21, and BPEL4WS
1.1 directly supports 13 out of 21 workflow patterns
[34]. UCMs support only eight of the workflow pat-
terns if the current simple traversal mechanism is used.
This increases to 18 with new notational elements and

Table 1 Comparison of UCMs using workflow and communication patterns
Type Group Pattern UCMs BPMNa ADa BPEL4WSa

1 Sequence Yes Yes Yes Yes
1 Parallel Split Yes Yes Yes Yes
1 Synchronization Yes Yes Yes Yes
1 Exclusive Choice Yes Yes Yes Yes
1 Simple Merge Yes Yes Yes Yes
2 Multiple Choice Yesb Yes Yes Yes
2 Synchronizing Merge Yesb Yes No Yes
2 Multiple Merge Yes Yes Yes No
2 N-out-of-M Join Yesb Yes Yes Noc

2 Discriminator Yesb Yes Yes No
3 Arbitrary Cycles Yes Yes Yes No
3 Implicit Termination Yes Yes Yes Yes
4 Multiple Instances without synchronization Yesb Yes Yes Yes
4 Multiple Inst. with a priori known design time knowledge Yesb Yes Yes Yes
4 Multiple Instances with a priori known runtime knowledge Yesb Yes Yes No
4 Multiple Instances with no a priori runtime knowledge No No No No
5 Deferred Choice Yesb Yes Yes Yes
5 Interleaved Parallel Routing Yesb Yes No Partial
5 Milestone Yesb Yes No No
6 Cancel Activity No Yes Yes Yes

W
o

r
k

f
l

o
w

P

a
t

t
e

r
n

s

6 Cancel Case No Yes Yes Yes
7 Request/Reply Yesd Yes
7 One-Way Yesd Yes
7 Synchronous Polling Yesd Yes
8 Message Passing Yesd Yes
8 Publish/Subscribe Yesbd No

C
om

m
un

ic
at

io
n

Pa
tte

rn
s

8 Broadcast Yesbd No
aresults taken from [33] for the BPMN column, [33][35] for the AD column, and [34] for the BPEL4WS column
bassuming the existence of a tailored traversal mechanism (requires significant change to the current traversal mechanism).
cnot assessed in [34], not supported because it is a general case of the Discriminator pattern.
dactually too detailed for the abstraction level of UCMs but can be modeled if desired.

a traversal mechanism specialized to workflow model-
ing. The results highlight that these improvements are
essential to maintain the competitiveness of UCMs as a
general scenario notation. In addition to these im-
provements, the support of cancellation patterns must
be seriously considered for UCMs as all of them are
supported directly by BPMN, Activity Diagrams, and
BPEL4WS but not by UCMs. None of the compared
languages directly supports multiple instances with no
a priori runtime knowledge because only complicated
workaround solutions exist. BPEL4WS 1.1 supports
four out of six communication patterns [34]. UCMs
support the same with the simple traversal mechanism
and all with the specialized traversal mechanism. The
desirable abstraction level of the UCM notation, how-
ever, is too high for the details of the six communica-
tion patterns. Therefore, the communication patterns
should be out of scope and not shown on workflow-
oriented or application-oriented UCMs, but, if desired,
all of them can nevertheless be modeled on interaction-
oriented UCMs.

Semantics is the biggest concern with regards to
modeling scenarios or workflow with UCMs. UCMs
can be interpreted in many different ways. This prob-
lem is addressed by the specialized traversal mecha-
nism since the semantics of UCMs is more precisely
defined by it. The specialized traversal mechanism
introduces new kinds of stubs to the UCM notation:

the synchronizing stub and a stub with multiple, con-
current invocations of its plug-in (either fixed or vari-
able). Furthermore, the traversal mechanism now has
to deal with OR-forks or stubs where several branch or
plug-in conditions evaluate to true (see Multiple
Choice) or no conditions are specified (see Deferred
Choice). The traversal mechanism also has to identify
Interleaved Parallel Routing based on the binding of
responsibilities to components. In addition, the intro-
duction of new types of stubs obviously requires new
visual clues which were introduced in sections 3.3 and
3.5. See Table 2 for a list of requirements for the spe-
cialized traversal mechanism based on the findings of
the preceding sections. The current traversal mecha-
nism does not fulfill any of these requirements. The
UCM Status column indicates whether the expected
behavior of the traversal mechanism can be specified
with the current UCM notation, with an improved no-
tation as suggested in the preceding sections, or
whether the specification is still an open issue.

In contrast to workflow patterns, communication
patterns do not require a semantic clarification of the
UCM notation as much as they require new organiza-
tional capabilities from a UCM tool. Application and
interaction aspects have to be kept separate as their
abstraction levels are different. A separate definition of
application and interaction UCMs requires the identifi-
cation of points in an application UCM where an inter-

Table 2 Requirements for evolving UCMs as a scenario and workflow description language
Requirement for Traversal Mechanism Patterns (Source of Requirement) UCM Status
1 Allow several branch conditions of OR-forks or sev-

eral plug-in conditions of dynamic stubs to be true
Multiple Choice Current

2 Allow OR-fork branches without any conditions or
stub plug-ins without any selection policy

Deferred Choice, Milestone Current

3 Support a synchronizing dynamic or static stub that
specifies how many plug-ins have to complete

Synchronizing Merge, N-out-of-M Join,
Discriminator, MI with a priori known
design time/runtime knowledgea

Improved

4 Support a synchronizing static stub with variable or
fixed number of parallel invocations of its plug-in

MI with a priori known design
time/runtime knowledge

Improved

5 Support replication factor of components (multiple
instances)

MI without synchronization, Publish /
Subscribe Pattern, Broadcast Pattern,
Communication Patterns

Current

6 Identify interleaving based on the binding of responsi-
bilities to components

Interleaved Parallel Routing Current

7 Support cancellation of activity or case (no suggestions
given in this paper)

Cancel Activity, Cancel Case Open

8 Support separate definition of workflow (application)
UCMs and interaction UCMs

Communication Patterns Current

9 Identify points in application UCMs linked to interac-
tion UCMs

Communication Patterns Open

10 Support bindings of components on plug-in maps to
components on parent maps

Communication Patternsb Open

aThis is a special case of this pattern where only some of the parallel invocations have to complete before continuing.
bThis is a general issue that should have already been resolved for the current traversal algorithm and is therefore not
fully discussed in this document.

action occurs and links from such points to appropriate
interaction UCMs.

The complexity of interaction UCMs is much
greater than that of UCMs describing workflow pat-
terns. The main reason for the complexity is that com-
munication patterns, unlike workflow patterns, are not
intended to be mapped to one modeling construct.
Communication patterns result in interaction UCMs
that represent a whole series of actions. Fortunately,
the increased complexity is not a significant problem
since interaction UCMs only have to be created once
and are largely hidden from UCM designers.

4. Conclusion

This paper identified many semantic variation
points in the UCM notation that require further formal-
ization and suggested, as a possible solution, a special-
ized traversal mechanism and new notational elements.
This mechanism defines the semantics of UCMs more
precisely (i.e. in order to cover the patterns, the static
UCM semantics does not change except for new cate-
gories of stubs, but the dynamic semantics needs fur-
ther refinement in terms of how to deal with conditions
and synchronization on branches and for stubs). Con-
sequently, the improved UCM notation can model sce-
narios more uniformly across UCM applications.

UCMs are a general purpose scenario notation for
describing behavior and structure, and therefore can
certainly model the workflows described by BPMN
and Activity Diagrams as well as the processes and
activities used by BPEL4WS. This paper assessed the
support of UCMs for workflow description in a struc-
tured and more formal way based on workflow and
communication patterns. Although UCMs have been
used for business process modeling, a formal assess-
ment of the UCM notation has not yet been undertaken
in this context. The results of the assessment were
compared to the results of similar assessments for
BPMN, Activity Diagrams, and BPEL4WS. The extent
of the support is similar enough to make UCMs a good
candidate for modeling workflow and scenarios in
general if the UCM notation is improved as suggested.
The greatest deficiency of UCMs is their lack of sup-
port for cancellation patterns. This highlights the need
to evolve UCMs even further than suggested in this
paper with the ability to model cancellations (and
closely related exception handling) more efficiently.

Based on the assessment of UCMs, we presented a
set of requirements for a specialized traversal mecha-
nism in order to evolve the UCM notation as a general
scenario language. These requirements can be used as
a starting point for further discussion about appropriate

traversal mechanisms. Future work will have to con-
sider the high level of abstraction of UCMs. Are the
proposed changes introducing too much detail into the
UCM notation? Where is it necessary to draw a line in
order to enable UCMs for workflow or web services
description but still keep UCMs at a desirable high
level of abstraction? When is it sufficient to have a
workaround solution for a workflow pattern instead of
direct support? Another avenue of research is the use
of Aspect-oriented Use Case Maps (AoUCM) [18] for
modeling of the communication patterns. Each com-
munication pattern could be modeled as an aspect and
composed with the rest of the UCM model according
to composition rules. Such rules would define which
components make use of which communication pat-
terns. Furthermore, the UCM notation’s capabilities
should also be assessed from data and resource per-
spectives in order to gain a more complete overview of
the applicability of UCMs for the description of work-
flows in particular and scenario descriptions in general.

Acknowledgement—This research was supported
by the Natural Sciences and Engineering Research
Council of Canada, through its programs of Discovery
Grants and Postgraduate Scholarships, and by the On-
tario Research Network on e-Commerce. The author is
grateful to Thomas Tran and Daniel Amyot for com-
ments on drafts of this paper.

5. References

[1] Abdelaziz, T., Elammari, M., and Unland, R.: “Visualiz-
ing a Multiagent-Based Medical Diagnosis System Using a
Methodology Based on Use Case Maps”. Multiagent System
Technologies (editors Lindemann-v. Trzebiatowski, G.,
Denzinger, J., Timm, I.J., and Unland, R.). LNCS 3187,
Springer, September 2004, pp 198-212.
[2] Amyot, D. and Logrippo, L.: “Use Case Maps and
LOTOS for the Prototyping and Validation of a Mobile
Group Call System”. Computer Communication. Vol. 23(12).
July 2000, pp 1135-1157.
[3] Amyot, D., Charfi, L., Gorse, N., Gray, T., Logrippo, L.,
Sincennes, J., Stepien, B., and Ware, T.: “Feature Descrip-
tion and Feature Interaction Analysis with Use Case Maps
and LOTOS”. Feature Interactions in Telecommunications
and Software Systems VI. Glasgow, Scotland, UK, May
2000, IOS Press, pp 274-289.
[4] Amyot, D., Roy, J.-F., and Weiss. M.: “UCM-Driven
Testing of Web Applications”. SDL 2005: Model Driven
(editors Prinz A., Reed R., and Reed J.). LNCS 3530,
Springer, June 2005, pp 247-264.
[5] Amyot, D., Weiss, M., and Logrippo L.: “UCM-Based
Generation of Test Purposes”. Computer Networks. Vol.
49(5), December 2005, pp 643-660.

[6] Amyot, D.: “Introduction to the User Requirements Nota-
tion: Learning by Example”. Computer Networks. Vol. 42(3),
21 June 2003, pp 285-301.
[7] Andrade, R.: “Applying Use Case Maps and Formal
Methods to the Development of Wireless Mobile ATM Net-
works”. Lfm2000: Fifth NASA Langley Formal Methods
Workshop. Williamsburg, VA, USA, June 2000, pp 151-162.
[8] Billard, E.A.: “Operating system scenarios as Use Case
Maps”. ACM Workshop on Software and Performance. 2004,
pp. 266-277.
[9] Buhr, R.J.A. and Casselman, R.S.: Use Case Maps for
Object-Oriented Systems. Prentice-Hall, 1996.
[10] Buhr, R.J.A.: “Use Case Maps as Architectural Entities
for Complex Systems”. IEEE Transactions on Software En-
gineering. Vol. 24(12). December 1998, pp 1131-1155.
[11] Business Process Modeling Notation (BPMN) website;
accessed April 2007: http://www.bpmn.org.
[12] Elammari, M. and Lalonde, W.: “An Agent-Oriented
Methodology: High-Level View and Intermediate Models”.
1st International Workshop on Agent-Oriented Information
Systems (AOIS). Heidelberg, Germany, June 1999.
[13] Gottschalk, K., Graham, S., Kreger, H., and Snell, J.:
“Introduction to Web Services Architecture”. IBM Systems
Journal. Vol. 41(2), 2002, pp 170-177.
[14] IBM WebSphere Software website; accessed April
2007: http://www.ibm.com/websphere.
[15] Roy, J.-F. Kealey, and Amyot, D.: “Towards Integrated
Tool Support for the User Requirements Notation”. SAM
2006: Language Profiles - Fifth Workshop on System Analy-
sis and Modelling. Kaiserslautern, Germany. LNCS 4320,
pp. 198-215, Springer (2006); accessed April 2007:
http://www.softwareengineering.ca/jucmnav.
[16] Kiepuszewski, B.: Expressiveness and Suitability of
Languages for Control Flow Modelling in Workflows. PhD
thesis, Queensland University of Technology, Brisbane, Aus-
tralia, 2003.
[17] Microsoft BizTalk Server website; accessed April 2007:
http://www.microsoft.com/biztalk/default.mspx.
[18] Mussbacher, G., Amyot, D., and Weiss M.: “Visualizing
Early Aspects with Use Case Maps”. To appear in Transac-
tions on Aspect-Oriented Software Development.
[19] OMG. UML 2.0 Superstructure Specification. OMG
Formal Specification, formal/05-07-04, July 2005; acc. April
2007: http://www.omg.org/cgi-bin/doc?formal/05-07-04.
[20] Organization for the Advancement of Structured Infor-
mation Standards (OASIS) Web Services Business Process
Execution Language (WSBPEL) Technical Committee (TC);
accessed April 2007: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel.
[21] Petriu, D.B. and Woodside, M.: “Software Performance
Models from System Scenarios in Use Case Maps”. Com-
puter Performance Evaluation (editors Field T., Harrison
P.G., Bradley J., and Harder U.). LNCS 2324, Springer,
April 2002, pp 141-158.
[22] Ruh, W.A., Maginnis,F.X., and Brown, W.J.: Enterprise
Application Integration – A Wiley Tech Brief. John Wiley &
Sons, Inc, 2001.

[23] Schofield, J.: “The third era starts here”. Guardian
Unlimited Technology. May 29, 2003; accessed April 2007:
http://technology.guardian.co.uk/online/story/0,3605,965532,
00.html.
[24] Siddiqui, K.H. and Woodside, C.M.: “Performance
aware software development (PASD) using resource demand
budgets”. Workshop on Software and Performance (WOSP).
Rome, Italy, July 2002, pp 275-285.
[25] Simple Object Access Protocol website; accessed April
2007: http://www.w3.org/TR/soap.
[26] Universal Description, Discovery, and Integration web-
site; accessed April 2007: http://www.uddi.org.
[27] URN - Goal-oriented Requirement Language (GRL),
ITU-T Draft Recommendation Z.151. Geneva, Switzerland,
Sep. 2003; acc. April ‘07: http://www.UseCaseMaps.org/urn.
[28] URN - Use Case Map Notation (UCM), ITU-T Draft
Recommendation Z.152. Geneva, Switzerland, Sep. 2003;
accessed April 2007: http://www.UseCaseMaps.org/urn.
[29] User Requirements Notation (URN) – Language Re-
quirements and Framework, ITU-T Recommendation Z.150.
Geneva, Switzerland, February 2003; acc. April 2007:
http://www.itu.int/ITU-T/publications/recs.html.
[30] van der Aalst, W.M.P., ter Hofstede, A.H.M.,
Kiepuszewski, B. and Barros, A.P.: “Workflow Patterns”.
Distributed and Parallel Databases. Vol 14(3), July 2003,
pages 5-51.
[31] Web Services Description Language website; accessed
April 2007: http://www.w3.org/TR/wsdl.
[32] Weiss, M. and Amyot, D.: “Business Process Modeling
with URN”. International Journal of E-Business Research.
Vol. 1(3), July-September 2005, pp 63-90.
[33] White, S.A.: “Process Modeling Notations and Work-
flow Patterns”. Workflow Handbook 2004 (editor: Fischer,
L.). Future Strategies Inc., 2004, pp 265–294; acc. April ‘07:
http://www.bpmn.org/Documents/Notations and Workflow
Patterns.pdf.
[34] Wohed, P., van der Aalst, W.M.P., Dumas, M. and ter
Hofstede, A.H.M.: “Analysis of Web Services Composition
Languages: The Case of BPEL4WS”. Proceedings 22nd Intl.
Conference on Conceptual Modelling (ER). Chicago IL,
USA, October 13-16, 2003, pp. 200-215.
[35] Wohed, P., van der Aalst, W.M.P., Dumas, M., ter
Hofstede, A.H.M., and Russell, N.: “Pattern-based Analysis
of UML Activity Diagrams”. BETA Working Paper Series.
WP 129, Eindhoven University of Technology, Eindhoven,
Netherlands, 2004; accessed April 2007:
http://is.tm.tue.nl/research/patterns/download/uml2patterns
BETA TR.pdf.
[36] Workflow Patterns website; accessed April 2007:
http://www.workflowpatterns.com.
[37] YAWL: Yet Another Workflow Language website;
accessed April 2007: http://yawlfoundation.org/.

