
Improving the Quality of Software Requirements

Specifications with Semantic Web Technologies

Verónica Castañeda, Luciana Ballejos and Ma. Laura Caliusco

CIDISI – UTN –FRSF – Lavaise 610 – Santa Fe – Argentina

{vcastaneda,lballejo,mcaliusc}@frsf.utn.edu.ar

Abstract. A good software requirements specification (SRS) offers a number of

benefits which include: being the contract between customers and suppliers, re-

ducing the development effort, being a good basis for estimating costs and plan-

ning, a reference for verification and validation, and a basis for the identification

of possible improvements in the analyzed processes. Mainly due to the lack of

information and differences in interpretation between all those involved in the

development of an information system, a good SRS is very difficult to define. In

this paper, an approach based on Semantic Web technologies for defining a good

SRS is presented. The main component of this approach is an ontology called

OntoSRS that preserves the consistency, correctness, traceability, organization

and unambiguity of a SRS. In addition, an application example is discussed.

Keywords. Software Requirements Specification, Semantic Web Technologies,

quality, consistency, correctness, traceability, organization, unambiguity.

1 Introduction

With the main purpose of documenting all results obtained during Requirements Engi-

neering (RE) process, diverse requirements artefacts (e.g. requirements documents,

diagrams, models, among others) and deliverables are generated. Depending on the

purpose of the documentation, the resulting information from the different RE activi-

ties are documented using different representation formats and at different levels of

detail [1].

The most important deliverable, built and depurated in this iterative process, is the

Software Requirements Specification (SRS), since it must be validated by the customer

in order to continue the advancement in the development process. More precisely a

SRS establishes software functions and capability, as well as its restrictions. It is the

basis for any other subsequent planning, design and coding activity, and also for soft-

ware tests and the generation of user documentation. All significant requirements for

the system should be acknowledged and treated in the SRS. The main goal is that de-

velopers and customers do not need to make any assumption. If any functional or non-

functional requirement is not identified in the SRS, it is not part of the agreement and,

thus, nobody has to wait for that requirement to be in the final product.

Mainly due to the lack of information and differences in interpretation between all

those involved in the process of developing an information system, an SRS is very

difficult to define [2]. Some of the common risks which arise when this document is

generated are:

─ Ambiguous Requirements: which produce waste of time and repeated work. Their

origin resides in the diverse stakeholders, who produce diverse interpretations for

the same requirement. Moreover, the same stakeholder can interpret in diverse ways

the same requirement. Ambiguity leads to erroneous product tests or to the imple-

mentation of new tests supposing fails in their construction.

─ Insufficient specifications: can produce the absence of key requirements. This leads

to developers’ frustration, since their work is based on incorrect suppositions and,

thus, the required product is not developed, which displeases customers.

─ Requirements not completely defined: which complicate planning tasks and project

monitoring. Requirements poor understanding leads to optimistic estimations, which

turns against when agreed limits are surpassed.

The incomplete and ambiguous SRS definition directly affects software develop-

ment projects [3]. Then, a tool for reducing the differences in interpretation between

all those involved in the RE process with the aim of mitigating the aforementioned

risks is needed.

With the emergence of the Semantic Web and the technologies for its realization,

the possibility of applying ontologies as a means to define the semantics of information

and knowledge are growing in different domains [4]. An ontology, from the point of

view of software engineering, can be seen as a representational artefact that specifies a

vocabulary of a given domain [5]. Ontologies are responsible for defining the terms

used to describe and represent a given area of knowledge. An ontology serves to facili-

tate the communication between different actors in a domain by providing a common

language and common understanding or comprehension of the conceptualization of the

domain, reducing ambiguity and, terminological and semantic conflicts in a given area

of knowledge [6].

There is an increasing amount of research devoted to utilizing ontologies in Soft-

ware Engineering (SE) in general and RE in particular. A review of the latter can be

found in [7]. In RE, ontologies were used separately for describing the semantics of the

requirements specification documents, for the representation of requirements knowl-

edge and for the representation of the requirements domain without taking into account

quality criteria in an integrated way.

The contribution of this paper is an ontology-based approach for defining a good

SRS. The main component of this approach is an ontology for conceptualizing the SRS

called OntoSRS whose main objective is to guide stakeholders in the definition of a

SRS maintaining the following SRS qualities: consistency, unambiguity, correctness,

organization and traceability.

This paper is organized as follows. Section 2 introduces the main concepts around

the proposed approach. Section 3 shows the generation of the OntoSRS. Section 4

presents an extension of the OntoSRS. Section 5 presents an application of the ex-

tended OntoSRS in a real case study. Finally, Section 6 discusses the results of the

research and states future research directions.

2 Background

2.1 Semantic Web Technologies

2.b.1. Ontology Definition

In computer science, an ontology is understood as a representational artifact for speci-

fying the semantics or meaning about the information or knowledge in a certain do-

main in a structured form [8]. From a pragmatic viewpoint, an ontology is a representa-

tional artefact whose representational units are: terms, relations, instances, axioms and

rules. A term is a word or group of words representing an entity from the domain of

discourse. An instance is a certain individual of a corresponding entity in the domain

of discourse. A term representing an entity and its instances are related by the associa-

tion instance-of. Relations are elements that glue together other ontology elements. A

classification of the relations can be found in Caliusco et al. [9]. Axioms serve to

represent sentences that are always true in the considered domain properties. Rules are

logical sentences used to express the features of a domain, i.e. business rules [6].

An ontology is used to describe the meaning of the entities belonging to a certain

domain, and its main characteristic is that it allows reasoning about the properties of

that domain.

2.b.2. Ontology Development Methodologies

Several methodologies for developing ontologies have been described during the last

two decades [10-11]. The objective of these methodologies is to define a strategy for

identifying key concepts in a given domain, their properties and the relationships be-

tween them; identifying natural language terms to refer to such concepts, relations and

attributes; and structuring domain knowledge into explicit conceptual models.

In literature, two groups of methodologies can be figured out. The first one is the

group of experience-based methodologies represented by the Grüninger and Fox me-

thodology defined in the TOVE project [12] and by the Uschold and King methodolo-

gy based on the experience of developing the Enterprise Ontology [13]. The second

one is the group of methodologies that propose a set of activities to develop ontologies

based on their life cycle and the prototype refinement, such as the METHONTOLOGY

methodology [6], the Ontology Development 101 Method [14] and the methodology

defined by Brusa et al. [15].

2.b.3. Ontology Representation Languages

Different languages exist for ontology representation in a machine-interpretable way.

Ontology languages are usually declarative languages commonly based on either first-

order logic or description logic. The ones based on first-order logic have higher ex-

pressive power, but computational properties such as decidability are not always

achieved due to the complexity of reasoning [16]. The most popular language based on

description logic is OWL DL, which have attractive and well-understood computation-

al properties [17].

The main ontology component is a set of rules. Considering that the OWL language

is the standard for implementing an ontology and that it is not always enough to do

certain deductions, then it is needed to combine OWL with other representation for-

malism as rules. One of the integration approaches is the Semantic Web Rule Lan-

guage (SWRL), which aims to be the standard rule language of the Semantic Web. It

provides the ability to express Horn-like rules. SWRL allows users to write rules that

can be expressed in terms of OWL concepts and can reason about OWL individuals

[18].

In order to extract information from OWL ontologies a query language is needed.

The most powerful language is SQWRL, which is based on the SWRL rule language

and uses SWRL’s strong semantic foundation as its formal underpinning. The resulting

language provides a small but powerful array of operators that allows users to construct

queries on OWL ontologies. SQWRL also contains a novel set operators that can be

used to perform closure operations to allow limited forms of negation as failure, count-

ing, and aggregation [19].

2.2 SRS Quality Criteria

In RE, quality criteria can be defined for each individual requirements artifact or re-

quirements document, as well as for an entire requirements document (SRS) or for

specific sections in the document. Thus, the quality criteria defined for the SRS can be

used during the RE process in a constructive or analytic manner.

Different works defining criteria for evaluating the quality of a SRS can be found in

literature [1], [20-22]. Many of them describe needed attributes for the SRS as a whole.

Nevertheless, other authors describe characteristics to be demanded for each specified

requirement in order to affirm the SRS complies with them. In this work, the following

criteria are considered:

2.2.a. Consistency

A SRS is consistent if and only if no subset of individual requirements stated therein is

in conflict.

Some authors consider this attribute as “Internal Consistency”. Meanwhile, they con-

sider “External Consistency” when no individual requirement states in conflict with no

other project documentation [1].

2.2.b. Correctness

A SRS is correct if and only if every requirement represents something required of the

system to be built, i.e., every requirement in the SRS contributes to the satisfaction of

some need, and all needs are considered in the specification.

2.2.c. Traceability

An SRS is traceable if and only if it is written in a manner that facilitates the referenc-

ing of each individual requirement. The origin of each of its requirements must be

clear. This implies that every requirement that has a basis is cross-referenced to that

basis.

2.2.d. Unambiguity

An SRS is unambiguous if and only if every requirement stated therein has only one

possible interpretation. As a minimum, this requires that each characteristic of the final

product is described using a single unique term.

2.2.e. Organization

An SRS is organized if and only if its content is arranged, so that information and logi-

cal relationships among adjacent sections is apparent and can be easily located by

readers. One way is to follow any of the many SRS standards.

3 Building OntoSRS

Considering that an ontology is an artefact intended to avoid the ambiguity of a set of

concepts in a given domain, using an ontology of the SRS minimize the ambiguity in

the definition of the requirements of a software system. In this work is proposed an

ontology called OntoSRS.

With the aim of defining an organized SRS, the OntoSRS is based on the 830 stan-

dard defined by the IEEE [22]. The IEEE standard [22] recommends a set of practices

for the SRS generation, proposing a structure for it, plus an explanation of the features

or qualities that must be considered in the generation of this document is given.

In order to build the OntoSRS an adaptation of the methodology defined by Brusa et

al. [15] was followed since this methodology gather the best practices for ontology

building. In the next subsections, the activities that were carried out are described.

3.1 Specification subprocess

Activity 1: Describing the domain

According to the 830 standard defined by the IEEE [22], a SRS establishes the func-

tions and capacity of the software, as well as its restrictions. The SRS is a specification

for a particular software product, program, or set of programs that performs certain

functions in a specific environment. The SRS may be written by one or more repre-

sentatives of the supplier, one or more representatives of the customer, or by both.

The basic issues that the SRS writer(s) shall address are the following:

a) Functionality. What is the software supposed to do?

b) External interfaces. How does the software interact with people, the systems

hardware, other hardware, and other software?

c) Performance. What is the speed, availability, response time, recovery time of

various software functions, etc.?

d) Attributes. What are the portability, correctness, maintainability, security, etc.

considerations?

e) Design constraints imposed on an implementation. Are there any required stan-

dards in effect, implementation language, policies for database integrity, resource lim-

its, operating environment(s) etc.?

Activity 2: Elaborating motivating scenarios and competency questions

A motivating scenario describing the main features of the elaboration of a good SRS

was defined according to the IEEE 830 standard [22], which is presented with an activ-

ity diagram in Figure 1. The template proposed by Brusa et al. [15] is used to describe

it, on Table 1. Based on this scenario, simple and complex competency questions arise,

some of them are shown in Table 2. Competency questions (CQs) are questions at a

conceptual level, informally written in natural language, which the ontology should be

able to answer [12].

Fig. 1. Activity diagram of the SRS generation process.

Activity 3: Determining the ontology goal and scope

The ontology goal is to give support to the stakeholders to accomplish a complete,

consistent, organized, traceable, and unambiguous SRS.

This ontology only assure an improvement in the definition of a SRS with the cha-

racteristics mentioned above, it doesn’t guarantee the correctness, verifiability, mod-

ifiability, and traceability of the document.

3.2 Concretization subprocess

Activity 1: Defining classes and class hierarchy

Using the middle out strategy a list of terms that represents the most important entities

in the SRS generation was created. It does not include partial or total overlapping of

terms, synonyms, properties and relations. From that list of terms a UML diagram was

elaborated with the hierarchy relations among those terms.

From the class hierarchy diagram, disjoint classes, exhaustive decompositions and

partitions were identified. In Figure 2 an excerpt of the UML class hierarchy is shown.

Table 1. Scenario of the elaboration of a good SRS.

Scenario number 1

Name Iteration of a good SRS

Description Activities involved in each iteration of a good SRS.

Site Customer’s organization

Actors Customer – Supplier – User – Stakeholders

Pre-

requirements

The customer needs a software product and he/she is willing to collabo-

rate in the elaboration process of the SRS.

Associated

requirements

The customer is acquainted of the software needs and the operations and

interaction of the user with the software product.

Normal se-

quence

1 Analyze the gathered documents during the RE activities.

2 Generate the SRS

3 Customers and suppliers must check if the SRS meet the characte-

ristics of a good SRS according to the standard 830 of the IEEE.

4 Customers and suppliers approve the new version of SRS.

Alternative

sequence

2.1 Complete the SRS with arising requirements

2.2 Compare it with the previous version of the SRS.

Post-condition A resulting SRS complete, consistent and unambiguous.

Exceptions

3 The SRS doesn’t meet the characteristics of a good SRS according

to the standard 830 of the IEEE. Go to 1.

4 Customers and suppliers don’t approve the new version of SRS.

Main problems

Managing the great volume of information and knowledge generated by

the RE activities.

Ambiguous Requirements. Different stakeholders might produce different

interpretations for the same requirement.

Different stakeholders' backgrounds, perspectives and individual goals.

Requirements are not completely and consistently defined.

Insufficient Specifications, which produce absence of key requirements.

Dynamic, changing requirements: which require constant requirements

revision in order to help to understand new clients' needs and to identify

how they can be satisfied.

Main terms
Stakeholder, customer, supplier, software requirements specification,

requirements.

Table 2. Competency questions

Given a domain entity, what are the require-

ments related to it?

Are the dynamic requirements contradictory

with other requirements?

Is the SRS unambiguous? Does a certain term a unique meaning?

Is a certain non functional requirement speci-

fied in the SRS?

Do different words have the same meaning?

Is a certain functional requirement specified

in the SRS?

How do different requirements relate to each

other?

Activity 2: Identifying class relations, attributes and properties

The next step is the elaboration of a table that reflects the relations, the domain and

range, cardinality and inverse relations. The relation direction depends on competency

questions to be solved and the possible conflicts with other represented class restric-

tions. An excerpt of the table built during this activity is shown in Table 3. In addition,

from this table a UML diagram was developed. An excerpt of it is shown in Figure 3.

Fig. 2. An excerpt of the class hierarchy in UML.

Table 3. An excerpt of the relation table of the SRS ontology

Class name Relation
Cardi-

nality
Class name

Inverse

relation
SRS SRSHas 1 Introduction isPartOf
SRS SRSHas 1 Overall description isPartOf
SRS SRSHas 1 Specific requirements isPartOf
SRS SRSHas 1 Index isPartOf
SRS SRSHas 0..1 Apendix isPartOf

Introduction introductionHas 1
Definitions, acronyms

and abbreviations
isPartOf

Introduction introductionHas 1 Overview isPartOf
Introduction introductionHas 1 Purpose isPartOf

Overall description overallDescriptionHas 1 Product Perspective isPartOf
Overall description overallDescriptionHas 1 Product Functions isPartOf
Overall description overallDescriptionHas 1 User characteristic isPartOf
Overall description overallDescriptionHas 1 Constraint isPartOf

Fig. 3. An excerpt of the UML class diagram.

Activity 3: Representing axioms and restrictions

Once class relations, attributes and properties are identified, along with the scenario

template, the next step is to analyze the restrictions among them.

The rules are formally represented in Description Logic. For example, the following

axiom states that a Software Requirements Specification is composed of an Introduc-

tion, an Overall Description, Specific Requirements, an Index and it could contain an

Appendix.

3.3 The implementation subprocess

Activity 1: Creating a computational ontology

Protégé was chosen to implement the ontology because it is extensible and provides a

plug-and-play environment that makes it a flexible base for rapid prototyping and ap-

plication development. The OntoSRS ontology was implemented in OWL by using the

Protégé1, which is an open source editor. Figure 4 shows the logical view window.

Fig. 4. Protégé Logical view window for the OntoSRS ontology.

Activity 2: Verifying the ontology

With the aim of verifying the ontology, the correctness of the ontology, consistency,

completeness and conciseness have to be proved [6].

•Consistency. A given definition is consistent if the individual definition is consistent

and no contradictory sentences can be inferred using other definitions and axioms.

1 http://protege.stanford.edu/

•Completeness. In fact, cannot be proved either the completeness of an ontology or the

completeness of its definitions, but we can prove both the incompleteness of an indi-

vidual definition, and thus deduce the incompleteness of an ontology, and the incom-

pleteness of an ontology if at least one definition is missing regards to the established

reference framework.

•Conciseness. An ontology is concise if it does not store any unnecessary or useless

definitions, if explicit redundancies do not exist between definitions, and redundancies

cannot be inferred using other definitions and axioms.

Two main types of measurement for verification could be identified: structural meas-

ures and formal measures. The first one is required to graphically representing the

ontology. The second implies to use a reasoner. In this study case, the OWLViz and

OntoViz plugins of the Protégé were used to compare the computable ontology with

the designed in UML (see Section 3.2 - Activity 2). On the other hand, the reasoner

Pellet which is included in the Protégé editor was used
2
.

Activity 3: Validating the ontology

In order to validate the computable ontology, the competency questions defined in

Process 1 were codified by using the SPARQL query language
3
. Then, they were ex-

ecuted with the aim of checking if the competency questions are being correctly ans-

wered by the OntoSRS.

4 Extending the OntoSRS

The SRS should be unambiguous both to those who create it and to those who use it.

However, these groups often do not have the same background and therefore do not

tend to describe software requirements in the same way. Within the requirements engi-

neering, one artefact that describes the terminology of a given domain from the users

and designers perspectives is the Lexicon Extended Language (LEL) [23]. LEL is a

representation of the terminology in the application language, which is classified in

four categories: object, subject, verb, and state. Each term is described in two ways.

The former, notion, is the denotation of the term indicating its meaning, who is, when

it occurs, which process involves. The latter, behavioural response, describes the con-

notation of the term indicating the effects that such term generates on others terms and

the effects that other terms generate on it.

In order to fulfill the previous objective, an ontology that conceptualizes the LEL,

called OntoLEL, was built. It was done following the same steps as those for creating

OntoSRS which were previously explained. This ontology is shown in the Figure 5.

In addition, the use of LEL contributes to maximize the correctness since some re-

quirements can be associated with at least one impact defined in the LEL, assuring that

the requirement represents something demanded to the system to be built. Another

requirement criterion for a good SRS is the traceability which is achieved when the

origin of each individual requirement is clearly defined. In Figure 6 is shown how

2 Support about the integration of Protégé and Pellet can be found in http://protege.stanford.edu/
3 Specifications can be found in http://www.w3.org/TR/rdf-sparql-query/

some of the elements defined in the LEL ontology are related with some of the ele-

ments of the OntoSRS.

Fig. 5. OntoLEL ontology.

Fig. 6. Some relationships between OntoSRS and OntoLEL.

5 Study Case

In order to exemplify the proposal, an excerpt of the well-known Meeting Scheduler

System also considered by Breitman and Sampaio do Prado Leite [24] will be used.

In general, RE methodologies and techniques describe concepts, scenarios and situa-

tions of the business process, either the current observable process or the future one,

when considering the application implementation [25]. Thus, these techniques can be

applied in two ways. In the last case, when considering future situations, the generated

documentation contains the most of the requirements, which must be considered in the

SRS creation, thus, the evaluation of diverse quality criteria for SRS such as traceabil-

ity or correctness can be improved with the consideration of LEL documentation, and

much more, of its ontology.

 LEL is one of those techniques, capable to be applied in the “as is” situation, or,

even, in the “to be” situation. Figure 7 shows the LEL documentation for Initiator, one

of the actors for the Meeting Scheduler System, considering the “to be” situation.

LEL
Initiator type: subject
Notion:
Person that invites other meeting participants.
He or she may be a participant.
Impacts:

� Defines meeting goal.
� Defines meeting date.
� Defines meeting agenda.
� Is responsible for meetings cancellations.
� Invites participants.
� Asks participants for assistance confirmation.

Fig. 7. Initiator LEL for Meeting Scheduler System.

In general, when LEL technique is applied for the “to be” situation (considering the

application under analysis), and the symbol being described is a “subject”, functional

requirements can be derived from the impacts defined for the LEL. Thus, with the aim

to exemplify how LEL and SRS elements are related, Figure 8 shows the ontology

instantiation for the example.

Fig. 8. Ontology instantiation.

6 Discussion and Future Research Directions

Diverse authors describe the benefits of using ontologies along software development

projects [5], [26]. Specifically in RE phases, the major benefit can be obtained when

using an ontology in the SRS creation, since it guides the specification process for

obtaining a quality SRS. This goal can be reached through the application of OntoSRS,

based on the IEEE 830 Standard [21], in order to ensure the organization quality crite-

rion. In addition, in this paper this ontology was greatly enhanced by relating it with an

ontology for LEL specification, with the aim of describing a given domain by using a

common vocabulary. This improves the unambiguity, correctness and traceability qual-

ity criteria.

Another advantage of using a computable ontology for supporting the definition of

a SRS is the possibility to automatically validate its quality. The OWL language allows

consistency checking of an ontology, which means that the ontology does not contain

any contradictory axioms. Some axioms were added to the OntoSRS that restrict the

definition of the SRS (see Section 3.2 - Activity 3). Then, the consistency of the On-

toSRS can be checked, ensuring in some way the consistency of the SRS.

On the other hand, OWL does not reason about indivuals of the ontology. Then, in

order to validate the quality criteria that involve instances, SWRL rules and SQWRL

can be used. As an example, the following one implements traceability validation for

the SRS:

SoftwareRequirementSpecification(?srs) ^ SpecificRequirement (?r) ^

SRSHas(?srs, ?r) ^ Impact(?i) ^ derivedFromImpact(?r, ?i) ^

sqwrl:makeSet(?s, ?r) ^sqwrl:isEmpty(s) → notTraceable(?srs)

In case all rule components are true, the ?srs instance is classified as notTraceable.

This rule infers that an SRS is not traceable if the set of requirements specified in the

SRS that has associated an impact defined in the LEL is empty. This is a preliminary

rule that demonstrates the usefulness of rules applied to the extended OntoSRS for

deducing the SRS quality criteria. The current work is devoted to analyze the ap-

proaches for measuring the quality criteria considered in this paper, in order to imple-

ment the most suitable ones.

In the definition of a SRS, the knowledge related with the specific requirements is

also important. In the literature, different classifications of requirements and ontologies

for conceptualizing them can be found. An overview of them is presented in Castañeda

et al. [7]. In this sense, future work will be conducted in order to incorporate this kind

of ontology in the proposed approach and, thus, study how quality criterion is affected.

References

1. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques. Springer

(2010).

2. Noppen, J., van den Broek, P., Aksit, M.: Imperfect requirements in software development.

In P. Sawyer, B.P., (Eds.): Requirements Engineering for Software Quality - REFSQ 2007,

LNCS 4542, Springer-Verlag Berlin Heidelberg, pp. 247-261 (2007).

3. Alexander, I.F., Stevens, R.: Writing Better Requirements. Pearson Education (2002).

4. Shadbolt, W.H., Berners-Lee, T. The semantic web revisited. IEEE Intelligent Systems,

21(3), pp. 96-101 (2006).

5. Happel, H.J., Seedorf, S.: Applications of ontologies in software engineering. In: Interna-

tional Workshop on Semantic Web Enabled Software Engineering (SWESE'06) (2006).

6. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering, Springer,

Heidelberg (2004).

7. Castañeda, V., Ballejos, L., Caliusco, M.L., Galli, M.R.: The Use of Ontologies in Require-

ments Engineering. Global Journal of Computer Science and Technology, 10(6), pp. 2-8

(2010).

8. Allemang, D., Hendler, J.A.: Semantic web for the working ontologist: Modeling in RDF,

RDFS and OWL. Elsevier, Amsterdam (2008).

9. Caliusco, Ma. L., Galli, Ma. R., Chiotti O. “Technologies for Data Semantic Modeling”.

Intl. Journal of Metadata Semantics and Ontology. Special Issue. Inderscience Publishers.

ISSN 1744-2621. 1(4), pp. 320-331 (2006).

10. Corcho, O., Fernández-López, M., Gómez Pérez, A. Methodologies, tools and languages for

building ontologies: where is the meeting point? Data and Knowledge Engineering, 46(1),

pp. 41-64 (2003).

11. Wouters, B., Deridder, D., Van Paesschen, E. The use of ontologies as a backbone for use

case management. In: Proceedings European Conference on Object-Oriented Programming

(2000).

12. Grüninger, M., Fox, M.S.: Methodology for the design and evaluation of ontologies, In:

Proceedings International Joint Conference on Artificial Intelligence, Workshop on Basic

Ontological Issues in Knowledge Sharing (1995).

13. Uschold, M., Grüninger, M.: Ontologies principles, methods and applications, Journal

Knowledge Engineering Review 11, pp. 93–155 (1996).

14. Noy, N., McGuinness, D.: Ontology Development 101: A Guide to Creating Your First On-

tology (2001).

15. Brusa, G., Caliusco, M.L., Chiotti, O.: Towards ontological engineering: a process for build-

ing a domain ontology from scratch in public administration. Expert Systems, 25(5), pp.

484-503 (2008).

16. Brachman, R., Levesque, H.: Knowledge Representation and Reasoning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA (2004).

17. Smith, M., Welty, C., McGuiness, D.: Owl web ontology language guide. Recommendation

W3C 2(1) (2004).

18. O’Connor, M., Knublauch, H., Tu, S., Musen M.: Writing Rules for the Semantic Web Us-

ing SWRL and Jess. In: Proceedings 8th International Protege Conference, Protégé with

Rules Workshop (2005).

19. O'Connor, M.J., Das, A.K.: SQWRL: a Query Language for OWL. In: Proceedings OWL:

Experiences and Directions, 6th International Workshop, Chantilly, VA (2009)

20. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid, G., Le-

deboer, G., Reynols, P. Sitaran, P., Ta, A., Theofanos, M.: Identifying and measuring quality

in software requirements specification. In: Proceedings 1st Int’l Software Metrics Sympo-

sium (1993).

21. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: An Automatic Quality Evaluation for Natural

Language Requirements. In: Proceedings 7th Int’l Workshop on Requirements Engineering:

Foundation for Software Quality, Interlaken, Switzerland (2001).

22. IEEE 830 Standard: IEEE Guide to Software Requirement Specification, Standard 830-

1998, New York: IEEE Computer Society Press (1998).

23. Sampaio do Prado Leite, J.C., Franco, A.P.M.: A Strategy for Conceptual Model

Acquisition. In: Proceedings of IEEE International Symposium on Requirements Engineer-

ing. IEEE Computer Society Press, pp. 243-246 (1993).

24. Breitman, K.K., Sampaio do Prado Leite, J.: Ontology as a requirements engineering prod-

uct. In: 11th IEEE International Requirements Engineering Conference (2003).

25. Hadad, G.; Doorn, J., Kaplan, G.: Elicitar Requisitos del Software usando Escenarios. In:

Proceedings Workshop on Requirements Engineering (WER’09) (2009).

26. Calero, C.; Ruiz, F.; Piattini, M.: Ontologies for Software Engineering and Software Tech-

nology, Springer (2006).

